
                                                                                                                                    

Algebras of diffeomorphisms of the N-torus 
E. Ramos 
Institute for Theoretical Physics. State University of New York. Stony Brook, New York 11794-3840 

C. H. Sah 
Department of Mathematics, State University of New York. Stony Brook. New York 11794-3651 

R. E. Shrock 
Institute for Theoretical Physics, State University of New York. Stony Brook, New York 11794-3840 

(Received 12 December 1989; accepted for publication 4 April 1990) 

The general algebra g(N, V) of infinitesimal diffeomorphisms ofthe N-torus (S I)N involving 
generators Lv,m depending on a structure vector veCN and a vector-valued index mez.N is 
constructed. Several results are proved for this algebra. Special cases of the algebra were 
previously presented in Ramos-Shrock [E. Ramos and R. E. Shrock, Int. J. Mod. Phys. A 4, 
4279 (1989).] The concept of the Q rank of the space Vofstructure vectors, denoted rQ (V), is 
defined and certain related "Cartan matrices" are introduced. It is shown that g(N, V), as an 
ungraded algebra, is simple if and only if rQ ( V) = N, i.e., the Q rank of Vis maximal. A 
classification under isomorphisms is given for the algebra and is shown to reduce to a 
classification of the Cartan matrices. The space of structure vectors is isomorphic to the unique 
"Cartan subalgebra." A number of properties concerning the central extensions of these 
algebras are then proved. For the case dim V = I, rQ (V) = N, it is shown that the central 
extension is unique. For the case dim V = 1 ,r Q ( V) < N, a new and greatly enlarged central 
extension is constructed involving a central charge function from 'IN - r to C (essentially 
equivalent to an infinite number of central charge parameters), rather than a single central 
charge parameter. Finally, it is proved that for dim V;;;'2, this algebra has no nontrivial central 
extension. 

I. INTRODUCTION 

The Virasoro algebra is a complex Lie algebra Vir with 
basis c and L m , mE'l, which satisfy the commutation rela
tions 

[Lm,Ln] = (m - n)Lm + n + (c/12) 

X (m3 - m)8m + n,O' [Lm'c] = 0, (1.1) 

where m, nE'l and c is called the central charge. According to 
a theorem of Gel'fand and Fuchs,l it is isomorphic to the 
universal central extension of the complexified algebra 
Diff(S 1) of infinitesimal diffeomorphisms (or polynomial 
vector fields) of the circle. (For reviews, see Refs. 2 and 3.) 
By viewing Vir as a real Lie algebra and tensoring it with C 
(over lR), we get a direct sum of Vir and its "complex conju
gate" Vir. This yields the algebra of infinitesimal conformal 
transformations in two dimensions. In this way, it plays a 
fundamental role in conformal field theory and has proved 
useful in elucidating the properties of string theories and 
two-dimensional statistical mechanical models.3 

Recently, these algebras have been generalized to alge
bras comprised of certain infinitesimal diffeomorphisms of 
the N torus, (S 1) N, in Ref. 4. The generalized algebras in
volve operators Ln wth indices n = (n l , ... ,nN) Tez.N. (Here 
and henceforth, m, n, etc. will denote N-dimensional integral 
column vectors; we will not use boldface notation.) Two 
different types of central extensions were presented in Ref. 4: 

[Lm,Ln] = (vim - n)Lm+n +A(m)8m+n,0, (1.2) 

[Lm,Ln] = (vlm-n)Lm+n +A(m)8(ulm+n),0' 

(1.3 ) 

The structure constant vector v = (v1, ... ,vn ) is one of the 
many new features of this albegra. One may take veN'l, NQ, 
NR, or NC [the upper-left index signifies that these are spaces 
of bra (orrow) vectors]. The scalar product (vln) is a bilin
ear map from NC X 'IN to C defined by the rule 
(vln) = ~jvjnj' 1 <J<N, (i.e., with no complex conjuga
tion). In general, the algebras (1.2) and (1.3) are not iso
morphic as central extensions, the first central extension in
volves the Kronecker delta function; 

( 1.4) 

(where the 0 on the left-hand side is the zero vector in 'In), 
while the second involves the weaker condition that 
(vim + n) = 0 so that it is one of a larger family of central 
extensions. The function A (m) appearing in both (1.2) and 
( 1.3) is given by 

A(m) = al{vlm) + a3(vlm)3. (1.5) 

Equations ( 1.2) and (1.3) are identical if and only if the 
components of the structure vector v are rationally linear
independent complex numbers. If one wants to introduce a 
particular definition of adjoint: 

( 1.6) 

it is necessary to select vENlR, and take a l,a3ER. Possible gen
eralizations of such adjoints will be considered elsewhere. 
From the viewpoint of a general complex Lie algebra, we can 
deal with the case of CEC and not impose ( 1.6) . Since shifts of 
the form Lo ..... Lo + a leave the commutation relations invar
iant but cause the shift a 1 ..... a 1 + 2a (v 1m), one can, without 
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loss of generality, take a l = - a3• Moreover, motivated by 
the case of Virasoro algebra, one may use the notation 

a3 = - a l =c/12, (1. 7) 

which defines the central charge c. In Ref. 4 it was shown 
that the algebras (1. 2) and ( 1.3) with c = 0 can be realized 
in terms of certain infinitesimal generators of diffeomor
phisms of (S I)N. We recall this realization. Let 

L - i'ei({} In) ~ (1.8) 
e(s).n - a{} , 

s 

where e(s) = (es I is the unit row vectorin the sth direction, 
i = ( - 1) 1/2, and {} = ({}I""'{}N) with {}jER mod 217'. This 
is a generator of an infinitesimal diffeomorphism of (S I)N. 
The representation of Ln is given by 

( 1.9) 

We recall that the algebras (1. 2) and (1. 3) retain the same 
form in terms of generators that differ from the original ones 
by a global rescaling, L ~ = aLn, provided that one defines a 
rescaled structure vector and central charge according to 
Vi = av and c' = a2c. It also retains the same form for an 
index-dependent rescaling of the form 

L ~ = (I} a;1) L n , with Vi = V, 

and 

( 1.10) 

This is, in fact, the most general automorphism that pre
serves the grading of the algebra. In addition, the algebra 
also retains the same form if one transforms the indices by 
elements sfEGL(N,Z). Specifically, let Vi = v'sf-) and 
m' = sf· m. This then defines an isomorphism of the alge
bras (1.2) and (1.3) that does not preserve the grading. 

One can also make index-dependent shifts ofthe genera
tors of the form L ~ = Ln + an' The resulting algebra has 
defining relations, 

[L;,.,L~] = (vlm-n)L;"+n - (vlm-n)'am+n 

+A(m)c5(vlm+n).o' (1.11) 

and is equivalent to the original algebra, differing only in a 
redefinition of the central charge. 

The preceding discussion can be generalized easily from 
(S I) N to diffeomorphisms of (C x ) N , where C x denotes the 
multiplicative group of nonzero complex numbers. The gen
eralization of the generators takes on the following form. We 
take basic generators 

Le(s).n = - ( II z;,). Zs .~ , 
1 <,.;;N azs 

( 1.12) 

where Z/EC x . The generators Ln are defined as before in 
( 1.9). The restrictions to (S) N is obtained by choosing 

1 . i{}., 
Ps = 1nzs =pse . 

One can construct a fundamental and far-reaching gen
eralization of Ref. 4 by letting the structure vectors vary for 
each generator, over some finite or even infinite set. Interest
ingly, we shall find that once one lets the structure vectors 
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vary, then the properties of the resulting algebra are quite 
different from those with only one structure vector. In the 
next section we will begin our discussion of this algebra. 

Parenthetically, we note that a subalgebra of the algebra 
of diffeomorphisms of the two-torus has been studied by Ar
noldS and later by other authors.6 This subalgebra is based 
on the very different defining relation 

[Lm,Ln] = (m 1n2 - m2nl )Lm+n + (alm)c5m+n.o, 

where m,n E Z2, and consequently has a structure quite dif
ferent from the N = 2 special case of the general algebra of 
diffeomorphisms of the N-torus considered here. In another 
different direction, an algebra of diffeomorphisms of the N
torus has been studied in Ref. 7 defined by 

[Lm,Ln] = rsin(det{a l ,a2,···,m,n} )Lm + n 

+ (b Im)c5m + n,O' 

wherem,n,a), ... ,aN _ 2 ,be'lN. In both of these other algebras, 
the coefficient of Lm + n is a multilinear, rather than linear, 
function of the indices m and n, in contrast to the Virasoro 
algebra, to its geneneralization presented in Ref. 4, and to the 
general algebra of diffeomorphisms of the N-torus studied 
here, all of which have a coefficient Lm + n that is a linear 
function of m - n. Related to this is the fact that in both of 
the other algebras, [Lm,Lo] = 0, again in contrast to the 
Virasoro algebra, to the algebra of Ref. 4, and to the more 
general algebra discussed here, where Lo and L v.o, respec
tively, do not commute with the rest of the algebra and, in
deed, serve to define an important Cauchy subalgebra. Fin
ally, yet another fundamental difference is the fact, already 
indicated, that in the general algebra of diffeomorphisms of 
the N-torus studied here, each generator L v•n depends not 
just on an index vector naN, but also on a structural vector 
veCN; it is this property that enables our algebra to be the 
general, rather than a special case of the, algebra of diffeo
morphisms of the N-torus and that adds a great amount of 
mathematical richness to this algebra, going beyond both the 
Virasoro algebra and the generalization to a particular alge
bra of diffeomorphisms of (S ) N given in Ref. 4, in which all 
generators depended on a single structure vector. 

II. GENERAL ALGEBRA OF DIFFEOMORPHISMS OF 
THEN-TORUS 

A. Definition of the class 

Here we shall define a class of algebras of (infinitesimal) 
diffeomorphisms of the N-torus. Since the structure vector 
associated with each generator can be different, we 
label the generators as L u•m • The vector m = 1m) 
= (m), ... ,mN ) TaN will be a ket (column) vector with in

teger entries. u = (ul = (u), ... ,UN)ENC will be a bra (row) 
vector with complex entries. The space Newill be viewed as 
a right C-vector space in the sense that a linear operator will 
be written to the right of the vector. The scalar product 
(u 1m) will simply be matrix multiplication without complex 
conjugation on the components of u. Taking an axiomatic 
approach, we may define the algebra ~ (N) by the linearity 
condition 

Lua + vp.m = aLu.m + PLv.m' a,pEC, u,veNC , (2.1) 
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together with the Lie bracket 

[Lu,m ,Lv,n] = Lw,m + n' 

where w = u' (vim) - V' (uln) . (2.2) 
It is clear that ~ (N) has a vector space basis over C consist
ing of all Le(j),m' 1 <j<,.N, mEZN, where e( j) is the unit vec
tor in the jth direction. Moreover, every element of ~ (N) 

can be written as afinite sum of the form ~u,mLu,m' where u 
and m range over a finite set with each u:;ofO. In this sense, 
~ (N) is a graded vector space over C with the grading pro
vided by 'IN. However, many of our assertions ignore this 
grading and are therefore stronger. The bracket operation 
preserves the grading by the index set 'IN but does not in
volve any grading in the structure vector space N C. It is for 
this reason that we treat 'IN and N C as distinct spaces. A 
specific faithful representation of ~ (N) is provided by the 
general infinitesimal diffeomorphisms of the N-torus, Eq. 
(1.9). Equivalently, if we define .!£ (N) to be the algebra 
C [ X/I], 1 <j<,N, of all Laurent polynomials in N variables 
over C, then ~ (N), the Lie algebra of all C derivations of 
.!£ (N), serves as a concrete faithful model of (2.1) and 
(2.2). We note that each dEGL(N,'l) defines a Lie algebra 
automorphism of ~ (N) according to the rule 

d(Lu,m) = Lu.,o/~I,,o/'m . (2.3) 

It is worthwhile to point out a basic difference between 
the present algebra for N> 1 and the case of N = 1. We recall 
that a loop algebra extension of a Lie algebra 9 over C is 
C[ t ± I ] ® 9 (where the tensor product is over C unless noted 
to the contrary). The Lie bracket is defined by the rule 

[f ®x,g®y] =/g® [x,y] . (2.4 ) 

Normally, 9 is taken to be a finite-dimensional Lie algebra 
over C (see Refs. 3 and 8 among many others). The fact that 
9 is finite dimensional plays a crucial role in the study ofloop 
algebras and the related loop groups as well as the Kac
Moody algebras. Our case is quite different; 9 will tum out to 
be infinite dimensional. In particular, 9 will be Diff(S 1) or its 
generalizations. It is this fact that leads us to the occurrence 
of an infinite number of central charges. We note that loop 
algebras are usually defined by using (2.4) while Kac
Moody algebras are originally defined by using Cartan ma
trices (see the reviews given by GarlandS and Kac3

). Our 
abstract approach formally resembles the Kac-Moody ap
proach, but a number of our results use the loop algebra 
structure. In either case, the infinite dimensionality of 9 
forces us to give different arguments. 

We next consider a C-vector subspace Vof N C. We then 
define ~ (N, V) to be the C-vector subspace of ~ (N) 
spanned by all Lv,n' VE V, nEZN. It is immediate that 
~ (N, V) is closed with respect to (2.1) and (2.2) so that it is 
a Lie subalgebra. The space V will be called the space of 
structure vectors for ~ (N, V). Strictly speaking, we must 
include as part of the definition the specific choice of'lN in 
CN as well as the identification ofN C as the dual space ofCN 

through matrix multiplication. It is immediate that the auto
morphism of ~ (N) described in (2.3) carries ~ (N, V) iso
morphically onto ~ (N,V'd- I

), dEGL(N,'l). 
It is not too difficult to deduce from later results that 

every automorphism u of ~ (N, V) has the following form 
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(see discussions in Sec. I): 

u(Lu,m) = x(m) ·Lu·,o/~I,.oI·m' 

where dEGL(N,Z) with V'd = V, andx:ZN --+C x isaho
momorphism. The function x(m) denotes the product fac
tor that multiplies the generator in (1.10). Since we do not 
need this result, we omit the proof (it can be extracted from 
the proof of Theorem 3.2). We note that the condition that 
d EGL(N,'l) should map Vonto Vis not easy to describe in 
terms of a basis of V when V has dimension over C distinct 
from 1 or N. 

B. The Q rank of the space Vof structure vectors. 
Cartan matrices 

The nature of the space V of structure vectors is of fun
damental importance for the algebra of infinitesimal diffeo
morphisms. We will define two numerical invariants to mea
sure its size. The first invariant of Vis dime V = I'(we often 
write dim V for dime V when there is no chance of confu
sion). The orthogonal complement vt is defined as usual as 
{WECN I (vlw) = O}. This is a C subspace of the space CN of 
ket (column) vectors. It follows that'lN I( vt n'lN) is a free 
Abelian group with rank denoted by r Q ( V). This number 
will be called the (relative) Q rank of V (alternatively, one 
might call it the relative Z rank). It is immediate that 
dim V<,rQ (V) <,N. We note that this concept can be defined 
in terms ofQN rather than 'IN because of the form invariance 
of ~ (N, V) under rescaling of the generators in addition to 
the fact that Q is the quotient field of the principal ideal 
domain 'l. The word "relative" is used in order to emphasize 
the fact that this concept refers to a choice of'lN (or QN ) in 
CN In mathematical terminology, one would say that CN 

has been given a (particular) 'l structure. Since the scalar 
product (u 1m) identifies N C with the dual space of CN

, it 
also has a preferred 'l structure with the given selection of 
'IN. Ifwe take a free (i.e., indepenent, unconstrained) basis 
I'(j), rQ (V) <j<,N, of V 1 n'lN, then the existence ofa com
plementary basis to make up a basis for 'IN shows that we can 
find d EG L (N,'l) so that d'l'( j) = e (j) is the standard 
unit vector in the jth direction. This means that V' d - I is 
contained in the subspace of N C spanned by the standard 
unit row vectors e(i), I <,i<,rQ (V), where rQ (V) is the 
smallest integer with this property. The preceding assertions 
are straightforward consequences of the theory of finitely 
generated modules over principal ideal domains (see Ref. 9, 
Sec. V.2). In general dim V = r Q (V) holds if and only if Vis 
the space of all complex solutions of a system oflinear homo
geneous equations with integer (or rational) coefficients in 
Nunknowns. 

A more concrete, but equivalent, way of looking at the 
space V of structure vectors is to introduce the concept of a 
generalized Cartan matrix M. By definition, M is an I'x N 
complex matrix of row rank t. Two such matrices M, M I are 
said to be equivalent ifthere exists ~ in GL(,f,C) and d in 
GL(N,'l) sothatM' = ~ ·M·d- I

• Ifwe select a C-vector 
space basis {v(i) 11 <,i<, t} for V consisting of row vectors in 
N C. We can then arrange these vectors in the form of an 
I'x N matrix M. The (i, j) entry of M is just the scalar prod
uct (v(i) le( j». Mis then a Cartan matrix. An examination 
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of (2.1) and (2.2) shows that ~(N,V) can be defined by 
using M and generators LV(i).m' l<;i<;t, mEZN. By using 
(2.3), equivalent Cartan matrices define isomorphic alge
bras [the ZN index group has been changed by 
.safEGL(N,Z)]. It follows that the isomorphism class of the 
algebra ~ (N, V) comes from at least one equivalence class 
of Cartan matrices of size tx N. The Cartan matrix M has 
column rank rQ (V) over Q. Namely, we view the columns as 
lying in the Q-vector space C( (i.e., we forget the structure of 
C( as a C-vector space), then r Q ( V) is the maximum number 
of rationally independent columns of M and coincides with 
the rank of the free Abelian subgroup of C( consisting of all 
integral linear combinations of the columns of M. Also, 
r Q ( V) is an invariant of the equivalence class of M. 

In the classical theory, Cartan matrices have integer en
tries and satisfy suitable restrictions on their entries. The 
restrictions reflect the fact that the Killing-Cartan form can 
be used to define a suitable positive-definite scalar product so 
that the Cartan matrix encodes information about the root 
vectors. In particular, the root vectors generate a lattice (a 
discrete free Abelian subgroup of rank lin a real Euclidean 
space lR(). Such a picture is not available in our setup. Nev
ertheless, the equivalence classes of the generalized Cartan 
matrices so defined will be seen (in Theorem 3.2) to be in 
one-to-one correspondence with the isomorphism class of 
our Lie algebras (as ungraded Lie algebras). In this sense, 
they generalize the classical concept. 

Before going further, we look at a few examples. In all 
these examples, we assume N = 3. 

Example 1: Let dIm V = 1 so V is spanned by a single 
nonzero vector VE3C. (i) Let v = (2i,6i, - 4i). It is clear that 
V is also spanned by (1,3, - 2) = w. Thus 
W·.saf-l = (1,0,0) holds for 

3 

1 

o 
-2) o . 
1 

It follows that rQ (V) = 1. The sets (2i,6i, - 4i), (1,3,2), 
and (1,0,0) are equivalent Cartan matrices. In contrast, 
(1,1T,O) and (1,21T,O) are not equivalent Cartan matrices. In 
general, if dim V = 1 and v spans V, then r Q (V) = 1 if and 
only ifv;lvjEQ holds for all i andjwhen Vj ;60. We will often 
write r Q (v) in place of r Q ( V) when v spans V. 

(ii) Let v = (1,1 + 1T,1T). The components of v have 
pairwise irrational ratios. Nevertheless, rQ (V) = 2 is not 
maximal. It is easy to see that V' .saf- I = (l,1T,O) holds for 
the following element .saf EGL( 3,Z): 

"'~G i D· 
It should be noted that the structure vector v is not 

unique even if we assume that the first r Q (V) components 
are nonzero and begin with 1. For example, we could also use 
(1,1T- 1,0) as a structure vector. This is a consequence of the 
fact that we are allowed to change v to fjj . V' .saf - 1 (fjj EC x 

in the present case since 1= 1). This freedom is used in the 
description of the basic invariants: the dimension and the 
relative Q rank of V. 
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Example 2: dim V = 2. (i) Let Vbe spanned by (1,2,1) 
and (1,1 + 1T,1T) over C. Let v1 nz3 be spanned by 
(1, - 1,2) T so that rQ (V) = 2. V can also be spanned by 
(1,2,1) and (0,1 -1T,1 - 1T) or by (1,2,1) and (0,1,1). This 
is seen by using C-linear combination of these row vectors. 
Thus, V·.saf-l is spanned by (1,0,0) and (0,1,0), where 
.safEGL(3,Z) is 

(
1 2 1) 

.saf= 0 1. 

o 0 1 
(ii) Let Vbe spanned by (0,1,0) and (1,1 + 1T,1T) over 

C, and also spanned by (1,O,1T) and (0,1,0). These vectors 
have Q ranks 2 and 1, respectively. We can also span Vby 
(1,v'1,1T) and (1,v'3,1T). Each of these latter vectors has Q 
rank 3. The space V has rQ (V) = 3. Thus the individual 
structure vectors mayor may not determine the Q rank of V. 
The following are Cartan matrices: 

(1 0 1T) (1 v'1 1T) 
o 1 0'1 v'3 1T . 

The last observation in (ii) of example 2 is quite general. 
It will be used many times. We will therefore state the gen
eral result. 

Propositon 2.5: (a) Let v be a nonzero vector in N C. The 
one-dimensional subspace ofN C spanned by v has relative Q 
rank rifand only ifthe components Vi' 1 <;i<;N, ofv spans a 
Q-vector subspace of dimension r in C (considered as an 
infinite-dimensional vector space over Q). (b) Let V be a 
subspace of N C with dim V = I and relative Q rank 
rQ (V) = r. Then V has a basis {v(s) I 1 <;s<;t} over C such 
that each v(s) spans a one-dimensional subspace of relative 
Q rank r. Conversely, any subspace W of N C containing one 
of these vectors must have relative Q rank at least r. (c) 
Every Cartan matrix M associated to V in (b) is equivalent 
to one where the first I columns form the identity matrix 
while the last N - r columns are O. 

The preceding assertion can be verified by proving (c) 
first. We begin with any Cartan matrix M. Since M has only a 
finite number of columns, the Abelian subgroup of C( gener
ated by the columns is necessarily free. We can therefore use 
column operations over Z on M [they correspond to right 
multiplication by elements of GL(N,Z) ] to normalize M so 
that its last N - r columns are O. Since row operations over C 
on M correspond to left multiplication by elements of 
GL( t,C), we may then put M in row echelon normal form. 
Since column permutations of M corresponds to right multi
plication by elements of GL(N,Z), we have proved (c). 
Since we could have carried out column operations over Z on 
the first N - r columns before performing the row opera
tions over C, we can not make general statements about nor
malizing the columns numbered from 1+ 1 to N - r - 1. 

We next note that the finite number of entries of M gen
erate a subfield K of C. Since C is not finitely generated as a 
field extension of Q, C must be infinitely generated as a field 
extension of K. We can now use elements of C that are linear
ly independent over K to form linear combination of the 
rows of M in order to construct a basis of Vover C as indicat
ed in (b). (This requires us to undo the column operations 
over Z as needed.) The rest of the assertions are clear. 
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Remark: There is no uniform procedure to determine 
the relative Q rank of Veven when dim V = I. Such a proce
dure would require the solution to a number of outstanding 
problems in algebraic and transcendental number theory. 
For example, ~(3) has only recently been proved to be irra
tional. Thus, (1,~(3» has relative Q rank 2. We still do not 
know whether ~(5) or r, the Euler constant, is irrational, 
and hence we cannot say what the relative Q rank is for 
either (l,~(5» or (l,r). 

Associated to the concept of Cartan matrices, we can 
also introduce the notion of Cartan subalgebra, Cartan de
composition, root spaces, root lattices, etc. Namely, in 
f» (N, V) = g, the Cartan subalgebra go is defined to be the 
subspace consisting of L v•o, VE V. Each nE'lN will be called a 
root and the root space gn is defined to be the subspace con
sisting of L v•n , VEV. Except when rQ(V) =N is maximal, 
the root lattice 1..N cannot be identified with a free Abelian 
subgroup of the dual space of V. We can define an extended 
Cartan subalgebra go as the sum of the subspaces gn with 
nEV1n1..N. For each mE'lN, we can define the extended root 
space gm to be the sum of the subspaces gn+m' nEV1n1..N. 
These extended root spaces are therefore indexed by ele
ments of the free Abelian group 1..' = 1..N I( V1n1..N), 
r = r Q ( V). We may identify 'l' with a free Abelian subgroup 
of the dual space of V. However, there is no natural way of 
viewing 1..' as a subgroup of 1..N and there is also no natural 
choice of a 1.. basis for V ln1..N. These concepts will be used 
shortly. 

c. Nonslmplicity of ~ (N, V) when r Q (V) < N 

The following assertion is straightforward. 
Proposition 2.6: IfrQ (V) = r<N, then f» (N, V) is not a 

simply Lie algebra. In fact, we can find a subspace W of 'C 
with rQ (W) = r such that f» (N, V) is isomorphic to the 
(N - r)-fold iterated loop extension q X ,±+\ , ... ,x R 1] 
®f»(r,W). 

The isomorphism is clear from the discussion on row 
and column operations on the Cartan matrix. To show the 
nonsimplicity, we just have to exhibit a single nontrivial 
ideal in f» (N, V). This is most easily accomplished by using 
the indicated isomorphism. Namely, f» (N, V) can be 
mapped onto f» (r, W) by sending each Xj to I, r + I <J<N. 
If we examine (2.4), it amounts to evaluating the Laurent 
polynomials at Xj = 1, r + 1 <J<N. It is clearly a Lie algebra 
homomorphism. The kernel is then an ideal Y spanned by 
the following elements over C: 

{ (Mp - 1) ®Lu.mILu.mEf»(r,W);Mp = I{ X?} . 
J=,+l 

(2.7) 

Cleary, Y is a non-Abelian ideal, namely, the Lie bracket of 
any element of Y with any element of the entire algebra 
remains in Y and the Lie bracket is nontrivial on Y. 

Remark: The evaluation at ~ = 1 can be modified. In
deed, we can independently evaluate Xj at ajEC x, r <j<N. 
The generators of the kernel would have to be changed with 
Mp - 1 replaced by Mp - Mp (a) whereMp (a) is the value 
of the monomial Mp under the evaluation of Xj at aj . Of 
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course, the ideal Y is not graded. It is much easier to prove 
the weaker assertion that every proper graded ideal must be 
O. 

D. Simplicity of f» (N, V) when r Q (V) = N 

We now abbreviate f» (N, V) to 9 and use the Cartan 
decomposition. Equations (2.1) and (2.2) show that go is an 
Abelian subalgebra and that the adjoint action of go on 9 
decomposes 9 into the direct sum of the root spaces 
gm ,mE'lN. In the classical theory, each root space has dimen
sion 1 when the root is not zero. In our case, all root spaces 
have the same dimension t: We now have the following 
theorem. 

Theorem 2.8: If r Q (V) = N, then f» (N, V) is simple as 
an ungraded Lie algebra. 

Proof: Let / be a nonzero ideal of 9 and let 
x = ~u.mLu.m be a nonzero element of /. The strategy of 
the proof is to define Ixl to be the number of mE'lN in the 
preceding sum representation with the corresponding u non
zero. In other words, Ix I is the number of nonzero compo
nents of x with respect to the grading of the algebra. By using 
the property [ /,y] C / holds for all yEg in conjunction 
with a minimization of lxi, we will then show that / must 
contain all the elements of g. In fact, the argument will show 
that XE/ will force gm C/ for each mE1..N with L u•m #0. 
Thus, / is a graded ideal and coincides with g. 

To begin our argument, we may choose x in/ - {O} to 
minimize IxI- We assert that Ixl = 1. Suppose that Ixl > I so 
that L u•m + L v•n appears as part of the sum representation of 
x,m#n, u#O#v. Since rQ (V) = Nand m - n(£Vl, we can 
find WE V with (wlm - n) #0. In a similar sum representa
tion, the nonzero components of [ Lw.o,x] must be indexed 
by a suitable subset of the indices associated to x. For the 
indices m, n, [Lw.o'x] has components (wlm)Lu.m and 
(wln)Lv.n. Since (wlm - n) #0, one of these two compo
nents is definitely not zero. Thus I [Lw.o,x] 1= Ixl by mini
mality and both components are nonzero. Since 
(wlm - n) #0, the following matrix is invertible: 

Cw~m) (w~n»)' 
Thus y = [Lw.ox] - (wlm)xE/ and satisfies 0 < Iyl < IxI
This contradicts the minimality of Ix I so that we can assume 
x = L u•m • We have the following cases. 

Case 1. m#O: Then [Lu.m,Lv.- m ] = Lw.o E/, 
w = u' (vim) + v' (ulm). If (ulm) #0, we take v = u. If 
(ulm) = 0, then we use rQ (V) = N to find v so that 
(vim) #0. Thus, we can find Lw.oE/ with w#O. This puts 
us in case 2. 

Case 2. m = 0: Suppose that u,40, then [x,Lv.e(l)] 
= u;Lv.e(l) E/ for each VEV. Thus ge(l) C/o 

We can repeat case 1 to conclude that goC/. Using 
Proposition 2.5, we can find Lw.oE/ where rQ (w) = N. 
Thus, [Lv.n,Lw.o] = (wln)Lv.nE/ and (wln)#O if n#O. 
This shows that gn C/ holds for every nE'ln so that / = 9 
and 9 is simple as claimed. 0 

Remark: The preceding argument can be adapted to 
show that f» (N, V) is simple as a graded Lie algebra. For 
example, the two cases would correspond to m(£ vt and 
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mE 0 . Since the other modifications are equally straightfor
ward, we omit further details. 

III. CLASSIFICATION OF 9 (N,V) 

In this section, we shall give a classification of 9 (N, V) 

as an ungraded Lie algebra. As in the classical theory of 
finite-dimensional Lie algebras, the Cartan subalgebra will 
playa crucial role. However, one should note a number of 
fundamental differences between the present case and the 
classical case. We have a Cartan subalgebra as well as an 
extended Cartan subalgebra [when r Q ( V) < N ] . We can use 
t = dim Vas the analog of the rank in the classical case. As 
mentioned before, our root spaces all have the same dimen
sion t. This happens in the classical case only when t = 1. If 
we select a basis {v(i) 11 <i<t} for Vover C, then we have a 
basis {LV(i).n 11<i<t} for each root space 9n' nE'lN. Under 
the right adjoint action, each LV(i).n is then a root vector for 
the root n. Unless rQ (V) = N, distinct roots can determine 
the same element of the dual space of V. This led to the 
notion of extended Cartan subalgebra, extended root space, 
and a corresponding reduction of the root lattice. In the clas
sical case, judicious choices of normalization of the genera
tors Hi' l<i<t. of the Cartan subalgebraand basisEa for the 
one-dimensional root spaces then led to the familiar Cartan 
matrices. As indicated, these normalizations use the KilI
ing-Cartan form (it becomes a positive-definite symmetric 
bilinear form on the real vector space spanned by Hi' 
l<i<t). When t= 1 and rQ (V) = N, our algebras come 
closer to the classical case. The only difference is that the 
root lattice ZN may not be identifiable with a discrete sub
group of the dual space of V. To get the classical analog so 
that ZN is a discrete subgroup ofJR( = JR, it is necessary and 
sufficient that N = 1. We are back to the case of Diff(S I). In 
general, when t = N, we have the full algebra f2J (N) and the 
Cartan matrix can be taken to be the identity matrix of size 
IX t. Nevertheless, our algebra 9 (N) remains simple rath
er than breaking up into a direct sum of N simple algebras. 
These are but some of many striking features of the general 
algebras of diffeomorphisms when t = dim V> 1. 

We next prove the following theorem. 
Theorem 3.1: The Cartan subalgebra 90 of 9 = f2J (N, V) 

is unique and we have (a) The algebra 90 is an Abelian subal
gebra isomorphic to V. It is maximal Abelian if and only if 
rQ (V) = N; equivalently, if and only if f2J (N, V) is simple. 
(b) Also, 9 is the direct sum of eigenspaces with respect to 
the adjoint action of 90' (c) the element x of 9 lies in 90 if and 
only if the following condition holds: (*) each y of 9 is con
tained in a finite-dimensional ad x invariant C subspace 
W(y) of 9. 

Proof: (a) The map sending VEVonto L v•o is an isomor
phism between Vand 90' By giving V the zero Lie bracket, 
we may think of this as an isomorphism of Abelian Lie alge
bras over C. The remaining assertion follows from the defini
tion and the discussions under parts C and D of section II. 
(b) This follows from the definition. (c) Since the adjoint 
action of 90 decomposes 9 = f2J (N, V) into a direct sum of 
root spaces 9m ,mE'lN , and each 9m has dimension equal to 
t' = dim V, it follows that each XE90 has the property (*). 
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Conversely, assume that zEt9o. We can introduce a lexicogra
phic ordering on ZN so that ZN becomes a totally ordered 
Abelian group. For example, given mol nE'lN , we use m < n 
to mean that there is an indexj so that m i = ni holds for i <j 
and mj <nj' Sincez = ~Lu.mEt90' we can find a nonzero com
ponent L u•m with m as large as possible. If m<O in ZN, then 
we can find a nonzero component L v•n with n as small as 
possible and be sure that n < O. Without loss of generality, we 
assume m > 0 in our lexicographic ordering. It is enough to 
find an element y = Lw.p so that (ad z)q (y),q> 0, span an 
infinite-dimensional subspace of 9. There are two cases. 

Case 1. (ulm) #0: Setting y = L u.2m would do the job 
because (ad z)q (y) has nonzero component Lv.(q + 2)m in the 
largest index (q + 2)m with v = u'a,a = q!' (ulm)qEC. 

Case 2. (ulm) = 0: We select nEZN - {O} with 
(uln) #0. The case y = L u•n would do the job because 
(ad z)q (y) has nonzero component L v.qm + n in the largest 
index qm + n with v = U' (uln)q. 

In both cases, the total ordering of the indices shows 
that (ad z)q (y),q;>O, cannot lie in a finite-dimensional sub
space of9. 0 

We now proceed to the classification of f2J (N, V). 

Theorem 3.2: Fix Nand t' = dim V. The isomorphism 
classes of the ungraded Lie algebras f2J (N, V) stand in one-
to-one correspondence with the defining equivalence classes 
of Cartan matrices, rQ (V) is an invariant of the isomor
phism class of f2J (N, V), and f2J (N, V) is simple if and only if 
rQ(V) =N. 

Proof: We know from the discussion on Cartan matrices 
that each equivalence class of such matrices yields an iso
morphism class of algebras of the form f2J (N, V) through the 
use of (2.3). We only need to show that distinct equivalence 
classes do not lead to isomorphic Lie algebras of the form 
f2J (N, V) because the other assertions have been proved al
ready. 

Let us assume 0': f2J(N,V)-+f2J(N ',V' ) is an isomor
phism of Lie algebras. We can now assume that they are 
defined by Cartan matrices M and M'. In view of Theorem 
3.1, 0' must map the Cartan subalgebra of f2J (N, V) isomor
phically onto the Cartan subalgebra of f2J (N ', V'). Thus 
t'= t" and M and M' have the same size. We need to show 
that M and M' are equivalent. We first treat the case where 
r Q (V) = N = r Q ( V '). In view of parts C and D in Sec. II, 
either of the equalities implies the other because 0' is an iso
morphism. In the root space decomposition of f2J (N, V), the 
maximality of r Q ( V) implies that the set ZN of roots n may 
be viewed as subset of the dual space of V. The definition of 
the Lie bracket in f2J (N, V) shows that ZN is a free Abelian 
subgroup of rank N = r Q ( V) ofthe dual space of V. Ifwe let 
v(i), l<i<t. denote a basis of the Cartan subalgebra 90 
and select root spaces geU) , so that {e(j) 11 <J<N} is a free 
basis of the root lattice ZN, then [Lv(iLO' L u•eu) ] 

= (v(i) le(j) )Lu•eu)· Since L u•eU) #0 when u#O, the coef-
ficient (v(i) le(j» is unambiguously defined and we have 
determined a Cartan matrix M of f2J (N, V). Since the only 
freedom we have comes from basis change of the Cartan 
subalgebra and the grading, and since both are determined 
by the Cartan subalgebra and the Lie bracket in 9 (N, V), 

we conclude that distinct equivalence classes of Cartan ma-
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trices must correspond to distinct isomorphism classes of 
g; (N, V) when V has maximal Q rank N. 

We next consider r Q (V) = r < N. Thus 

g; (N,V) ~qx r±;1 , ... ,x ~ I] ® g; (r,W) 

holds for a vector subspace we r C with W = p. V for some 
PEGL(N,C). In particular, we have w~ Vand rQ (W) = r. 
There is a similar result for g; (N', V' ). It is enough to show 
that r = r' and Wis equivalent to W' because a Cartan ma
trix associated to V can be obtained from one for Wbyadd
ing 1'1 - r columns of zero to the right. The equivalence 
between Wand W' can then be extended to an equivalence 
between M and M' as desired. To get the equivalence 
between Wand W', we not that the extended Cartan subalge
bra g6 is the space {XEg; (N, V) I [x,y] = 0 holds for every 
yEgo}. It follows that a must map this extended Cartan sub
algebra isomorphically onto the corresponding extended 
Cartan subalgebra of g; (N', V'). By the same kind of reason
ing a must map the extended Cartan decomposition onto the 
corresponding one. This means that a induces an 
isomorphism between the reduced grading groups 
ZN j( vt nZN) ~zr and Z". Thus we have r = r' and the 
same kind of argument as used in the case of maximal rank 
shows that we can extract a Cartan matrix associated to W 
by choosing a C basis for Wand Z basis for '//. Since these 
data depend only on V and the Cartan subalgebra, we have 
the desired conclusion. 

Remark: In the general case, we do not know if the iso
morphism a must map root spaces to root spaces. But we do 
know that it must map extended root spaces to extended root 
spaces. This is enough to finish the proof. The stronger asser
tion about preservation of root spaces is an open problem. It 
is related to the fact that we do not know the exact nature of 
the group of all automorphisms of the Lie algebra when 
r Q ( V) < N. It is easy to see that there are an uncountable 
number of such isomorphism classes when rQ (V) > {and 
just one when rQ (V) = t. 

IV. UNIVERSAL CENTRAL EXTENSIONS. DIM V= 1 

We begin with a brief review of central extensions. From 
a mathematical point of view, the basic problem is one of 
deciding if a particular projective representation p of a Lie 
algebra 9 comes from an ordinary representation of g. This is 
not always the case. We therefore try the next best thing and 
ask if there is a central extension g' of 9 [given in the form of a 
Lie algebra homomorphism pr: g' -+ 9 with 9 = P (g') and 
with pr- I (0) = c' contained in the center of g'] so that the 
projective representation p of 9 can be lifted to an ordinary 
representation p' = po pr of g'. We then face the question of 
the uniqueness of (g' ,p') as a function of (g,p). This question 
was first studied by Schur in a sequence of papers for finite 
groups; see Ref. 10. His ideas have become a part of homo
logical algebra in terms of the (co) homology theory of 
groups and algebras; see Hochschild and Serre. II For our 
purposes, Schur's original treatment is adequate. Since the 
description of all representations p of 9 is likely to be quite 
difficult, we first ask for the existence of a single central 
extension g' that could be used to lift all possible projective 
representations p of g. Such an extension is called a versa I 
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central extension of g. (The work "versal" is artificially ob
tained by using the second half of the word universal.) It 
turns out that versal extensions always exist but may not be 
unique. Namely, we can always form the direct sum of a 
versal extension with an arbitrary Abelian Lie algebra to get 
another versal central extension. A versal central extension 
is called a universal central extension when it enjoys the 
uniqueness property. Namely, for each representationp of g, 
the lift p' to g' is unique. By looking at commutators, we can 
mimic Schur's observation that 9 has a universal central ex
tension g' (that is then unique up to uniquely determined 
isomorphism) if and only if 9 coincides with its commutator 
subalgebra [g,g]. When this happens, g' also coincides with 
its own commutator subalgebra [g' ,g'] . Lie algebras that co
incide with their commutator subalgebras are often called 
perfect. In particular, every simple Lie algebra is perfect. In 
view of (2.4) and Sec. II, g; (V,N) is always perfect even 
though it is simple only when r Q (V) = N. (It should be 
noted that an automorphism of 9 does not have to yield the 
identity on the "central charges" in g'. Thus the uniqueness 
of g' refers to the identity automorphism of g). 

The description of the universal central extension g' of a 
perfect Lie algebra 9 is usually accomplished through the use 
of two-cocycles. From an elementary physicist's point of 
view, this reduces to the requirement that a candidate cen
tral extension terms must satisfy the Jacobi identity. A more 
mathematical approach is as follows. If we only want to have 
a central extension that is tailor made for a particular irredu
cible projective representation p of g, then the two-cocycle 
can be taken to have value in IC. Similarly, if the universal 
central extension g' happens to have c' of dimension lover C, 
then we can again use C-valued two-cocycles to describe g. 
For example, the case of Vir as oro algebra leads to the notion 
of a central charge in the description of the universal central 
extension ofDiff(S I ). As indicated earlier ( 1.3) belongs to a 
larger family of central extensions. This signifies the fact that 
c' may have dimension greater than I. As a result, we need to 
consider general two-cocycles with values in a C-vector 
space. The idea of Schur can be described quite simply. 
Namely, we first describe a versal central extension with an 
associated two-cocycle with values in a C-vector space D. Its 
commutator subalgebra is then the desired universal central 
extension. This reduces C down to c'. We recall that a two
cocycle g of 9 with values in a C-vector space C is a map g: 
9 X 9 -+ C with the following properties; 

g is C bilinear, 

g is skew symmetric, g(x;y) = - g(y;x), (4.1 ) 

g satisfies the Jacobi identity, g(x; [y,z]) + cyclic = O. 

The associated central extension E(g) = g' can then be iden
tified with the C-vector space direct sum 9 $ C and the Lie 
bracket is then defined by the rule: 

U(x),j(y)] =j([x,y]) +g(x;y), X,yEg. (4.2) 

Herej:g-+E(g) = g' so that pr 0 jis the identity map on g. It 
goes without saying that U(x) ,c] = 0 holds for XEg and CEC. 
It should be noted that the map j is essential in this descrip
tion. Namely, j can only be altered to j' so that 
j'(x) =j(x) + h(x). The C-vector space homomorphism 
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h:g --+ C is arbitrary and is called a 1 cochain. The two-cocycle 
g is then changed to the new two-cocycle g' with 
g'(x;y) = g(x;y) - h( [x,y]). The cocycleg' is said to differ 
from g by the two-coboundary 8h. The strategy in describing 
the universal central extension is to modify g by two-coboun
daries 8h until we get to a manageable two-cocycle g'. In 
general, the final g' is not unique. The choice is typically 
made on the basis of its utility. This is the place where confu
sion of notations unavoidably arises. Once the universal cen
tral extension g' is found, the C-valued two-cocycles have the 
form of Jog withJranging over the C-linear maps from c' to 
C. In view of ( 4.1), it is then apparent that c' can be identified 
as the quotient of the C-vector space A~ (g) of skew symmet
ric two-tensors by the subspace spanned by x 1\ [y,z] + cy
clic as x, y, and z range over g. It is important to note that the 
collection of all two-cocycles with values in any C-vector 
space is again a C-vector space. In particular, the two-co
boundaries form a vector subspace of the space of all two
cocycles. Usually, two-coboundaries are called "trivial two
cocy les." This does not mean that they are zero. It does mean 
that the associated central extention E( 8h) is a direct sum of 
9 and an Abelian Lie algebra. To be precise,j , is a Lie algebra 
homomorphism so that g' is the Lie algebra direct sum of c' 
andj'(g) ~g. 

There is one other important property of a perfect Lie 
algebra g. If g' is the direct sum of 9 and an Abelian Lie 
algebra c', then 9 is uniquely determined as the commutator 
subalgebra [g' ,g']. In terms of two-co cycle g of 9 with values 
in c', this means that, once g is trivial, the liftj , from 9 to g' is 
uniquely determined (as a Lie algebra homomorphism) 
rather than unique up to an additive modification by a Lie 
algebra homomorphism from 9 to c'. This is a direct conse
quence ofthe fact that a Lie algebra homomorphism from a 
perfect Lie algebra to an Abelian Lie algebra is necessarily 
the zero map. We will use this fact later. 

When 9 is perfect and has a Cartan decomposition, the 
description ofthe universal central extension g' by means of 
a two-cocycle is somewhat simpler. To be concrete, we spe
cialize to g=iiI(N,V). We write g(u,m;v,n) for g(u;v) 
when UEg m and VEgn. For any root space gn' n #0, each 
nonzero element x of gn is a simultaneous eigenvector for the 
adjoint action of go. Since n # ° and c' + C j(x) is closed for 
the adjoint action in g' of the Lie subalgebra c' + j( go), it 
becomes clear that there is a unique liftj(x) so thatj(x) 
remains a simultaneous eigenvector for this lifted adjoint 
action. Moreover,j can be taken to be C linear on gn' From 
the Jacobi identity, we get [gm ,gn ] C gm + n' It then follows 
without problem that the C linear map j defined on the root 
spaces gn for n # ° can be assumed to respect the Lie bracket 
in the sense that 

j( [x,y]) = U(x),j(y)], if xEgm,yEgn' and m + n = 0. 

In other words, the two-cocycle g may be assumed to have 
the property, 

g(u,m;v,n) = 0, if m + n#O. (4.3) 

This means that we only have to determine the liftj(x) for 
xEgo. Since j is assumed to be C linear and go has a distin
guished C basis, we are reduced to the description of j on 
these distinguished basis elements. This will be accom-
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plished by shifting to an examination of g on pairs of distin
guished basis elements of 9 through the Jacobi identity. 

We will now proceed to the case of iii (N, V) with 
dim V = t' = 1. In order to have the goal in front of us, we 
will exhibit the final result immediately. For the sake of con
creteness, we will take a single structure vector 
v = (vl, ... ,v"O, ... ,O)EN C where r = rQ (V) so that VI"" ,V, 

are rationally-independent complex numbers. We may 
define w = (vl, ... ,v, )E' C so that iii (N, V) 
~ 5e (N - r) ® iii (r, W). It will be more convenientto write 
ZN as the direct sum Z' 6) ZN - '. We note that ZN - , 
= vt-nZNis uniquely determined by V (or v) whileZ' is one 

of many complements of ZN -, in ZN when r < N. We will 
now let p,q, ... vary over ZN - , and m,n ... vary over Z' . With 
these notations, we will next define !P (N,v) by generators 
MpLm and cq together with the commutators: 

and 

[MpLm,MqLn] = (wlm - n)Mp+qLm+n 

+ 8m+ n,O 'A( (wlm» 'cp+q' 

A (t) = (t 3 - t)/12, tEC, 

(4.4) 

In the above definition, the parameters Cq , qE'lN - , , are to be 
viewed as independent basis elements of a C-vector space C, 
the center of !P (N,v). By setting all cq equal to 0, we may 
identify MpLm with Lv,(m,p) EiiI (N, V), in other words, 
MpLm =j(Lv,(m,p»' Itisthenclearthat!P(N,v) is a central 
extension of iii (N, V). If we calculate [MpL2m ,MqL _ 2m ] 
- 2 [MpLm,MqL _ m]' then t = (wlm) #0 implies that Cs 

lies in the commutator subalgebra for each sE'lN - '. This 
shows that !P (N,v) is equal to its own commutator subalge
bra. If p denotes an irreducible representation of !P (N,v), 
then each cp must be represented by a scalar multiple cp (p) 
times the identity operator. This then defines a complex
valued function cp on the set ZN -'. It should be noted that 
one could start with the apparently more general central 
extension: 

[MpLm,MqLn] = (wlm - n)Mp+qLm+n 

+ n'8m+ n,O [c~31qt3 + c~1] qt], 

depending on two different arbitrary functions c~31 q and 
c~ I] q from ZN -, to C, multiplying the t 3 and t terms. This 
form certainly satisfies the Jacobi identity. However, one can 
redefine the generators MpLo for each pE'lN - , in such a way 
as to render c~ll q = - c~31 q' In general, any complex-val
ued function on ZN -, will be called a central charge Junc
tion. These are exactly the equivalence classes of C-valued 
two-cocycles on iii (N,v). It is not known which of these 
central charge functions can arise from the irreducible repre
sentations of j5j) (N,v). Such representations would lead to 
irreducible projective representations of iii (N,v). We now 
state the principal result in this section. 

Theorem 4.5: Let V = Cv. Then !P (N,v) as defined in 
( 4.4) is the universal central extension of iii (N, V). In other 
words, every perfect central extension of iii (N, V) is ob
tained as !P (N,v) I J for a suitable C-vector subspace J of the 
center C of!P (N,v). 
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To begin our proof, we will take C to be the quotient of 
A~ (g) as indicated earlier. Thus, we have a definite vector 
space for the values of the two-cocycle. The defining rela
tions for the universal central extension E.= E(g) can now 
be written in the form; 

[MpLm,MqLn] = (wlm - n) 'Mp+ qLm + n + g(p,m;q,n). 
(4.6) 

Our goal is to identify the form of g(p,m;q,n) as displayed in 
(4.4). We note that the assumption t= 1 has the immediate 
consequence that C ® C' MoLw,o is automatically an Abelian 
subalgebra of E. However, this is true but certainly not yet 
obvious for the subalgebra C®j(go)' Under the adjoint ac
tion ofC®j(go) on E,C®C'MpLm is an eigenspace with C 
corresponds to the zero eigenvalue. Equation (4.3) now 
translates to the normalization assumption 

g(p,m;q,n) = 0, m + n#O. (4.7) 

For the remaining arguments in the proof of Theorem 4.5, 
we assume (4.7). We divide our task into two cases accord
ing to r = Nand r < N. 

Case 1. r=N: This case was dealt with by Ramos and 
Shrock in Ref. 4. We reorganize the proof so as to set the tone 
for generalization. We can simplify our notation by setting 
g( m;n) = g( O,m;O,n). As indicated, our problem reduces to 
thedeterminationofg(m; - m) form#OinZN

• The Jacobi 
identity in E for MoLk,MoLm, and MoLn with k + m 
+ n = ° is equivalent to the condition 

If k + m + n = ° in 'lN, then 

(vim - n)g(k; - k) + (vln - k )g(m; - m) 

+ (vlk - m)g(n; - n) = 0. ( 4.8) 

We observe that the collection {L Ik I tEZ}, k # 0, spans a sub
algebra of 9J (N,v) that is isomorphic to Diff(S I) through a 
rescaling process. This uses the fact that r Q (v) = N. Thus, 
the two-cocycle has a good description as indicated in the 
definition of the Virasoro algebra. Our task is to show that 
these descriptions fit together. At this juncture, we know 
dim C> 1 because ofthe central extension displayed in (4.4). 
If we can show that dim C, 1, then we are done. Of course, 
when N = 1, we are done by means of rescaling in conjunc
tion with the known result of Gel'fand and Fuchs. Our strat
egy is to reduce the general case down to the case of N = 2 by 
an induction process. Namely, we will show that dim C,1. 
To be precise, we will show that the following assertion 
holds. 

Lemma 4.9: If two-cocycle g with property ( 4.7) is ° on 
a subalgebra of 9J (N,v) spanned by all L ,k , tEZ, where Zk is 
a particular nonzero direct summand of ZN , then g is identi
cally 0. 

Remark: We observe that Lemma 4.9 is formulated in 
such a way that the values of the two-cocycle g can lie in any 
I{::-vector space. If we wish, we can take C to be C. Further
more, the proof of Lemma 4.9 can be reduced to the case 
N = 2. Namely, to show that g vanishes identically, we only 
have to show that g(n; - n) = ° for all nEZN. Since ZN is a 
free Abelian group, any subgroup generated by M elements 
is contained in a direct summand with at most M generators. 
This shows that we can find d EGL(N,Z) d . k = e(l) and 

1813 J. Math. Phys., Vol. 31, No.8, August 1990 

d·nE.'l..e( 1) + Ze(2). Since v' = d'v has Q rank N, we see 
that Lk and Ln lie in a subalgebra of 9J (N, V) that is isomor
phic to 9J (2,v") where v" = (v; ,v2 ) has Q rank 2. This re
duces the general case of Lemma 4.9 from N to 2. 

We now prove Lemma 4.9 for the case of N = 2. We 
may take k = e(1). Let us take m = ae( 1), aEZ, in (4.7). 
Since g( m; - m) = 0, we obtain 

(vln + 2ae( 1» 'g(n; - n) 

= (vln - ae(1»·g(n + ae(l); - n - ae(l)). 

(4.10) 

Since we can assume m£Ze( 1), the two coefficients in (4.10) 
are nonzero. This yields the recursion rule 

g(n + ae(l); - n - ae(l») 

= (vln)+2a(vle(l» 'g(n;-n). (4.11) 
(vln) - a(vle(1» 

Equation ( 4.11 ) permits us to compute 
g(n + (a + b)e(l); - n - (a + b)e(1») in two different 
ways. One way involves the direct replacement of a by a + b 
in (4.11) and the other way involves using the associative 
law and iterate (4.11) twice. We obtain from this calcula
tion, 

(3abA 2B - 2ab(a + b)A 3)·g(n; - n) = 0, a,bEl: 

(4.12) 

where A = (vle(l) ),B = (vln). Since A #O#B and a,bEl: 
are arbitrary, we must have g( n; - n) = 0. Since n~e(l) is 
arbitrary and g(ae( 1); - ae( 1 ») = ° is assumed, we see that 
gisidentically 0. This prove Lemma 4.9. We note that A and 
B are in fact rationally independent so that it is only neces
sary to take a, bin 'l with a #0 # b to deduce the vanishing of 
g(n; - n). 

To deduce dim C,1 from Lemma 4.9, we take any sub
space J of C that contains the subspace spanned by 
g(e( 1 ); - e( 1 »). Then, E' = E / J is a central extension with 
a companion two-cocycle g' satisfying the hypothesis of 
Lemma 4.9. Since the universal central extension E is per
fect, the vanishing of g' shows that E' must be 9 so that 
dim C, 1 as desired. We have concluded that proofin case 1. 

Case 2. r < N: Our two-cocycle g is assumed to satisfy 
(4.7). Now 9J(N,v) is isomorphic to .!f(N - r) ®9J(r,w) 
and we can identify 9J (r,w) with a subalgebra of 9J (N, V) 

by means of the generators Lv,(m.O) , mEZ'. It follows that 
g( O,m;O,n), m,nEZ', can be viewed as a two-cocycle on 
9J (r,w). Since modification of a two-cocycle satisfying 
( 4. 7) on 9J (r,w) amounts to adjustment of the generator 
MoLo, we can use the result in case 1 to make the adjustment 
and conclude thatg(O,m;O,n) = t5m + n.OA( (wlm» ·Co. This 
illustrates the general strategy of our proof. We will show 
that for each tEZN - , ,g(p,m;q,n) depends only on t = P + q 
and m,nEZ'. Moreover, with t fixed, the resulting function 
satisfies (4.8) so that it can be viewed as a two-cocycle on 
9J (r,w). Since modifications of such two-cocycles for fixed 
tEZN -, can be accomplished by suitable modification of 
M,Lo, it means that g(p,m;q,n) =t5m+ n.oA«wlm»·ct 

holds because we already have a central extension with inde
pendent c

" 
tEZN - , . 

We begin with the reminder that (4.7) may be assumed 
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in general. By looking at the Jacobi identity for elements 
MsLk,MpLm, and MqLn inEwithk + m + n#O, we obtain 
the generalization of ( 4. 8) , 

(wlm - n) 'g(s,k;p + q, - k) 

+ (win - k) ·g(p,m;q + s, - m) 

+ (wlk - m) ·g(q,n;s.+ P, - n) = O. (4.13) 

Ifwe take k = n#O#m and q = 0 in (4.13), we then have 

g(s,k;p, - k)=g(O,k;s+p, - k), k #0. (4.14) 

Ifwetakek = - m#O = nin (4.13) and combine the skew 
symmetry of g with (4.14), then g(s,O;p,O) = 0 holds for all 
s, peZN -'. Thus, for each kEl:, g(s,k;p, - k) 
= g(O,k;s + p, - k) is a function of s + peZN -'. If we de
note g(p,k;q, - k) by gp + q (k; - k) ,kEZ', then ( 4.13) 
takes over the role of (4.8) and the skew symmetry follows 
from the symmetry in p, q and (4.1). As indicated, this con
cludes the proof of Theorem 4.5. 

V. UNIVERSAL CENTRAL EXTENSIONS. DIM V> 1 

The main result in this section is the following theorem. 
Theorem 5.1: If dim ( V) = t> 1, then .9 (N, V) has no 

nontrivial central extension. 
In order to avoid confusion, we begin with a central 

extension g' of .9 (N, V) with an associated two-cocycle g. 
We will perform modifications on g until it becomes identi
cally O. Since this is the goal, we may assume that g takes 
value in C = C. To carry out modification on g means that 
we modify j(Lu•n ) = L ~.n in g' by adding on suitable ele
ments in C. This modification will be done on suitably select
ed basis elements and extended through linearity over C. 
Throughout the rest of the section, (4.7) will be assumed so 
that the modifications are restricted to n = O. In analogy 
with Sec. IV, we divide the proof into various cases. We 
begin with some notations. The standard basis of'lN over 'l 
will be denoted by e(j), 1 <J<.N. The standard dual basis of 
N Cover C will also be denoted by e(j), 1 <J<.N, so that 
(e(i) le(j» = 8;j. In.9 (N), the generator Le(i).e(j) will be 
abbreviated to L;,e(j» where 1 <.i, j<.N. We consider 
.9 (N, V) as a subalgebra of.9 (N). 

Case 1. dim V = t> 1 and r Q (V) = N: As indicated 
above, we assume ( 4.7). With appropriate modifications, we 
will show that we can also achieve (4.7) for m + n = O. 
Since g is C bilinear, we may assume that u and v range over 
suitable C-vector space basis of V. It is then clear that the 
case t = 2 holds the key. 

We begin with the special case of t = 2 = r Q ( V) = N, 
namely with .9 (2). Since L;.ae(i)' a = 0, ± 1, i = 1,2, span 
the direct sum of two commuting copies of {lI(2,C), we may 
use the semisimplicity of finite-dimensional Lie algebras 
over C to make the following assumption: 

g(i,ae(i);j,beU» =0, for lab I <.1,a,bEZ, i,j= 1,2. 

(5.2) 

We note that (5.2) refers to a C basis of V that isdualto 
the Z basis of 'l2. When we come to the general case of N > 2, 
we need to consider various direct summand of rank 2 in 'IN. 
This will force us to change the C basis of V. In the present 
case, (5.2) together with linearity fixesL ~.o so that we have 
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no more freedom left. It is only natural for us to show the 
intermediate result. 

Lemma 5.3: With the preceding notation, if g is a C
valued 2 cocycle.on.9 (2) so that (4.7) and (5,2) hold, then 
g is identically O. In particular, Theorem 5.1 holds for D( 2). 

Proof The Jacobi identity for L ;.e(l),L i,p,L i.q with 
e(1) + p + q = 0 yields 

p,'g(2,p + e(1);2, - p - e(1» = (PI + 1) ·g(2,p;2, - p). 
(5.4) 

Herep = (PI,P2)EZ2 and (5.3) is independent ofp2' Similar
ly, let q = (ql,q2)EZ2. If we take ql = 0, then 

g(2,be(2);2, - be(2» = 0 holds for all bEL. (5.5) 

By symmetry, we obtain from (5.5) also the result 

g(1,ae(1 );1, - ae(1» = 0 holds f?r all aEZ. (5.6) 

We repeat with L ;.ae(l),L i.p,L i.q, ae( 1) + p + q = 0, aEZ, 
to get 

q,'g(2,q + ae( 1 );2, - q - ae( 1» 

= (ql + a) 'g(2,q;2, - q). (5.7) 

Computing PI'g(2,p + (a + b)e(1);2, - p - (a + b)e( 1) 
in two different ways by (5.7), we get 

(PI + a + b) ·g(2,p;2, - p) 

= (PI + a)' (PI + b) ·g(2,p;2, - p). (5.8) 

Since a,bEL are arbitrary, we conclude from symmetry that 

g(i,q;i - q) = 0 holds for any qEZ2, i = 1,2. (5.9) 

We next examine the Jacobi identity for L ;.p,L i.q,L i.s with 
p + q + s = O. This gives 

{S2 - q2}'g( l,p;2, - p) 

= P2'{g( 1, - q;2,q) - g( 1, - s;2,s)}. (5.10) 

With P2 = 0#q2 = - S2' we see that g( l,p;2, - p) = 0 
holds whenever P2 = O. By symmetry, g( l,p;2, - p) = 0 
holds if either PI or P2 is O. With r2 = q2#0 so that 
P2 = - 2q2 #0, we conclude from (5.10) that g( l,s;2, - s) 
depends only on S2' Since g( l,s;2, - s) = 0 holds when 
Sl = 0, we can conclude that g( l,s;2, - s) = 0 holds for all 
SE'l2. Since (4.7) is assumed, g is identically O. 0 

We now upgrade our special case to the case where t = 2 
but rQ (V) = N is arbitrary. We can assume N>3. For any 
subset J of {1, ... ,N}, let .9 J be the subalgebra spanned by 
L u.m where UE Vand m ranges over the integral linear combi
nations of e(j) in 'IN, jEJ. Thus .9 {1.2} ~.9 (2) under an 
isomorphism of the type described by (2.3) . We can there
fore carry out the modification and use Lemma 5.3 to as
sume that g( u,m;v,n) is identically 0 on .9 {1.2} in addition to 
(4.3). We must now show thatg(u,m;v, - m) is 0 for min 
'IN. Of course, we may assume mEE'le(1) + 'le(2). By using 
an isomorphism of the form (2.3), we may assume that 
m = s'e( 3) for some nonzero integer s. We can choose a C
vector basis v ( 1) and v (2) for V so that a Cartan matrix M 
for .9 (N, V) has the following form: 

(~ ~ : :::), a or b is irrational. 

Without loss of generality, we can assume aEEQ so that.9 {2.3} 

~.9 (2) by an isomorphism of type (2.3). We note that such 
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isomorphisms exist because of the assumption rQ ( V) = N, 
the display of the Cartan matrix merely exhibits this assump
tion in a more precise way. We can therefore conclude that 
the restriction of the two-cocycle to ~ {2,3} is a trivial two
cocycle. By modifying g to g', we can conclude that g' is 
identically zero on ~ {2,3}' We note that the modifications 
involve only basis elements of the form L ~,o,UE V. It is easy to 
see that ~ {2} = ~ {I,2} n~ {2,3} ~.2" (1) ® ~ (1) is a per
fect subalgebra. By choice, the restriction g I of g to ~ {2} 

through ~ {1,2} is identically 0. Similarly, the restriction g3 
of g' to ~ {2} through ~ {2,3} is also identically 0. We know 
that g and g' differ by a 2 coboundary 8h. It follows that g I 
and g3 differ by the two-coboundary 8h', where h' is the re
striction of h to ~ {2} • From the observation made at the end 
of the review of central extensions in Sec. IV, we conclude 
that h ' = 0, Since ~ {2} contains the Cartan subalgebra go, 
the vanishing of h 'is the same as the vanishing of h. Namely, 
no modification of g is needed at all. This is the same as 
saying that g(u,m;v, - m) = ° already holds. We have up
graded our assertion to the case of t = 2 and r Q (V) = N is 
arbitrary. 

We next upgrade to the general case of 
2.;;;;:t<r (V) = N. We use a similar idea. By Proposition 2.5, 
we ca~ find a <::-vector space basis {v(i) 11 <i<t} with 
rQ(v(i» = N for 1 <i<N. Our goal is to carry out m~ific~
tionsonL ~,o in order to getg(u,m;v, - m) to be 0. Smcegls 
C bilinear, it is enough to achieve this for u and v indepen
dently ranging over {v (i) 11<i<t}. For each nonempty sub
set J of {1, ... ,t}, let ~J be the subalgebra spanned by all 
Lu,m, meZN

, and u ranging over the C subspace VJ of V 
spanned by v (j) with jeJ. It is then clear that 
~J ~~ (N,VJ

) with dim VJ = #(J) and rQ (V) = N. If 
J = {i, j} with i =/= j, then the previous upgrade shows that the 
restriction ~ of g to ~J is a trivial two-cocycle. If i,j, k are 
distinct, then ~{ij} n~{j,k} = ~{j} is perfect. We can use 
the same kind of reasoning to show that the independently 
carried out modifications to get g to be identically zero on 
each ~{ij}, i=/=j, in fact fit together without further modifi
cations. This completes the argument in case 1. 

Case 2. Let dim V=t> 1 and rQ (V) = r<N: We have 
~ (N, V) ~.2" (N - r) ® ~ (r, W). We mimic case 2 of Sec. 
IV. The Jacobi identity for MsLu,k' MpLu,m' MqLw,n in E 
with k + m + n = ° yields the following analog of ( 4.13): 

g(s,u,k;p + q,v' (wlm) - W' (vln), - k) 

+ g(p,v,m;q + s,W' (uln) - U' (wlk), - m) 

+ g(q,w,n;s + p,u' (vlk) - V' (ulm), - n) = 0. 

(5.11) 

Since g is C bilinear in the vectors varying over W, we can 
take u, v, w to range over a C basis of W consisting of vectors 
with Q rank r = rQ (W). If we take k = n=/=O=/=m, q = 0, 
and u = win (5.11), then we obtain 

g(s,u,k;p,v' (uI2k) + U· (vlk), - k) 

= g(O,u,k;s + p,v' (uI2k) + U' (vlk), - k), k =/=0. 

(5.12) 

If we first take u = v in (5.12) to be a vector in W with 
r Q (u) = r so that (u I k ) =/= 0, we can then combine the inter-

1815 J. Math. Phys., Vol. 31, No.8, August 1990 

mediate result with the C bilinearity of g to deduce from 
( 5.12) 

g(s,u,k;p,v, - k) = g(O,u,k;s + p,v, - k) , (5.13) 

wherek =/=0, rQ (u) = rQ (v) = r. By Proposition 2.5 and the 
C bilinearity of g, (5.13) then holds for all pairs u, ve W. Ifwe 
take k = - m =/=0 = n, u = v, we obtain from skew symme
try, C bilinearity and (5.13) to conclude that 

g(p,w,O;q,u,O) =0. 

The argument is now similar to case 2 of Sec. IV. The only 
difference is that for each teZN 

- r, we can modify M,Lu,o in 
order to reach the conclusion that g can be made identically ° 
byway of case 1. This concludes the proof of Theorem 5.1 0 

VI. CONCLUSIONS 

In this paper we have elucidated the properties of the 
algebra ~ (N, V) of diffeomorphisms of the N-torus. From a 
physics point of view, one is also motivated to study su~h 
algebras as a natural generalization of the study of theones 
invariant under conformal transformations, corresponding 
to (two commuting copies of) the algebra of diffeomor
phisms of the circle. 

The present work concentrates on the mathematical 
aspects of this algebra. We find that our general algebra ex
hibits a very interesting and rich set of mathematical proper
ties. We have defined the notion of a Q rank, r Q ( V), of the 
space V spanned by the structure vectors. We have shown 
that ~ (N, V) is simple if and only if r Q ( V) is maximal. We 
have then carried out a classification of ~ (N, V). Finally, 
we have established a number of properties concerning the 
central extensions of this algebra. In the case dim V = 1, 
rQ (V) = N, we have shown that the ce?tral extension given 
in Ref. 4 is unique. In this sense, the umversal central exten
sion fP (N,v) can be viewed as generalizations of the Vira
soro algebra Vir. When dim V = 1 and r Q ( V) < N, we have 
constructed a much larger central extension involving a cen
tral charge junction from ZN - r to C, rather than a single 
central charge parameter. We note that Diff(S I) is some
what like a relative of the loop algebra over ~l(2,C). Both 
contain ~[(2,C) as a maximal finite-dimensional simple sub
algebra. Although the reasons are quite different, their uni
versal central extensions have one dimensional centers. 
From a mathematical viewpoint, the iterated loop algebra 
extensions suggests that there could be some interesting 
mathematics related to the iterated loop algebra extensions 
of classical finite dimensional simple Lie algebras. Of course, 
such n-fold iterated loop algebra extensions naturally admit 
the action of ~ (n). In general, we do not know the precise 
structure of the universal central extensions of the n-fold 
iterated loop algebra extension of a general Lie algebra g. For 
example, in contrast to the loop algebra extension of a finite
dimensional simple Lie algebra g, in the case dim V>2, we 
have proved that ~ (N, V) has no nontrivial central exten
sion. Currently, work is in progress on a number of further 
topics associated with the algebra ~ (N, V). One especially 
challenging area is that of representation theory. . 

Note: After this work was completed and the prepnnt 
circulated in June 1989, a paper by A. A. Balinskii and S. P. 
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Novikov, "Poisson brackets of hydrodynamic type, Froben
ius algebras and Lie algebras, " Sov. Math. Dokl. 32, 228-
231 (1985), was brought to our attention. Their specific ex
ample involved an Abelian (noncentral) ideal that led to an 
infinite number of central charges. In contrast, our algebras 
are either simple or are iterated loop algebras over simple 
algebras and do not have Abelian ideals. 
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By using certain special automorphisms, the complete root structures of all the affine Kac
Moody superalgebras, both twisted and untwisted, are derived in detail. 

I. INTRODUCTION 

In recent years, affine Kac-Moody algebras have found 
a number of significant applications in theoretical physics, 
probably the best known being its appearance in the theory 
of the heterotic string. 1 (For comprehensive reviews of the 
usage of Kac-Moody algebras in quantum physics see God
dard and Olive.2

) Various "super" extensions of Kac
Moody algebras have also been considered in physical con
texts. 3 The object of the present paper is to facilitate this 
development by giving a complete description of the root 
structure of the affine Kac-Moody superalgebras that were 
introduced by Kac.4 

The structure of this paper is as follows. In Sec. II the 
basic structure of Kac-Moody superalgebras is briefly sum
marized, the aims being to establish notations, conventions, 
and objectives. Section II A describes the "abstract" formu
lation in terms of generators, while Sec. II B gives the more 
practical explicit construction. In Sec. III the roots of the 
untwisted affine Kac-Moody superalgebras are briefly dis
cussed, the treatment being brief because the procedures are 
very similar to those for the untwisted affine Kac-Moody 
algebras. This brings us to the construction of the twisted 
Kac-Moody superalgebras, which is the main substance of 
this paper. The problems with the canonical automorphisms 
are described in general terms in Sec. IV. By using certain, 
more convenient choices of the automorphisms the complete 
roots structures of A (2)(21_ 1/0), A (4)(2//0), and 
C (2) (l + 1) are investigated in Secs. V-VII. Because in ev
ery case no less than three superalgebras are involved, each 
with their own sets of simple roots, invariant supersymme
tric bilinear forms, and so on, it is necessary to distinguish 
clearly between these similar but different quantities. The 
arguments are presented in sufficient detail to accomplish 
this. 

II. BASIC STRUCTURE OF KAC-MOODY 
SUPERALGEBRAS 

A. Introduction 

The original investigation ofKac-Moody superalgebras 
(under the name of "contragredient Lie superalgebras") 
was carried out by Kac,4.5 the underlying idea being to gen
eralize the concepts of Kac-Moody algebrasb--8 from the Lie 
algebra to the Lie superalgebra situation. Although the gen
eral definition of Kac-Moody superalgebras was deliberate
ly set up in such a way that the Kac-Moody algebras appear 
as a special case, for ease of exposition it will henceforth be 
assumed here that (unless otherwise stated) all the Kac
Moody superalgebras which will be discussed have nontri-

vial odd parts. With this assumption it was shown by Kac5 

that the set of finite-dimensional Kac-Moody superalge
bras consists only of the basic classical simple Lie superalge
bras A (r/s) (for r>s;;;'O), B(r/s) (for r;;;.O and s;;;.I), C(s) 
(for s;;;.2), D(r/s) (for r;;;.2 and s;;;.1), D(2/1;a) (for any 
complex a except 0, 1, or 00), F(4), and G(3), together 
withsl(r+ 1/r+ l;C) (for r;;;. 1), whose factor algebra with 
its invariant Abelian subalgebra is A(r/r). The new and 
more significant feature was the appearance of sets of infi
nite-dimensional Lie superalgebras, of which the most inter
esting (and tractable) are the "affine Kac-Moody superal
gebras" that form the subject of this paper. 

One consequence of the explicit construction of affine 
Kac-Moody superalgebras that is outlined below is that it is 
convenient to denote such superalgebra by two quantities, 
namely an integer m, which may take the values 1, 2, or 4, 
and which appears as a superscript, and a set of symbols 
labeling a corresponding basic classical simple complex Lie 
superalgebra :?~. The whole set of affine Kac-Moody su
peralgebras is then: 

and 

B (1)(0/1), forl 1,2,3, ... ; 

A (2)(2/_ 110), for / = 2,3,4, ... ; 

C(2)(l), for I 2,3,4, ... ; 

A (4)(2//0), fori 1,2,3, .... 

In the general discussion, an affine Kac-Moody superalge
bra will be denoted by :? s' 

For a complex affine Kac-Moody superalgebra:? the 
• s 

generalIzed Cartan matrix A is defined to be a 
(l + 1) X (l + 1) matrix of rank I with the index set 
1= {O, 1,2, ... ,1} labeling the rows and columns, with the di
agonal entries all taking the value 2, and with off-diagonal 
entries being nonpositive integers such that A'k = 0 if and 
only if Akj = O. [The quantity I here is the sa~e as the the 
integer I appearing in the list of affine Kac-Moody superal
gebras listed above, so that, for example, A (2)(2/_ 1/0) 
corresponds to a generalized Cartan matrix of dimension 
(l + 1) X (l + 1).] It will also be assumed that A is inde
composable in the sense that it does not have the block form 

(
AOll 0 ) 

A22 ' 

where All and A22 are nontrivial submatrices, nor can it be 
put in this form by any reordering of the index set 1. Each 
column of A is associated with a simple root, which can be 
either even or odd. 
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The Cartan subalgebra ,w' of lis is introduced as a 
complex vector space of dimension I + 2, and is assumed to 
be part of the even subspace li 0 of lis. Let hj (jEl) be 
defined to be any I + 1 linearly independent elements of ,w'. 
As always, the dual space ,w'* of,w' is the set of linear func
tionals defined on ,w' and has the same dimension I + 2. Let 
aj (jEl) be I + 1 linear functionals on ,w' which are both 
linearly independent of each other and are such that 

a j (hk ) = A kj , 

for j,kEl, so that a j is the simple root associated with thejth 
column of A. The notation for these basis elements can be 
refined by writing H a. = h k for kEl, so that 

(2.1 ) 

for j,kEl, thereby indicating the link that these basis ele
ments have acquired with the linear functionals aj" Let 'T 

denote the set of simple odd roots. 
The last stage in the abstract construction is to set up the 

complex Lie superalgebra lis whose set of generators con
sists of the basis elements of,w' together with 2 (I + 1) ele
ments Eak and E _ ak defined for each kEl, with the whole set 
being assumed to satisfy following relations: 

[h,h'] = 0, for all h,h 'EYt', (2.2) 

[ Eaj,E _ ak] = OjkHaj' for j,kEl, (2.3) 

[h,Eak ] =ak(h)Eak , for all hEYt' and kEl, (2.4) 

[h,E _ ak] = - a k (h)E _ ak' for all hEYt' and kEl. 
(2.5) 

Here it is assumed that Ea. and E _ a. are both even if a k is 
even and are both odd if ak is odd. This superalgebra lis is 
defined so that it is spanned not only these generators but 
also all the generalized Lie products of the form: 

[Eak,Eak ,], [Eak , [Eak"Eak "] ], and so on, 

together with those of the form: 

[E _ ak,E _ a.,], [ E _ ak' [ E _ ak"E _ a." ] ], etc., 
subject only to the constraint that 

(adEa)(l-Ajk)Eak =0 (2.6) 

and 

(2.7) 

for /=1= k (j,kEl). The resulting complex Lie algebra lis 
may be referred to as "the Kac-Moody superalgebra based 
on the generalized Cartan matrix A that has the set of odd 
simple roots 'T." 

It should be noted that with h = Ha (2.4) and (2.5) 
J 

reduce to 

(2.8) 

and 

(2.9) 

respectively, by virtue of (2.1). 
The basic ideas and terminology of roots and root sub

spaces for a complex Kac-Moody superalgebra lis are very 
similar to those for a simple complex Lie algebras and super
algebras and for Kac-Moody algebras. In particular, the 
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commutative subalgebra ,w' of }j s is still referred to as its 
Cartan subalgebra and the set of elements aa of lis that 
have the property that 

[h,aa] =a(h)aa' (2.10) 

for all hEYt' is again said to form the root subspace li sa 
corresponding to the root a. Because of (2.4) and (2.5) the 
generators Eak and E _ ak are members of li ak and li - ak' 
respectively, for all kEl. Also nonzero generalized Lie prod
uctsoftheform [Eak,Eak .], [Ea.' [ Ea •. ,Ea •. ] ],andsoon, 
all belong to root subs paces for which the corresponding 
root a has the form 

(2.11 ) 

where each It,; (kEl) is a non-negative integer. Here, It,; is the 
number of times the generator Eak appears in the corre
sponding generalized Lie product. Naturally, such a root is 
called a positive root, and in particular the simple roots are 
positive roots. Similarly, generalized Lie products of the 
form: 

[ E _ ak ,E _ ak' ] , [ E _ ak' [ E _ a •. ,E _ ak" ] ] , and so on, 

all belong to root subspaces for which the root a is given by 
(2.11) but with each It,; being a non positive integer, such a 
root being called a negative root. The set of all nonzero roots 
of lis will be denoted by fl., the set of positive roots by fl. + , 

and the set of negative roots by fl. _ . If aEfl. + then - aEfl. _ 
and vice versa. The direct sum of the positive and negative 
root subspaces will be denoted by li s+ and li s- , respective
ly, so 

lis = lis+ e,w'elis-' (2.12) 

where the e symbol indicates only a vector space direct 
sum, and does not imply that separate parts mutually com
mute. 

The Kac-Moody superalgebra lis possesses a nonde
generate bilinear supersymmetric form B( , ), which is 
unique up to a constant multiplicative factor, and which is 
also nondegenerate on ,w', so that for every linear functional 
a defined on,w' there exists a unique element ha of,w' that is 
defined by 

B(ha,h) = a(h), for all hEYt'o (2.13) 

Then (a,{3) may be defined by 

(a,{3) =B(ha,hp) (2.14) 

for any pair of linear functionals a and {3 defined on ,w'. It 
then follows that the elements of the generalized Cartan ma
trix are given by the usual expressions: 

Ajk = 2(aj,ak)/(aj ,aj ), for j,kEl. (2.15) 

The fundamental Weyl reflections Sa may be defined in 
the usual way by 

(Sa{3)(h) = {3(h) - {2({3,a)/(a,a) }a(h), (2.16) 

the set of fundamental Weyl reflections Sak generating the 
Weyl group '1r ofthe Kac-Moody superalgebra lis. If aEfl. 
and if there exists an element SE'1r such that a = Sak for 
some simple root ak then a is said to be a "real" root of lis, 
the other roots of li s being described as being "imaginary." 
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1 2 

FIG. 1. Generalized Dynkin diagram of the af-
fine Kac-Moody superalgebra B (I) (011). 

(Xo (Xl 

The root aea is real if and only if (a,a) > O. 
Every generalized Cartan matrix can be associated with 

a generalized Dynkin diagram by first assigning to each sim
ple root ak (kef) a vertex, which is drawn as a small "white" 
circle (0) if a k is even and as a small "black" circle (.) if 
ak is odd, then drawing Ljk lines from the aj vertex to the a k 
vertex, where Ljk = max{IAjk 1,IAjk I}, and adding an arrow 
pointing from the a j vertex to the a k vertex if IA Ig I > 1. Fin
ally, a set of numerical marks {No,N, , ... ,N1} may be at
tached to the vertices. These are defined by the relations 

I 

L AjAkj = 0, for k = 0,1, ... ,/ 
j=O 

and the requirement that the lowest value of the set 
{No,N, , ... ,N1} has value 1. The set of generalized Dynkin 
diagrams corresponding to the affine Kac-Moody superal
gebras is exhibited in Figs. 1-8. 

B. Explicit construction of affine Kac-Moody 
superalgebras 

The above procedure for setting up an affine Kac
Moody superalgebra was rather abstract but fortunately 
Kac4 has shown that there exists a more explicit construc
tion that is related to the above notation. Suppose that the 
simple Lie superalgebra 2'? has Killing form B ° ( , ) (which 
for every simple Lie superalgebra mentioned above is nonde
generate), that 2'~ has rank /0, that ~ is its Cartan subal
gebra, that a~, for k = 1,2, ... r, are its distinguished simple 
roots, and that a 0, a 0+ , and a 0_ are its nonzero, positive, 
and negative root systems, respectively. Suppose also that 
h °0 is the element of ~ that is defined by analogy with 
(2.13) for each linear functional aO on ~ by 

BO(hoo,ho) =ao(ho), forall hO~. (2.17) 
a 

Then (a°,/3 0)0 may be defined by 

(ao,/30)0 = BO(h ~o,h ~o), 

1 2 2 2 2 2 

o:X>-o---~ 

(2.18 ) 

FIG. 2. Generalized Dynkin diagram of the affine Kac-Moody superalge
braB(I)(OII) (fori>2). 
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1 2 1 

FIG. 3. Generalized Dynkin diagram of 
the affine Kac-Moody superalgebra 
14(2)(3/0). 

00 (Xl (X2 

for any pair of linear functionals aO and /3 ° on ~ [cf. 
(2.14) ]. A Weyl-type canonical basis may be chosen for 
2'0. It consists of hOo, for k = 1,2, ... ,/°, together with eOo, 

S a, a 

for all aOea 0, and these are assumed to satisfy the usual com
mutation and anticommutation relations. In a realization of 
2'~ in which the elements of 2'~ are represented by super
matrices, with e~o being represented by e~o, the convention 
will be adopted that 

(2.19) 

for all aO of a 0+ ' the superscripts st indicating that the super
transpose must be taken. 

The first stage in the construction is to consider the loop 
superalgebra that consists of all complex linear combina
tions of the products t j ® a~, wherejtakes any integer value, 
a~ are the basis elements of 2'~, and t is a real number. The 
generalized Lie product of this loop algebra may be defined 
by 

(2.20) 

for all integersj and k and all aO,b °e2'~, where the general
ized Lie product of the right-hand side of (2.20) is that of 
2'~. Here, it is assumed that t j ® a~ is even if a~ is even and 
that t j 

® a~ is odd if a~ is odd. This superalgebra may be 
extended by introducing an additional even element c (so 
that it then consists of all complex linear combinations of the 
t j ® a~ and of c), with the generalized Lie product (2.20) 
being modified to become 

[tj®aO,tk®bO] =tj+k® [aO,bO] 

+jOj+k.oBo(ao,bo)c, (2.21) 

for all integers j and k and all aO,b °e2'~, and where it is 
assumed that 

1 

ex 
2 

(2.22) 

222 

--~ 
ex ex 

.t-2 .t-1 

FIG. 4. Generalized Dynkin diagram of the affine Kac-Moody superalge
bra A (2)(21-1/0) (fori>3). 
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1 1 

FIG. 5. Generalized Dynkin diagram of the af-
fine Kac-Moody superalgebraA (4)(2/0). 

<Xc <X1 

for all integers j and all aOe1? Again the generalized Lie 
product on the right-hand side of (2.21) is that of 1? This 
Lie superalgebra may be enlarged by adding a further even 
element d, for which it is assumed that 

[d,t j 
® aO] = jt j 

® aO, 

for all integersj and all aOe1?, and that 

[d,c] = 0. 

(2.23) 

(2.24) 

The resulting Lie superalgebra will be denoted by 1!1). Its 
composition may be summarized by the statement: 

00 

1!1) = (Cc) $ (Cd) $ L (tj ® 1?). (2.25) 
j= - 00 

Equation (2.21) shows that the set of elements to ® aO, 
where aOe1?, form a subalgebra of 1?) that is isomorphic 

-0 to .!fs • 

A bilinear supersymmetric invariant form B (I) ( , ) can 
be set up on 1!1) by the definitions 

B (I) (tj ® aO,t k ® b 0) = Oi+ k,oBo(ao,b 0), 

B(I)(tj®ao,c) =0, 

B (I) (tj ® aO,d) = 0, 

B (I) (e,c) = 0, 

B (I) (c,d) = 1, 

B(I)(d,d) =0, 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31 ) 

for all aO,boe1° and all integersj and k. Clearly, B (1)( , ) 

coincides with B o( , ) on the subalgebra of 1! I) that is iso
morphic to 1? 

Now consider the generalized Dynkin diagram of the 
Kac-Moody superalgebra 1 s and choose the node corre
sponding to any simple root a k of 1 s' Suppose that the 
corresponding numerical mark is N k • Let q be the integer 
defined by 

q = mNk' (2,32) 

and let if; be an automorphism of 1? of order q. Inspection of 
Figs. 1-8 shows that the only possible values of q are 1, 2, and 

1 1 1 1 1 1 

~--~ 
a. ~-2 a.~_1 

FIG. 6. Generalized Dynkin diagram ofthe affine Kac-Moody superalge
bra A (4)(2//0) (for 1>2). 

1820 J. Math. Phys., Vol. 31, No.8, August 1990 

1 1 

FIG. 7. Generalized Dynkin diagram of the af-
fine Kac-Moody superalgebra C!2J(2). 

<Xc <X1 

4. Let 1?~q) be the subspace of 1? that consists of all the 
elements aO of 1? that are such that 

if;(ao) = e2
1/'

p i/
qaO, (2.33) 

where p = 0, 1, ... ,q - 1. It follows that 1~q) is a Lie super
algebra, and that for each p taking the value 1,2, ... , or q - 1 
the subspace 1?~q) provides a carrier space for a representa
tion P of 1~q) by the prescription 

(2.34 ) 

for all agr of 1~q), where np is the dimension of 1?~q) and 
a~r (for r = 1,2, ... ,np ) are the basis elements of 1?~q). Also 

q-I 

1? = $ L 1?~q). 
p=O 

The key result established by Kac4 is that 1 s may be 
taken to be the subalgebra of 1!1) whose set of basis ele
ments consists of c, d, and, for p = 0,1, ... , and q - 1, of all 
t j ® aO for every integer j that is such that j mod q = p and 
every basis element a~re1?~q). This may be summarized by 
the statement that 

1s = (Cc) $ (Cd) 

q- 1 00 

$ L L (tj®1?~q). (2.35) 
p=Oj= - oo;jmodq=p 

The generalized Lie products of 1 s are then those inherited 
from 1!1) and so are given by (2.21), (2.22), (2,23), and 
(2.24). Moreover the supersymmetric bilinear invariant 
form B( , ) may be taken to be such that 

B(a,b) =/-tB(l)(a,b), (2.36) 

for all a,bE1s ' /-t being an arbitrary constant that may be 
chosen in any way. As the subset of elements of 1 s of the 
form to ® aO (for all the elements aO of 1?) form a subalge
bra that is isomorphic to 1?, a particularly convenient 
choice to let /-t be such that B( , ) coincides with the Killing 
form B ~q) ( , ) of 1~q), that is, so that 

1 1 1 1 1 1 

~--~ 
a.~_2 a.~_1 

FIG, 8. Generalized Dynkin diagram of the affine Kac-Moody superalge
braC(2)(/+ I) (for/>2). 
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BUo®aO,tO®bO) =B~q)(aO,bo)forall aO,bo of 'y~q). 
(2.37) 

Kac4 has also shown that if the node corresponding to 
the simple root ak of.Ys associated with (2.32) is removed, 
together with all the lines attached to it, then the resulting 
generalized Dynkin diagram corresponds to the Lie superal
gebra 'y~q), which is either simple or is the direct sum of 
simple Lie superalgebras. Clearly, if .Ys has only one odd 
simple root and if the chosen node corresponds to this odd 
simple root, then 'y~q) will contain no nontrivial odd part, 
and so, in this case, 'y~q) will be a semisimple Lie algebra. 

III. ROOTS OF THE UNTWISTED AFFINE KAC-MOODY 
SUPERALGEBRAS 

The simplest situation is that in which m = 1 and the 
numerical mark Nk corresponding to the chosen simple root 
also has value 1, implying [by (2.32)] that q = 1. Then the 
automorphism f/J is the identity mapping of .Y~ onto itself, 
there is only one subspace .Y~ I ), and this coincides with 
.Y~, and the resulting affine Kac-Moody superalgebra .Y s 

is the superalgebra .Y~ I) introduced above. Such a superal
gebra may be described as being "untwisted." The only af
fine Kac-Moody superalgebras for which m = 1 are the 
B(I)(OII) (forl= 1,2, ... ,), and as No = 1 (with the labeling 
of simple roots in Figs. 1 and 2), they all have this form. 

With this choice, the structure of these untwisted affine 
Kac-Moody superalgebras B (I) ( 011) is easily determined in 
complete detail. Clearly, for B (I) (Oil) the Lie superalgebra 
.Y~( = 'y~&I» is B(OII), which, with the labeling conven
tions of the generalized Dynkin diagram of Fig. 9, has a 
distinguished set of simple roots consisting of 1- 1 even sim
ple roots a? , a~ , ... ,at I and one odd simple root a7. Then, 
with 

(3.1) 

(2.21) to (2.24) together indicate that a linearly indepen
dent and mutually commuting set of I + 2 even elements is 
formedbyc,dandtO®ho o (fork= 1,2, ... ,/). 

ak 

Let J¥'(I) be the (10 + 2)-dimensional complex vector 
space that has these elements as its basis, so that 

10 

J¥'(I) = (ec) Ell (Cd) Ell L (to ® h ~~). (3.2) 
k~1 

Every linear functional aO that is defined on JiYO can be ex
tended to become a linear functional on J¥'(I) by the defini
tions: 

o-o---~ 
o 0 

Cl.(_2 a.(_1 
o 

Cl.( 

(3.3 ) 

FIG. 9. Generalized Dynkin diagram of the basic simple superalgebra 
B(O/I) (for I> I). 
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aO(c) = 0, 

aO(d) = O. 

(3.4) 

(3.5) 

No confusion will be caused by denoting (as here) both aO 
and its extension by the same symbol. 

Let ~ be the linear functional on J¥'( I) defined by 

~(c) = 0, 

~(d) = 1. 

(3.6) 

(3.7) 

(3.8) 

Then, as (2.21), (2.22), and (2.23) give, 

[ to®ho tj®eO ] =a(tO®ho )(tj®eO ) (3.9) 
a~' aO a2 aO , 

[c,t j 
® e~o] = 0, (3.10) 

[d,tj®e~o] =j(tj®e~o), (3.11) 

for any aOEAo and for any integer j (and for k = 1, ... ,/°), it 
follows from (3.6)-(3.11) that 

[h,tj®e~o] = {j~(h) + aO(h)}(tj®e~o), (3.12) 

for all hEJ¥'( I). Thus t j 
® eO 0 corresponds to a root j~ + aO 

of .Ys' Similarly, for any /oEAo and any nonzero integerj 

[to®h~~,tj®h~o] =0, 

[ c,t j 
® h ~o] = 0, 

[d,tj®h~o] =j(tj®h~o), 

(3.13) 

(3.14) 

(3.15 ) 

so, by (3.6) to (3.8), 

[h,tj®h~o] =j~(h)(tj®h~o) (3.16) 

for all hEJ¥'( I). Thus t j 
® h ~o corresponds to a root j~ of 

.Y s' Moreover, there are I linearly independent elements 
with this property, namely, h ~~ (for k = 1,2, ... ,/), and, as 

there are no further elements of .Y s to consider, the root 
subspace ofj~ must have dimension I (for /1=0). 

Takingll = 1 in (2.36), it follows from (2.13), (2.17), 
and (2.26) to (2.28) that 

han = to®h~o, (3.17) 

for each aOEA ° (and its extension), and hence by (2.14), 
(2.18), (2.26), and (3.3) to (3.5) that 

(3.18 ) 

for every pair aO ,/J °EA ° (and their extensions). Also (2.13) 
and (2.27), (2.29), (2.30), and (3.6) to (3.8) imply that 

h6 = c. (3.19) 

Thus if a2 is the extension of any simple root of .Y~ then 

(~,aV = 0 (3.20) 

and 

(j~,j~) = o. (3.21) 

Thus (j~,j~) = 0 for every integer j, so every nonzero root 
of the form j~ is "imaginary." Moreover, as 
(j~ + aO,j~ + aO) = (aO,aO)O and as.Y~ = B(O//) has the 
exceptional property that (aO,aO) ° > 0 for every root aO (cf. 
Cornwe1l9

), it follows that every root of the formj~ + aO is 
"real." 

Every root can be put in the form (2.11) jf the simple 
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roots aO,al, ... ,al of the Kac-Moody superalgebra 
B (1)(011) are taken to be 

aO =8-a~, 

where 
I 

a~=2La~ 
r= 1 

is the highest root of jP~, and 

a k = a~ for k = 1,2, ... ,1, 

(3.22) 

(3.23 ) 

(3.24 ) 

[where the a~ of (3.23) and (3.24) are the extensions of the 
simple roots of jP~]. Then the simple roots ao,a l , ... ,al_ I 
are all even and a I is odd. It is easily checked that the Cartan 
matrices of B (1)(0/1) and B (1)(01/) (for 1>2) evaluated 
using (2.15) correspond to the generalized Dynkin dia
grams given in Figs. 1 and 2, respectively. 

IV. TWISTED AFFINE KAC-MOODY SUPERALGEBRAS 
CORRESPONDING TO AUTOMORPHISMS OF ORDER 4: 
CHOICE OF THE AUTOMORPHISM 

Turning to the opposite extreme case in which the q of 
(2.32) has the value 4, the obvious choice of the automor
phism ifJ of the simple Lie superalgebra jP~ is the "canoni
cal" fourfold automorphism t/J that is defined by 

and 

t/J(h 0) = - h o(for all hOof ~), (4.1) 

t/J(e~o) = eO_ aO 

[if aO(E~o) is even or is odd and negative], 
(4.2) 

t/J(e~o) = - eO_ aO [if aO(E~o) is odd and positive] 
(4.3) 

(cf. Scheunert lO
). With this choice (2.33) implies that (i) 

the basis elements of jP~~q) may be taken to be e~o + eO_ aD' 

for all even positive roots aOE~O; (ii) the basis elements of 
jP~l(q) may be taken to be e~o + ieo_ aD' for all odd positive 
roots aOE~o; (iii) the basis elements of jP~iq) may be taken 
to be eO ° - eO 0, for all even positive roots aOE~ ° ~nd h ° ° , 

a -a ~ 

for k = 1,2, ... ,1°; (iv) the basis elements of jP~jq) may be 
taken to be eO 0 - ieo 0, for all odd positive roots aOE~ 0. 

This aut~morphl:m has been used by Golitzin 11 to find 
the simple roots and generators of A (2)(2/_ 110) and 
A (4)(2110). 

Although these basis elements are very straightforward, 
the difficulties start arising with this choice of automor
phism when one tries to determine explicitly the complete 
root structure of the Kac-Moody superalgebra jP s' The 
problem is that if the Cartan subalgebra of jP s is chosen to 
be in jP~bq) (as in the case q = 1), it cannot consist of c, d, 
and elements of the form to 181 h °o (for k = 1,2, ... ,/°), for the a. 
elements h °0 are not members of jP~bq). Instead, the sim-a. 
plest choice is c, d, and certain linear combinations of 
to® (e~o + eO_aD) (for the even positive roots aOE~o). To 
find the roots it is then necessary to evaluate the generalized 
Lie products of these with all the elements of the sets (i) to 
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O-O-----o-® 

FIG. 10. Generalized Dynkin diagram of the basic simple superalgebra 
A(21- 1/0) (forl> I). 

(iv) above, taking appropriate linear combinations of the 
latter in order satisfy the root equation (2.10). Not only is 
this messy, it also makes no direct use of the known root 
structure of the simple Lie superalgebra jP~. Indeed the situ
ation here is very similar to the one that occurs in the stan
dard method of determination of the Iwasawa and Lang
lands decompositions of the simple Lie algebras, and the 
resolution of the problem is based on essentially the same 
idea as that of the "direct" determination of these decompo
sitions that was given by Cornwell. 12.13 

Incidentally, it is clear that the canonical fourfold auto
morphism t/J of jP~ defined in (4.1) is not associated with 
any rotation of the usual generalized Dynkin diagram of jP~ 
based on the distinguished simple roots, because for 
A(2/- 110), A(21 10), and C(l + 1) the generalized Dyn
kin diagrams exhibited in Figs. 10--12 possess no symme
tries. Nevertheless it is convenient to describe the corre
sponding Kac-Moody superalgebras as being "twisted." In 
this connection it may be noted that Frappat et al. 14 have 
shown that it is sometimes possible by using nondistin
guished sets of simple roots to construct generalized Dynkin 
diagrams for the basic simple Lie superalgebras that possess 
rotational symmetries that do correspond to outer automor
phisms of these superalgebras. However, this is not possible 
in every case that is relevant here, the simplest example 
where it cannot be done is A (2/0) . 

The most general fourfold automorphism ifJ of jP~ has 
the form 

(4.4) 

where t/J is the canonical fourfold automorphism of jP~ de
fined in (4.1) to (4.3) and Bis any automorphism of jP~. If B 
can be chosen so that enough elements of the form to ® h °0 a. 
lie in jP~bq) then the roots of the Kac-Moody superalgebra 
will be very easy to obtain. In investigating this condition it is 
useful to note that if the simple Lie superalgebra jP~ is ex
pressed in terms of supermatrices with the graded partition
ing 

0-O----o-® 

FIG. 11. Generalized Dynkin diagram of the basic simple superaJgebra 
A(21/0) (forl>l). 
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®-O-O-----O--¢:O 

FIG. 12. Generalized Dynkin diagram of the basic simple superalgebra 
C(l + I) (forl;;>l). 

M=(~ !), 
then 

.1. M st (-A 'f'(M) = - = --B 
where A denotes the ordinary transpose of A. 

(4.5) 

(4.6) 

The choice of (J will first be investigated for the Kac
Moody superalgebras of the form A (2) (21 - 110) (for 
1 = 2,3,4 ... ). 

V. TWISTED AFFINE KAC-MOODY SUPERALGEBRAS 
CORRESPONDING TO AUTOMORPHISMS OF ORDER 4: 
ROOTS OF A(2l(2/_1/0) (FOR '=2,3,4, ... ) 

A. The fourfold automorphisms 

An explicit realization of the simple Lie superalgebra 
A(2/- 110) is provided by s1(2111), considered as a com
plex superalgebra, sl(21/1) being defined as the set of 
(21 + 1) X (21 + 1) complex supermatrices with the grad
ing partitioning 

(5.1 ) 

that are subject to the supertrace condition that 

str M = O. (5.2) 

(Here, A, B, C, and D are of dimensions 21 X 2/, 21 Xl, 1 X 2/, 
and 1 Xl, respectively.) The rank I ° of A (21 - 110) is given 
by 

1° = 21. 

The generalized Dynkin diagram of A (21 - 1/0) is shown in 
Fig. 10, which indicates that its distinguished simple roots 
a~ are even for k = 1,2, ... ,2/- 1, but that a~1 is odd. [The 
rules for interpreting the generalized Dynkin diagrams for 
basic simple Lie superalgebras are as given for the affine 
Kac-Moody superalgebras in Sec. II A, except that now two 
types of distinguished odd simple roots may be distin
guished, a~ being associated with a small closed circle (.) if 
(a~,an°¥=O and with a small grey circle ® if (a~,an° 
= 0.] With the bilinear form B ° ( , ) being defined by 

BO(M,N) = 2(2/- 1) str (MN), (5.3) 

the basis elements of its Cartan subalgebra JYO may be taken 
to be 
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and 

h~~ = {!(2/- 1) }{ek.k - ek + l.k + t} 

(for k = 1,2, ... ,2/- 1) (5.4a) 

h~~, = {!(2/- 1)}{e2l•21 + e2/ + 1.2/+ t}. (5.4b) 

Here,er•s is the matrix of dimension (21 + 1) X (21 + 1) that 
is defined by 

(er.s)jk =OrjOsk (for j,k= 1,2, ... ,2/+ 1), (5.5) 

so that with this choice all the matrices of JYO are diagonal. 
The positive even roots f3~ j.k) and positive odd roots ~ j) of 
A (21 - 110) are given in terms of the distinguished set of 
simple roots a7 ,a~ , ... , a~1 of A (2/- 110) by 

k-t 

f3~j.k) = L a~ (forj,k=1,2, ... ,21, withj<k), 
r=j 

(5.6a) 

and 
21 

~j) = L a~ (for j= 1,2, ... ,2/), (5.6b) 
r=j 

for which the corresponding basis elements of A (21 - 110) 
may be taken to be 

= ej•k (for j,k = 1,2, ... ,21;j < k) (5.7a) 

and 

= ej.21 + t (for j = 1,2, ... ,21). (5.7b) 

The basis elements belonging to the corresponding negative 
roots may be chosen in accordance with (2.19). [For further 
information on A (21 - 1/0) see Com well. 9 

] 

Taking the node corresponding to the odd simple root 
a l of A (2) (2/- 110) for "~3, and to the odd simple root at 
of A (2)(2/-1I0){ =A (2)(3/0) for 1 = 2, as the corre
sponding numerical mark has value 2 (cf. Figs. 3 and 4) 
(2.32) shows that q = 4. It follows from (2.33) that if the 
automorphism (4.6) is employed then the subalgebra 'y~~4) 
consists of the supermatrices whose submatrices satisfy the 
conditions 

-A=A, -B=C, C=B, and -D=D, 

which when taken together, along with the fact that D is 
1 Xl, imply that 

-A=A, B=O, C=O, and D=O. (5.8) 

Thus subalgebra 'y~~q) is isomorphic to the set of 21 X 21 
complex antisymmetric matrices and hence is isomorphic to 
the simple complex Lie algebra D1, which is simple if i> 2 
but is only semisimple if 1 = 2, for then D2 = A 1 Gl At. (In
spection of Figs. 3 and 4 shows that the generalized Dynkin 
diagram with the chosen node and attached lines removed 
does indeed correspond to D 1.) As expected from the com
ments at the end of the previous section, none of the basis 
elements of the Cartan subalgebra JYO of A(2/- 110) are 
members of this 'y~~q) (because all the members of this 
.Y~bq) are nondiagonal matrices). 
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A realization of DI in which the basis elements of the 
Cartan subalgebra of DI are given by diagonal matrices is 
given by the 21 X 21 complex matrices A' that satisfy the con
dition 

A'G + GA' =0, 

where 

(5.9) 

(5.10) 

This realization will be referred to as the "canonical" form of 
DI . These matrices A' are related to the 21 X21 antisymme
tric matrices A by 

T-1AT=A/, (5.11) 

where T is a certain 21 X 21 complex matrix that satisfies the 
condition 

(5.12) 

(cf. Cornwell l5 ). This mapping can be extended to an auto
morphism of () of 1"~{ = sl (2//1» by the definition 

()(M)=(! ~)M(T~I 1~)' (5.13) 

for all M ofsl(21 /1). Then, by (4.4), (5.12), and (5.13), 

¢((~ :))=(-_~~G :~). (5.14) 

B. The subspaces 1":'4) (for p=O, 1,2,3) 

The four subspaces 1"~~ 4) (for p = 0,1,2,3) correspond
ing to the automorphism ¢ of (5.14) will now be considered 
in turn. 

1.1"~4) 

By (2.33) the subalgebra 1"~64) consists of the superma
trices whose submatrices satisfy the conditions 

-GAG=A, -BG=C, GC=B, and -D=D, 

which when taken together, along with the fact that D is 
1 X 1, imply that 

AG+GA=O, B=O, C=O, and D=O, (5.15) 

and so is isomorphic to the canonical form of D I • 

Before proceeding it will be useful to recall some proper
ties of the canonical form of DI (cf. Konuma et al. 16 and 
Cornwell I5 ). Its Killing form BD,( , ) is given by 

BD/(A,A/) = 2(/ - l)tr(AA') (5.16) 

(for all A and A' of the canonical form). Thus, by (5.3), 

BO((Ao 0) (A' 0)) = (2/- I) BD'(A A') 
0'00 (I-I) " 

( 5.17) 

for all A and A' of the canonical form. This implies that 
( 2.37) is satisfied if 

Il = (1- 1)/(2/- 1). (5.18) 

Denoting the simple roots of DI by a~/ (for k = 1,2, ... ,/), the 
corresponding basis elements of the Cartan subalgebra !lrD/ 
of DI defined by 
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BD'(hD~"h) = a~/(h) for all hE!lrD/ (5.19) 
ak 

[cf. (2.13) and (2.17)] are 

and 

h:~, = {!(I- 1 )}{ek,k - ek+ I,k+ 1- ek+ I,k+ 1 
k 

+ek+I+I.k+I+J (fork= 1,2, ... ,1-1) 
(5.20) 

h:~, = {l (1- l)}{e/_I,I_1 - e21 - I ,21-1 

+ el,l - e2/,2/}' (5.21) 

The associated root subspace basis elements are 

and 

e:~/={!(I-1)}{ek'k+1 -ek+I+I,k+l} 

(for k = 1,2, ... ,1- 1) 

e:~/ = q(l- 1 )}{el_ I,21 - ew _ I }, 
/ 

(5.22) 

(5.23) 

the normalization factors being chosen so that 

B D,( D/ D/) 1 e D/,e D/ = - , 
Uk -Uk 

(5.24) 

where, as usual, 

(5.25) 

The diagonal basis elements of 1"~6 4) will be considered 
first. As they may be taken to consist of the set 
{ek,k - ek + I.k + II for k = 1,2, ... ,/}, it follows that they are 
all members of the Cartan subalgebra ~(4) ( = !lrD/) of D I 
(as expected). As 

k+I-1 
ek,k - ek+ I.k + 1= 2(2/- 1) L h~~ 

r= k 

(5.26 ) 

[for k = 1,2, ... ,1, by (5.4a», the most general element of 
~(4) has the form 

I 2/-1 
L Kk(ek,k -ek+I,k+/) =2(2/-1) L pkh~~, 

k= 1 k= 1 

(5.27) 

where K1, K2"'" KI are any complex numbers, and where 
k 

and 

Pk = L Kr (for k = 1,2, ... ,/) 
r= I 

I 

Pk+1 = L Kr (for k= 1,2, ... ,1-1). 
r=k+ 1 

Thus on ~(4) the simple roots of A (21 - 1/0) are given by 

and 

a~(h) =Kk -Kk+1 (for k= 1,2, ... ,1-1), (5.28) 

a?(h) = KI + k l , (5.29) 

a~+/(h) = - (Kk -Kk+ l ) (for k= 1,2, ... ,/-1), 
(5.30) 

a~l(h) = - KI' (5.31) 

However, from (5.20) and (5.21) 
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(for k = 1,2 ... ,1- 2), 

e/_1./_1 -e21 _ I,2/_1 =2(1-1){h
D
b, +hDb/}, 

QJ-I a, 
and 

el.l - e21,21 = 2(1- 1){ - hDb, + hDb/}, 
ai_I a, 

so 

where 

and 

k 

Ilk = L Kr (for k = 1,2, ... ,1- 2), 
r= I 

1 1- I 1 
Ill-I =- L Kr--KI, 

2 r= I 2 

1 I 

III =- L K r • 
2 r= I 

Thus for h~(4)( = JYD1
) 

af/(h) = Kk - Kk+ I (for k = 1,2, ... ,1- 1) (S.33) 

and 

af/(h) =KI_I +K1• (S.34) 

Comparisonof(S.28)-(S.31) with (S.33) and (S.34) then 
shows that for h~(4)( = T/) of DI the simple roots af' 
of DI and a~ of A(2/- 1/0) are related by 

and 

a~(h) = -a~+/(h) =af/(h) for k= 1,2, ... ,1-1, 
(S.3S) 

1-2 

a?(h) = L a~/(h) + af/(h), (S.36) 
r= 1 

{3~j,k+/) (h) ={3~kj+/) (h) 
k-I 1-2 

(S.37) 

[when 1= 2 the first term of (S,36) does not appear]. 
Finally it follows from (2.13), (2.26)-(2.28), (2.36), 

(2.37), (S.20), (S.21), and (S.26) that corresponding ele
ments of the Cartan subalgebra of the Kac-Moody superal
gebra are 

h 0,=tO®hDb,={(2/-1)/2(1-1)}tO®{hOo -h~ } 
ali all QJ;, k+ I 

(for k = 1,2, ... ,1 - 1), (S.38) 

and 

h ° hD, 01= t ® 01 a, at 

= (2/-1) to®{hOo +22~2hoo+hoo }.(S.39) 
2(1- 1) al_ I r~1 a, a2l_ I 

The nondiagonal basis elements of 2'~~4) will now be 
examined. They fall into four sets. 

(i) For j,k = 1,2, ... ,1, with j < k: 

e· -e . =eoo +eo 0 , (S4O) J,k k+IJ+I P(j .• , -P(j+I.k+/) • 

wheree~~j.kl andeo_p~i+ 1.'+ /) are given by (2.19) and (S.6a). 
As (S.3S) implies that 

k-I 

{3~j,k) (h) = -{3~j+I,k+/) (h) = L a~/(h) (S.41) 
r=j 

[for j,k = 1,2, ... ,1, with j < k, and for all 
h~(4)( = T/)], the basis element (S.4O) corresponds 
to the root{3~j,k) (h) of DI. 

(ii) For j,k = 1,2, ... ,1, with j < k: 

+ _ ° + ° - ekj ej + I k + I - e pO epo , 
• - (j.k) ( j + I,k + I) 

(S.42) 

which corresponds to the root - {3~j,k) (h) of DI, where 
{3~j,k) (h) is given by (S.41). 

(iii) For j,k = 1,2, ... , I, with j < k: 

(S.43) 

where eO po and eO pO are again given by (S.6a). As 
(j,k+ J) (kJ+/) 

(S.3S) and (S.36) imply that for all h~(4)( = T/) 

L a~/(h) + 2 L a~/(h) + af~ I (h) + af/(h) (for j,k = 1,2, ... ,1 - 2, with j<k), 
r=j r= k 
1-2 

L a~/(h) + af~ I (h) + af/(h) 
r=j 

= 1-2 

L a~/(h) + af/(h) 
r=j 

the basis element (S.43) corresponds to the root 
{3~j,k+/) (h) ofDI· 

(iv) For j,k = 1,2, ... ,1, with j<k: 

ej + I k - ek + Ij = - eO pO + eO pO , 
• - (kJ+i) - (j.k.+/) 

(S.4S) 
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(for j = 1,2, ... ,1 - 2, and k = 1- 1), 

(S.44) 
(for j = 1,2, ... ,1 - 2, and k = /), 

(for j=l-l and k=/), 

i 
which corresponds to the root - {3~j,k + /) (h) of DI, where 
{3~ j,k + /) (h) is given by (S.44). 

As expected, the elements of (S.4O), (S.42), (S.43),and 
(S.45) are euen members of A (21 - 1/0). It is easily checked 
that the set of 2/(/ - 1) nonzero roots of (i)-(iv) above, 
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together with the 1 zero roots, are all weights of the adjoint 
representation of DI • For 1'~4 the highest weight is 

(5.46) 

while for 1 = 2 and 3 the second term on the right-hand side 
of (5.46) does not appear and 

I 

A=A~~I +A~/= I a~' (5.47) 
k=1 

as expected [cf. Comwe1l17 (Appendix F)]. 

2.!f~t 
By (2.33) the subspace jP~I(4) consists of the superma

trices whose submatrices satisfy the conditions 

~j) (h) = - ~j+ /) (h) 

- GAG = iA, - DG = iC, GC = iB, and - 0 = ID, 

which when taken together, along with the fact that D is 
1 Xl, imply that 

A=O, D=O, andC=I'BG. 

The basis elements of jP~i4) fall into two sets: 
(i) For j = 1,2, ... ,/: 

. 0' ° 
ej ' 2/+ I + le2/ + IJ+ 1= e.o - le.o , • 0t j) - 0U + I) 

(5.48 ) 

(5.49) 

where e~ and ieo If!. are given by (2.19) and (5.6b). For 
(j) - ()+ I) 

allh~(4)( =.JY'DI) (5.35), (5.36), and (5.37) imply that 

1- 2 1 1 I a~/(h) + - a~~ I (h) + - a~/(h), for j<J - 2, 
r=j 2 2 

!a~~ dh) + !a~/(h), 
- !a~~ dh) + !a~/(h), 

for j = 1- 1, 

for j= I. 

(5.50) 

In all cases the basis element (5.49) corresponds to the root 
~j) (h) of D I • 

(ii) For j = 1,2, ... ,/: 

e + ie eO + ieo , - 2/+IJ j+I,21+1 = -lfij) lfij+/) ( 5.51) 

which corresponds to the weight - ~j) (h) of DI [~j) (h) 
being as in (5.50)]. 

These weights all belong to a 2/-dimensional irreducible 
representation of D, with highest weight: 

(5,52) 

[where for 1 = 2 the first term on the right-hand side of 
(5.52) does not appear]. It should be noted that all the ele
ments of (5.49) and (5.51) are odd members of 
A(2/- 1/0), so all the elements of jP~i4) are odd. 

3. !f~4J 

By (2.33) the subalgebra jP~i4) consists of the superma
trices whose submatrices satisfy the conditions 

-GAG= -A,-iiG= -C,GC= -B, 

and - 0 = - 0, 
which when taken together, along with the fact that D is 
1 X 1, imply that 

AG - GA = 0, B = O,C = 0, (5.53) 

with D being determined only by the supertrace condition 
tr A = tr D. On using (5.4a) and (5.4b), the diagonal basis 
elements of jP~i4) may be taken to consist of the set 
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(5.54 ) 

(for k = 1,2, ... ,/), which each corresponds to zero weight of 
D I • 

The nondiagonal basis elements of jP~i4) fall into six 
sets. 

(i) For j,k = 1,2, ... 1, with j < k: 

e + e - eO - eO 0 , (5.55) 
j,k k + IJ + I - f3~ j.k) - f3 (j + I.k + I) 

wheree~tk) andeo_f3~j+I'k+/) are given by (2.19) and (5.6a), 

and f3 ~j,k) (h)( = - f3~j+ I,k + /) (h» is given for all 
h~(4)( = .JY'D1) by (5.41), so this basis element (5.55) 
again corresponds to the rootf3~j,k) (h) of D I• 

(ii) For j,k = 1,2, ... ,1, with j < k: 

- e e - eO - eO 0 , 
kJ - j+l,k+1 - -f3~j.k) f3(j+I.k+/) (5.56) 

which corresponds to the root - f3~j,k) (h) of D I , where 
f3~j,k) (h) is given by (5.41). 

(iii) For j = 1,2, ... /: 

( 5.57) 

where e~~jJ+/) is given by (5.6a), which corresponds to the 

weightf3~ 'J'+ I) of D I • By a further application of (5.35) and 
J D 

(5.36) f3~jJ + /) (h) can be rewritten for h~(4) ( =.JY' ') 
as 
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(for j = 1,2, ... ,1- 2), 

(for j= 1- 1), 

(for j = 1). 

(5.58) 

(iv) For j = 1,2, ... ,1: 

- e· . = eO 0 , (5.59) 
J+IJ -PUJ+I) 

which corresponds to the weight - /3? jj+ I) (h) of D 1, 

where /3?jJ+ I) (h) is given by (5.58). 
(v) For j,k = 1,2, ... ,1, with j < k: 

e· + e· = eO 0 + eO 0, (560) 
"k + , kJ + / P, j.k + I) P 'kJ + I) • 

where eO po and eO po are again given by (5.6a). 
(),k+O (kJ+l) 

As /3~j,k + /) (h)( = /3?kJ + /) (h» is given for all 
h~(4)( = yl) by (5.44), so this basis element (5.60) 
again corresponds to the root /3 ~ j,k + /) (h) of D,. 

(vi) For j,k = 1,2, ... ,1, with j < k: 

- e . - e· = eO 0 + eO 0 , 
k+IJ J+I,k -P(j.k+l) -P,kJ+1) 

(5.61) 

which corresponds to the root - /3~j,k+ I) (h) of D" where 
/3~j,k + /) (h) is given by (5.44). 

These 212 + I weights belong to a representation of DI 
which is the direct sum of the trivial I-dimensional irreduci
ble representation with highest weight A = 0 and the 
(2/ 2 + 1- 1 )-dimensional irreducible representation with 
highest weight 

(5.62) 

[where for 1= 2 the first term on the right-hand side of 
(5.62) does not appear]. It should be noted that all the ele
ments of y?t) are even members of A(2/- 110). 

4. !f~4) 

By (2.33) the subspace !f?i4) consists of the superma
trices whose submatrices satisfy the conditions 

- GAG = - iA, - BG = - iC, GC = - iB, 

and -:0= -ID, 

which when taken together, along with the fact that D is 
1 X 1, imply that 

A = 0, D = 0, and C = -liiG. (5.63) 

The basis elements of Y?i 4
) fall into two sets. 

(i) For j = 1,2, ... ,1: 
• 0· ° eJ' 21 + 1 -le21 + 1J +/ = elf! +le_lf! ' 

• (j) (j + /) 
(5.64) 

where e~j) and ieo_ s?j+ I) are given by (2.19) and (5.6b). As 

Ift.j) (h)( = -1ft. j+ /) (h» is given for all 
h~(4)( = 2D,) by (5.50) so the basis element (5.64) 
again corresponds to the root $lj) (h) of D/. 

(ii) For j = 1,2, ... ,1: 

- e - ie· = eO - ieo , 
21+1J :1+1.21+1 -s?j) s?j+l) (5.65) 
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which corresponds to the weight -Ift.j) (h) of D 1, $lj) (h) 
being as in (5.50). 

These two sets of weights are exactly the same as for 
Y?I(4), so they all belong to a 2/-dimensional irreducible rep
resentation of DI with highest weight A is given by (5.58) 
and (5.52). All the elements of Y?i 4

) are odd. 

c. The roots of A (2)(21_1 10) 

Defining ~(h) as in (3.6) to (3.8), it follows that the 
roots a(h) and the corresponding basis elements ea of 
A (2) (2/- 110) are as follows. 

(i) a(h) = 4J~(h), (for J = 0, ± 1, ± 2, ... ). There are 
1 linearly independent basis elements e~k) corresponding to 
this root which may be labeled by an additional superscript, 
so that 

e1k)={(2/-1)/2(l-I)}t4J~dhOo -hoo } 
ak a" + I 

(for k = 1,2, ... ,1- 1) 

and 

e~I)={(2/-1)/2(l-I)}t4J 

® {h~?~ 1 + 2 2rt~ h~ + h~~I_l} , 
[which reduce to (5.38) and (5.39) in the special case 
J=O]. 

(ii) a(h) =4J~(h) ±/3~j,k)(h) (for j,k= 1,2, ... ,1, 
with j < k, and for J = 0, ± 1, ± 2, ... ), where /3~j,k) (h) is 
the extension of the weight of DI that is given by (5.41) and 

e = t 4J ® {eO 0 + e~ 0 }. 
(l ±f3'j.k) +f3 U + I.k +1) 

(iii) a(h) = 4J~(h) ± /3~j,k + I) (h), (for 
j,k = 1,2, ... ,1, with j < k, and for J = 0, ± 1, ± 2, ... ), where 
/3~j,k + I) (h) is the extension of the weight of DI that is given 
by (5.44) and 

e =t 4J ®{eO 0 _eo 0 }. 
u. ±f3(j.k+/) ±/3(kJ+1) 

(iv) a(h) = (4J + l)~(h) ± $lj) (h), (for 
j = 1,2, ... ,1, and for J = 0, ± 1, ± 2, ... ), where $lj) (h) is 
the extension of the weight of DI that is given by (5.50) and 

e =t 4J + 1 ®{eO +ieo }. 
a ± s? j) +- s? j + I) 

(v) a(h) = (4J + 2)~(h), (for J = 0, ± 1, ± 2, ... ). 
There are 1 linearly independent basis elements e1k

) corre
sponding to this root which may be labeled by an additional 
superscript, so that 

(for k = 1,2, ... ,/); 

(vi) a(h) = (4J + 2)8(h) ±f3?j,k) (h), (for j 
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= 1,2, ... ,1, with j<k, and for J = 0, ± 1, ± 2, ... ), where 
/3~j.k) (h) is the extension of the weight of DJ that is given by 
(5.41) and 

e =t4J +2®{eO 0 _eo 0 }. 
a ±P(j .• ) +P(}+I.k+/J 

(vii) a(h) = (41 + 2)t5(h) ±/3~jj+J) (h), (for 
j = 1,2, ... ,/, and for J = 0, ± 1, ± 2, ... ), where /3~jJ+ /) (h) 
is the extension ofthe weight of DJ that is given by (5.58) 

d 4J+2 ° an ea = t ® e ± pO • 
(JJ+ I) 

(viii) a(h) = (41 + 2)t5(h) ± /3~ j.k + J) (h), (for 
j,k = 1,2, ... ,/, with j<k, and forJ = 0, ± 1, ± 2, ... ), where 
/3 ~ j.k + /) (h) is the extension of the weight of D J that is given 
by (5.44) and 

ea=t4J+2®{eO 0 +eo 0 }. 
±P(}"+/J ±P('J+I) 

(ix) a=(4J+3)t5(h)±~j)(h), (for j=I,2, ... ,l, 
and for J = 0, ± 1, ± 2, ... ), where ~j) (h) is the extension 
ofthe weight of DJ that is given by (5.50) and 

ea=t4J+3®{eO ±ieo }. 
±$fi) +$fi+/J 

(x) a(h) = 0, with c and d as basis elements. 
WithJl chosen as in (5.18) [so that (2.37) is valid], it 

follows that 

(a°,{3°) = (a°,{3°)D1
, (5.66) 

where on the right-hand side of (5.66) aO and /3 ° are any 
pair of linear functionals defined on ~(4) ( = r /), the 
evaluation being performed with respect to the Killing form 
of DJ, and where on the left-hand side of (5.66) aO and /3 ° 
denote the corresponding extensions to the Cartan subalge
bra of the Kac-Moody superalgebra A (2)(2/- 1/0), the 
evaluation being performed with respect to its supersym
metric bilinear invariant form B( , ). As D J is a semisimple 
Lie algebra, (aO,aO) DI > 0 for every nonzero linear functional 
aO defined on r ', so (aO,aO) > 0 for the corresponding ex
tension. Moreover (2.13), (2.28), (2.30), (2.31), (2.36), 
and (5.18) imply that 

ht; = {(2/- 1)/(1- 1)}c. (5.67) 

Thus, if a~ is the extension of any simple root of .Y?, then 

(t5,a~) = 0 (5.68) 

and 

(jt5,jt5) = o. (5.69) 

Thus (jt5,jt5) = 0 for integer j, so every nonzero root of 
A (2)(2/- 1/0) belonging to the sets (i) and (v) is "imagi
nary." Moreover, because (jt5 + aO,jt5 + aD) = (aO,aO)DI 

and because (aO,aO)DI> 0 for linear functional aO and its 
corresponding extension (as has just been noted), it follows 
that every root of A (2) (21 - 1/0) belonging to the sets (ii), 
(iii), (iv), (vi), (vii), (viii), and (ix) is "real." All the ele
ments mentioned in the above sets are even, except for those 
in the sets (iv) and (ix), which are odd. 

In relating these roots to the simple roots of the Kac
Moody superalgebra A (2) (2/- 1/0) it is necessary to con
sider the cases 1 = 2 and I> 2 separately because the labeling 
of the generalized Dynkin diagrams of A (2)(2/- 1/0) is 
different in the two cases. 
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For A (2)(3/0) (i.e., for 1 = 2) the simple roots may be 
taken to be 

aO =a~, at =t5-a~, a 2 =a~, 
where 

° AD2 I ~ D2 a H = t =- ~ ak 
2 k= t 

(5.70) 

is the highest weight of the representation of 'y?&4) for which 
.Y?t(4) is the carrier space [cf. (5.58)] and a~2 and a~2 are 
the extensions of the simple roots a? and a~ of D2 • As ea , 

appears in the set (iv) it follows that ea , is odd, so at is an 
oddrootoftheKac-MoodysuperalgebraA (2)(3/0). All the 
other simple roots of A (2) (3/0) are even. 

For A (2) (2/- 1/0) for I> 2 the simple roots may be 
taken to be 

and 

ak =a~~k (fork=O,I, ... ,I-I), 

where 

(5.71) 

(5.72) 

(5.73 ) 

is the highest weight of the representation of .Y~ 4) for which 
.Y??) is the carrier space [cf. (5.52)] and the af' are the 
extensions of the simple roots of D J• As eal appears in the set 
(iv) it follows that eal is odd, soaJ is an odd root of the Kac
MoodysuperalgebraA (2) (2/- 1/0) (for I> 2). All theoth
er simple roots of A (2)(2/_ 1/0) are even (for I> 2). It is 
then easily checked that the Cartan matrices of A (2)(3/0) 
andA (2)(2/- 1/0) (for t~3) evaluated using (2.15) corre
spond to the generalized Dynkin diagrams given in Figs. 3 
and 4. 

VI. TWISTED AFFINE KAC-MOODY SUPERALGEBRAS 
CORRESPONDING TO AUTOMORPHISMS OF ORDER 4: 
ROOTS OF A(4)(21/0) (FOR '=1,2,3, .•• ) 

A. The fourfold automorphlsms 

The general line of argument for A (4)(2//0) is verysim
ilar to that given for A (2) (2/- 1/0) in the previous section, 
so its presentation can be given more briefly. An explicit 
realization of the simple Lie superalgebra A (2//0) is pro
vided by sl(21 + 1/1), considered as a complex superalge
bra, where s1(21 + 1/1) is defined as the set of 
(21 + 2) X (21 + 2) complex supermatrices that satisfy the 
condition (5.2). The grading partitioning may be taken to be 
as in (5.1), but now A, B, C, and D are of dimensions 
(21 + 1) X (21 + 1), (21 + 1) X 1, 1 X (21 + 1), and 1 X 1, 
respectively. The rank 1° of A (2//0) is given by 

1° = 21 + 1. (6.1) 

The generalized Dynkin diagram of A (2//0) is shown in Fig. 
11, which indicates that its distinguished simple roots a~ are 
even for k = 1,2, ... ,2/, but that a~/+ t is odd. With the bilin
ear form BO( , ) being defined by 

BO(M,N) =4/str (MN), (6.2) 
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the basis elements of its Cartan subalgebra JYC may be taken 
to be 

and 

h~2 = {1/4/}{ek,k - ek+ I,k+ I} (for k = 1,2" .. ,2/) 

(6.3) 

hOo = {1/4/}{e21 + 121+ 1 + e2l+221+2}' (6.4) 
a2/+ I • • 

Nower,s is the matrix of dimension (21 + 2) X (21 + 2) that 
is defined by 

(er,s )jk = 01jOsk (for j,k = 1,2, ... ,21 + 2), (6.5) 

so that with this choice all the matrices of ~ are again 
diagonal. The positive even roots f3 ~ j,k) and positive odd 
roots ~ j) of A (2//0) are given in terms of the distinguished 
set of simple roots a~, a~, ... , a~l+ 1 of A(21 /0) by 

k-I 
f3~j,k) = I a~ (for j,k = 1,2, ... ,21 + l;j < k) 

(6.6a) 
r~j 

and 
21+ 1 

~j) = I a~ (for j = 1,2, ... ,21 + 1), (6.6b) 
r=j 

for which the corresponding basis elements of A (2//0) may 
be taken to be 

= ej,k (for j,k = 1,2, ... ,21 + l;j < k) (6.7a) 

and 

=ej,21+2 (for j= 1,2, ... ,2/+ 1). (6.7b) 

The basis elements corresponding to the corresponding neg
ative roots may be chosen in accordance with (2.19). [For 
further information on A (2//0) see Cornwell.9 

] 

Taking the node corresponding to the odd simple root 
al of A (4)(2//0) for I;;d, as the corresponding numerical 
mark has value 1 (cf. Figs. 5 and 6), (2.32) shows that q = 4 
again. It follows from (2.33) that if the automorphism (4.6) 
is employed then the subalgebra 2'~~4) consists of the super
matrices whose submatrices satisfy the conditions (5.8), so 
that the subalgebra 2'~~q) is isomorphic to the set of 
(21 + 1) X (21 + 1) complex antisymmetric matrices and 
hence is isomorphic to the simple complex Lie algebra B I • 

(Inspection of Figs. 5 and 6 shows that the generalized Dyn
kin diagram with the chosen node and attached lines re
moved does indeed correspond to B I') As expected, none of 
the basis elements of the Cartan subalgebra ~ of A (2//0) 
are members of this 2'~~q) (because all the members of this 
2'~~q) are nondiagonal matrices). 

A realization of BI in which the basis elements of the 
Cartan subalgebra of BI are given by diagonal matrices is 
given by the (21 + 1) X (21 + 1) complex matrices A' that 
satisfy the condition (5.9), but where now 

(6.8) 

1829 J. Math. Phys., Vol. 31, No.8, August 1990 

This realization will be referred to as the "canonical" form of 
B I' These matrices A' are related to the (21 + 1) X (21 + 1) 
antisymmetric matrices A by 

T-1AT = A', (6.9) 

where T is a certain (21 + 1) X (21 + 1) complex matrix that 
satisfies the condition 

IT = G, (6.10) 

G being as defined in (6.8) (cf. Comwell I5 ). This mapping 
can be extended to an automorphism of (J of 
2'~ [ = sl (21 + 1/ 1 ) ] by using the definition (5.13), so that 
<p is again given by (5.14). [Of course in (5.13) and (5.14) 
the dimensions of all the submatrices must be modified in the 
obvious way.] 

B. The subspaces jP~!:) (for p=O,1,2,3) 

The four subspaces 2'~~4) (for p = 0,1,2,3) correspond
ing to the automorphism <p of (5.14) will now be considered 
in turn. 

1. jPlj/~) 

By (2.33) the subalgebra 2'~4) consists of the superma
trices whose submatrices satisfy the conditions (5.15) [with 
G given by (6.8)], and so is isomorphic to the canonical 
form of B I • 

Some properties of the canonical form of BI (cf. Kon
uma et al. 16 and Comwell l5 ) will first be summarized. Its 
killing form B B J 

(,) is given by 

BBJ(A,A') = (2/-1)tr(AA'), (6.11) 

(for all A and A' of the canonical form). Thus, by (6.2), 

BO((AO 0) (A' 0)) = 41 BBJ(A A') (6.12) 
o ' 0 0 (21 - 1) " 

for all A and A' of the canonical form. This implies that 
(2.37) is satisfied if 

ft= (2/-1)/(4/). (6.13) 

Denoting the simple roots of BI by a:J (for k = 1,2, ... ,/), the 
corresponding basis elements of the Cartan subalgebra ~BJ 
of BI defined by 

B BJ(h\ ,h) = a:J(h) for all h5:W'BJ a. (6.14 ) 

[cf. (2.13) and (2.17)] are 

h:ZJ={1/(2/-1)}{ek+l.k+1 -ek+I+I.k+I+1 

- ek + 2.k + 2 + ek + 1+ 2.k + 1+ 2} 
(for k = 1,2, ... ,/ - 1) (6.15 ) 

and 

h:fJ = {l/(2/- l)}{e l + 1.1+ 1 - e21+ 1.21+ I}. (6.16) 

The associated root subspace basis elements are 

e:~J = {l/2(2/- 1)}{ek+ l,k+2 - ek+ 1+2,k+ 1+ I} 

(for k = 1,2, ... ,1- 1) ( 6.17) 

and 
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e:~1 = {l/2(2/- 1)}{el .2/+ I - e/+ I.J, 

the normalization factors being chosen so that 

B BI(eB~, ,eBI B,) = - 1, 
Uk - u" 

where, as usual, 

(6.18 ) 

(6.19 ) 

(6.20) 

The diagonal basis elements of 2'~ 4) will be considered 
first. As they may be taken to consist of the set 
{ek+ I.k+ I - ek+ 1+ I.k+ 1+ II for k = 1,2, ... ,l}, it follows 
that they are all members of the Cartan subalgebra 
jyO(4) ( = JliPB1) of BI (as expected). Thus the most general 
element of jyO(4) is of the form 

I 

I= 1 Kk(ek+ l.k+ 1 -ek+I+I.k+I+I)' 
k 

(6.21) 

where KI ,K2 , ... ,KI are any complex numbers, which can be 
rewritten, by (6.3), as 

21 

41 I = 2pkh~~, 
k 

(6.22) 

where 
k-I 

Pk = I K, (for k = 2, ... ,1 + 1) (6.23 ) 
r= 1 

and 
I 

Pk+ I = I K, (for k = 2, ... ,1). (6.24) 
r= k 

Thus on jyO(4) the simple roots of A (2110) are given by 

a?(h) = -KI , 

a~ (h) = Kk _ I - Kk (for k = 2,3, ... ,1), 

a~+1 (h) =KI +KI, 

aL/(h) = - (Kk _ 1 -Kk ) (fork=2,3, ... ,l), 

and 

a~/+ I (h) = - K I , 

which implies that on jyO(4) ( = JliPB1) 

a~(h)= -a~+/(h) (fork=2,3, ... ,1), 
1 1+ I 

a? (h) = - - I a~ (h), 
2 k=2 

and 

(6.25 ) 

(6.26) 

(6.27) 

(6.28 ) 

(6.29) 

(6.30) 

(6.31) 

Consideration of a similar argument for the simple roots a:' 
of B, then shows that on the Cartan subalgebra 
jyO(4) ( = JliPB1) of B, the simple roots a:' of B, and a~ of 
A(2110) are related by 

I 

a? (h) = - I a~/(h), (6.32) 
r= 1 

a~(h) = -a~+/(h) =a:'_I(h) (fork = 2,3, ... ,1), 
(6.33 ) 

I-I 

a~+ I (h) = I a~/(h) + 2a~/(h), (6.34) 
r= 1 
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and 

a~/+ I (h) = - a~/(h), (6.35) 

Finally it follows from (2.13), (2.17), (2.26)-(2.28), 
(2.36), (2.37), (6.3), (6.4), (6.15), and (6.16) that corre
sponding elements of the Cartan subalgebra of the Kac
Moody superalgebra are 

h BI=tO®h\={211(2/-1)}tO®{hOo -hoo } 
ak Uk ak+l Uk+I+1 

(for k = 1,2, ... ,1- 1) (6.36) 

and 

h BI=tO®hB~/={211(2/-1)}tO®{ f hOo}. 
u, a, r=~+ 1 U r 

(6.37) 

The nondiagonal basis elements of 2'?~4) will now be 
examined. They fall into six sets. 

(i) For j = 1,2, ... ,/: 

elJ + I - ej + 1+ 1.1 = epo o(IJ'+ II + eO pO , 
- (lJ+I+I) 

(6.38 ) 

where e~~IJ+ \) and eO_ p~IJ+ 1+ \) are given by (2.19) and 
(6.7a). As (6.32) and (6.33) imply that 

I 

(3~IJ+ I) (h) = - (3~IJ+ 1+ \) (h) = - I a~/(h) 
'=j 

(6.39) 

[for j = 1,2, ... ,1, and for all heJliPO(4) ( = JliPB1)], the basis 
element (6.41) corresponds to the root(3~IJ+ I) (h) of B,. 

(ii) For j = 1,2, ... ,1: 

- ej + I I + elJ + I + I = eO pO + eOpo , 
• - (IJ+ I) (IJ+i+ 1) 

(6.40) 

which corresponds to the root - (3~IJ+ \) (h) of B
" 

where 
(3~IJ+ I) (h) is given by (6.39). 

(iii) For j,k = 1,2, ... ,1, with j < k: 

° ° ej+l.k+l-ek+I+I.j+I+I=epo +e_ po 
(}+I.k+l) (}+I+l.k+I+J) 

(6.41) 

whereeo o and eO 0 are given by (2.19) 
{3 (j + l.k + I) - {3 (j + 1+ l.k + 1+ t) 

and (6.7a). As (6.33) implies that 
k-I 

(3~j+I.k+I)(h)= -(3~j+I+I.k+I+\)(h)= I a~/(h) 
r=j 

(6.42) 

[for j,k = 1,2, ... ,1, with j < k, and for all heJliPO(4) ( = y/) 

], the basis element (6.41 ) corresponds to the root 
(3~j+ I.k + I) (h) ofB, . (This set does not appear when 1 = 1). 

(iv) For j,k = 1,2, ... ,1, with j < k: 

-ek+ IJ + I +ej+I+I.k+I+1 

= eO 0 + eO 0 , 
-(3u+ t,/.;+ I) f3(j+l+ 1,/.;+1+ I) 

(6.43) 

which corresponds to the root -(3~j+I.k+I)(h) of B
" where (3~j+ l,k+ I) (h) is as in (6.42). (This set does not 

appear when 1 = 1). 
(v) For j,k = 1,2, ... ,1, with j < k: 

e - e - eO - eO 0 • j+l.k+I+1 k+IJ+I+I - p~J+I.k+I+\) p(k+I.J+I+II 
(6.44) 

I. Tsohantjis and J. F. Cornwell 1830 



                                                                                                                                    

where eOpo and epo 0 are given by (2.19) and 
<J+I.k+i+l) (k+tJ+I+l) 

(6.7a). As (6.33) and (6.34) imply that 

f3~j+ l,k+l+ \) (h) =f3~k+ IJ+I+ I) (h) 

k-I I 

= L a~/(h) + 2 L a~/(h) 
r=j r= k 

(6.45) 

[for j,k = 1,2, ... ,/, with j < k, and for all hE JY
O

(4) 

X ( = y/) ], the basis element (6.41) corresponds to the 
rootf3~j+ I,k+ 1+ \) (h) ofBI . (This set does not appear when 
1= 1). 

(vi) For j,k = 1,2, ... ,1, with j < k: 

-ek+I+ IJ + I +ej+I+I,k+1 

= eO 0 - eO 0 • 
-P(j+ l,k+l+ 1) -f3(k+1J+J+ I) 

(6.46) 

This corresponds to the root -f3~j+I,k+I+I)(h) of B I , 

wheref3~j+ I,k + I) (h) is given by (6.45). (This set does not 
appear when 1 = 1). 

As expected the elements of (6.38), (6.40), (6.41), 
(6.43), (6.44), and (6.46) are even members of A (2110). 

It is easily checked that the set of 212 nonzero roots of 
(i) to (vi) above, together with the I zero roots, are all 
weights of the adjoint representation of B I • For 1>2 its high
est weight is 

A = A:1 = a~1 + 2 ± a:l, (6.47) 
k=2 

while for 1 = 1 it is 

A 2ABI BI = I =a l (6.48) 

as expected [cf. Cornwell l7 (Appendix F)]. 

2 . .2'':,4) 

By (2.33) the subspace .Y~1(4) consists of the superma
trices whose submatrices satisfy the conditions 

-GAG=iA, -BG=iC, GC=IB, and -D=ID, 

which when taken together, along with the fact that D is 
1 X 1, imply that 

A = 0, D = 0, and C = iBG. (6.49) 

The basis elements of .Y~1(4) fall into three sets. 
(i) For j = 1,2, ... ,/: 

ej + I.21+2 +ie21+2J+I+I =e~. I -ieo tf? ' 
(j+ ) - (j+l+ 1) 

(6.50) 

where e~ and eO tf? are given by (2.19) and (6. 7b). 
()+ I) - (j+l+ I) 

As (6.33), (6.34), and (6.35) imply that for j= 1,2, ... ,land 
for all he)¥O(4) ( = y/) 

I 

tf(j+ \) (h) = -Iftj+ 1+ I) (h) = L a~/(h), (6.51) 
r=j 

the basis element (6.50) corresponds to the weight 
Iftj+ I) (h) of B I · 

(ii) For j = 1,2, ... ,/: 

- e21 + 2J + I + iej + I + I 21 + 2 = eO_ tf? + ie~ , 
• (J+ I) O(j+l+ I) 

(6.52) 

which corresponds to the weight -Iftj+ I) (h) of BI, where 
Iftj+ I) (h) is given by (6.51). 
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(iii) The single basis element: 

el21 + 2 +ie21+21 =e~ -ieo rt1 , (6.53) 
• • 0(1) - 0(1) 

where e~ and ieo tf? are given by (2.19). However, by 
(1) - (I) 

(6.29)-(6.31) 1ft\) (h) = 0 for all he)¥O(4)( = JYB1
) , so 

(6.53) corresponds to a zero weight of B I • 

These weights all belong to a (21 + 1) -dimensional irre
ducible representation of BI with highest weight 

(6.54) 

It should be noted that all the elements of (6.50), (6.52), 
and (6.53) are odd members of A (2110), so all the elements 
of .Y~I( 4) are odd. 

3. 'y~4) 

By (2.33) the subalgebra .Y~i4) consists of the superma
trices whose submatrices satisfy the conditions 

-GAG= -A, -BG= -C, 

GC = - B, and - D = - D, 

which when taken together, along with the fact that D is 
1 Xl, imply that 

AG-GA=O, B=O, C=O, (6.55) 

with D being determined only by the supertrace condition 
tr A = tr D. On using (6.3) and (6.4), the diagonal basis 
elements of .Y~i4) may be taken to consist of two sets. 

(i) The single basis element 
21+ I 

(l/41){e l ,1 + e21 + Z,ZI+Z} = L h~~. 
r= I 

(6.56) 

(ii) For k = 1,2, ... ,/: 

(l/41){ek+ I,k+ I + ek+ 1+ I,k+ 1+ I + 2e2l + z,21+z} 
k+1 21+1 

L h~~ + 2 L h~~. 
r=k+1 r=k+I+1 

(6.57) 

Each of these corresponds to zero weight of B I , so that the 
zero weight has multiplicity 1+ 1. 

The nondiagonal basis elements of .Y~i4) fall into eight 
sets. 

(i) For j = 1,2, ... ,/: 

e· + e· = eO 0 - eO 0 , 1./+ I J+ 1+ 1,1 P(lJ+ I) -P(lJ+I+ I> (6.58) 

where e~~IJ+ I> and eO-f3~IJ+I+ I> are given by (2.19) and 
(6.7a), andf3~IJ + \) (h) [ = - f3~IJ + 1+ \) (h) ] is given for 
all he)¥O(4) ( = JYB1) by (6.39), so this basis element (6.58) 
again corresponds to the weightf3~IJ+ \) (h) of B I • 

(ii) For j = 1,2, .. ,,/: 

- e· - e . = eO 0 - eO 0 , J+I,I 1./+1+1 -P(IJ+I> P(lJ+I+1> (6.59) 

which corresponds to the weight - f3~IJ+ I) (h) of BI, 

wheref3~IJ+ I) (h) is given by (6.39). 
(iii) For j,k = 1,2, ... ,/, with j < k: 

ej+l,k+1 +ek+I+IJ+I+I 
=eoo _eo 0 • (6.60) 

/3 u + 1,/.:+ I) -f3(j+I+ 1.1<+1+1) 

where eO 0 and eO 0 are given by 
f3 (j + I.A: + I) - f3 (j + 1+ 1.1< + J + I) 
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(2.19) and (6.7a), and f3?J+ I,k+ I) (h) 

[= -f3?j+I+I,k+I+I)(h)] is given for all 
h~(4) [ = y/] by (6.42), so this basis element (6.60) 
again corresponds to the weight f3 ?j + I,k+ I) (h) of B I . (This 
set does not appear when 1 = 1.) 

(iv) For j,k = 1,2, ... ,1, with j < k: 

-ek+ IJ + 1 -ej+I+I,k+I+1 

= eO 0 - eO 0 • 
-fJ(j+ 1."+1) fJU+I+ l,k+l+ I) 

(6.61) 

This corresponds to the weight - f3? j + I,k + I) (h) of B I' 

wheref3?1+ I,k+ I) (h) is given by (6.42). (This set does not 
appear when 1 = 1.) 

(v) For j,k = 1,2, ... ,/, with j < k: 

e + e - eO + eOo j+I,k+I+1 k+IJ+I+1 - P?J+I.k+I+\) P(k+I"+I+\) 
(6.62) 

where e~o and e~o are given by (2.19) and 
P(j+ l,k+l+ I) P(k+ IJ+I+ I) 

(6.7a), and f3~J+ I,k + 1+ I) (h>[ = f3~k+ IJ+ 1+ I) (h)] is 
given for all h~(4)( = y/) by (6.45), so this basis 
element (6.62) again corresponds to the weight 
f3~1+ I,k+ 1+ I) (h) of B I . (This set does not appear when 
1 = 1.) 

(vi) For j,k = 1,2, ... ,1, with j < k: 

- ek+ 1+ IJ+ I - ej + 1+ I,k+ I 

= eO 0 + eO 0 • 
-P(j+l.k+I+I) -fJ(k+IJ+I+I) 

(6,63) 

This corresponds to the weight - f3?1+ l,k+l+ I) (h) of B I, 

where f3? 1+ I,k + I + I) is given by (6.45). (This set does not 
appear when 1 = 1.) 

(vii) For j = 1,2, ... ,1: 

(6.64) 

where eOo is given by (2.19) and (6.7a). Thus 
f3(J+ IJ+I+ I) 

the basis element (6.64) corresponds to the weight 
f3?1+ IJ+ 1+ I) (h) ofBI, where (6.33) and (6.34) imply that 

I 

f3?J+IJ+I+ I) (h) =2 L a~/(h), 
r=j 

[for j = 1,2, ... ,1, and for all h~(4)( = JrPB/)]. 
(viii) For j = 1,2, ... ,/: 

- e· I I' I = eO 0 , J+ + J+ -P(J+IJ+I+I) 

(6.65) 

(6.66) 

which corresponds to the weight - f3?j+ IJ+ 1+ I) (h) of B I, 

wheref3?1+ IJ+ 1+ I) (h) is given by (6.65). 
These 212 + 31 + 1 weights belong to a representation 

of BI which is the direct sum of the trivial I-dimensional 
irreducible representation with highest weight A = 0 and 
the (21 2 + 3/) -dimensional irreducible representation with 
highest weight 

I 

A = 2A:' = 2 L a~/. (6.67) 
k=1 

It should be noted that all the elements of 2'~i4) are even 
members of A (2//0). 

4 . .!f':a4
) 

By (2.33) the subspace 2'~j4) consists of the superma
trices whose submatrices satisfy the conditions 
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-GAG= -iA, -BG= -iC, 

GC = - lB, and - D = - ID, 

which, when taken together, along with the fact that D is 
1 X 1, imply that 

A = 0, D = 0, and C = -1'BG. (6.68) 

The basis elements of 2'~j 4) fall into three sets. 
(i) For j = 1,2, ... ,/: 

e ie eO + ieo , j+I,21+2 - 2/+2J+I+1 = tf/./+\) -tf/.j+I+I) 
(6.69) 

wheree~ andeo If! are given by (2.19) and (6.Th), 
(j+ I) - (J+J+)) 

and s:t 1+ I) (h) [ = - s:t 1+ I + I) (h) ] is given for all 
h~(4)( =y/) by (6.51), so this basis element (6.69) 
again corresponds to the weight s:t j + I) (h) of B I' 

(ii) For j = 1,2, ... ,/: 

-ez/+2J+1 -iej + I+ I,2/+2 =eo_lf!(J'+') -ie~ , 
(j+ 1+ I) 

(6.70) 

which corresponds to the root - s:tJ+ I) (h) of B I , where 
s:t1+ I) (h) is given by (6.51). 

(iii) The single basis element: 

e12/ + 2 -ie2/ + 21 =e~ +ieo rtl , (6.71) 
• • 0(1) -0(1) 

wheree~ is given by (2.19) and (6.6b). Ass:tl) (h) = o for 
(I) 

all h~(4)( = y/), (6.71) corresponds to a zero weight 
ofBI· 

These weights all belong to a (21 + 1) -dimensional irre
ducible representation of BI whose highest weight is given by 
(6.54). All the elements of 2'~j4) are odd. 

c. The roots of A(4)(21/0) 

Defining 8(h) as in (3.6) to (3.8), it follows that the 
roots a(h) and the corresponding basis elements ea of 
A (4)(2//0) are as follows. 

(i) a = 4J8(h), (for J = 0, ± 1, ± 2, ... ). There are I 
linearly independent basis elements e~k) corresponding to 
this root that may be labeled by an additional superscript, so 
that 

e~k)={21/(2/-I)}t4J®{bOo -bOo } 
a" + I a" + 1+ 1 

(for k = 1,2, ... ,/- 1), 

and 

e(1) = 21 t 4J ® { ~ hO} 
a (21-1) r=~+l a~ 

[which reduce to (6.36) and (6.37) in the special case 
J=O]. 

(ii) a(h) = 4J8(h) ±f3~IJ+ I) (h) (for j= 1,2, ... ,1, 
and for J = 0, ± 1, ± 2, ... ), wheref3?IJ+ I) (h) is the exten
sion ofthe weight of BI that is given by (6.39) and 

ea = t 4J ® {eO 0 + eO 0 }. 
±f3(1J+l) +/3(1J+I+I) 

(iii) a(h) = 4J8(h) ± f3~J+ I,k + I) (h), (for 
j,k = 1,2, ... , I, with j < k, and for J = 0, ± 1, ± 2, ... ), where 
f3?1+ I,k + I) (h) is the extension of the weight of BI that is 
given by (6.42) and 
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(iv) a(h) =4Jo(h) ±13?j+t.k+I+\) (h), (for 
j,k = 1,2, ... ,1, with j < k, and for J = 0, ± 1, ± 2, ... ), where 
13?H I,k + 1+ I) (h) is the extension of the weight of BI that is 
given by (6.45) and 

ea =t4J ®{eD 
0 _eD 0 }. 

±f3(J+I.k+I+I) ±/3(k+lJ+I+I) 

(v) a(h) = (4J + l)o(h) ± O?H \) (h) (for 
j = 1,2, ... ,1, and for J = 0, ± 1, ± 2, ... ), where O?H I) (h) is 
the extension of the weight of BI that is given by (6.51) and 

e =t 4J+1®{eD +ieD }. 
a ±lftj+11 :r:-Iftj+'+I) 

(vi) a(h)=(4J+l)o(h) (for J=0,±1,±2, ... ), 
with 

e =t 4J + I ®{eD _ieD }. 
a 1ft" - 1ft" 

(vii) a(h) = (4J + 2)o(h) (for J = 0, ± 1, ± 2, ... ). 
There are 1 + 1 linearly independent basis elements e~k) cor
responding to this root which may be labeled by an addi
tional superscript, so that 

{ 
k+ I 2/+ I } 

e~k) = t 4J+2® L h~~ + 2 L h~~ 
r=k+1 r=k+I+1 

(for k = 1,2, ... ,/) 

and 

(viii) a(h) = (4J + 2)o(h) ±13?Ij+ \) (h) (for 
j = 1,2, ... ,1, and for J = 0, ± 1, ± 2, ... ), where 13~Ij+ I) (h) 
is the extension of the weight of BI that is given by (6.39) and 

e =t 4J + 2 ®{eD 0 _eD 0 }. 
a ±fJ(lJ+" :r:-fJ(IJ+'+" 

(ix) a(h) = (4J + 2)o(h) ±13?H I,k+ \) (h) (for 
j,k = 1,2, ... ,/, with j<k, and for J = 0, ± 1, ± 2, ... ), where 
13?H I,k+ I) (h) is the extension of the weight of BI that is 
given by (6.42) and 

ea=t4J+2®{eD 0 _eD 0 }. 

±f3(J+I,k+l) +f3(J+I+I.k+I+1) 

(x) a(h) = (4J + 2)o(h) ±13?j+ l,k+l+ I) (h) (for 
j,k = 1,2, ... ,1, with j < k, and for J = 0, ± 1, ± 2, ... ), where 
13? H I,k + I + \) (h) is the extension of the weight of B I that is 
given by (6.45) and 

ea =t 4J + 2 ®{eD 
0 +eD 

0 }. 
±f3(J+ 1.1.:+1+ 1) ±{3(k+ IJ+I+ I) 

(xi) a(h) = (4J + 2)o(h) ± 13?H IJ+ 1+ I) (h) (for 
j = 1,2, ... ,1, and for J = 0, ± 1, ± 2, ... ), where 
13?j+ IJ+ 1+ \) (h) is the extension of the weight of BI that is 
given by (6.65) and 

(xii) a(h) = (4J + 3)o(h) ± O?j+ I) (h) (for 
j = 1,2, ... ,/, and for J = 0, ± 1, ± 2, ... ), where O?j+ I) (h) is 
the extension of the weight of B I that is given by (6.51) and 

e = t 4J + 3 ® {eD + ieD }. 
a ±lftj +" - :r:-Ift j +,+" 

(xiii) a(h) = (4J + 3)o(h) (for J = 0, ± 1, ± 2, ... ), 
with 
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e =t 4J + 3 ®{eO +ieD }. 
a 1ft" -1ft" 

(xiv) a(h) = 0, with c and d as basis elements. 
WithJL chosen as in (6.13) [so that (2.37) is valid], it 

follows that 

(aD,{3D) = (aD,{3D)B" (6.72) 

where on the right-hand side of (6.72) aD and 13 D are any 

pair of linear functionals defined on ~(4)( = T'), the 
evaluation being performed with respect to the Killing form 
of BI , and where on the left-hand side of (6.72) aD and 13 D 

denote the corresponding extensions to the Cartan subalge
bra of the Kac-Moody superalgebraA (4)(2110), the evalu
ation being performed with respect to its supersymmetric 
bilinear invariant form B(,). As BI is a simple Lie algebra, 
(aD,aD) B, > 0 for every nonzero linear functional aD defined 

on c'JrB" so (aD,aD) > 0 for the corresponding extension. 
Moreover (2.13), (2.28), (2.30), (2.31), (2.36), and 
(6.13) imply that 

h{j ={411(2/-1)}c. (6.73) 

Thus if a~ is the extension of any simple root of .2"~, then 

(o,an = 0 (6.74) 

and 

(jo,jo) = o. (6.75) 

Thus (jo,jo) = 0 for integer j, so every nonzero root of 
A (4) (21 10) belonging to the sets (i), (vi), (vii), and (xiii) is 
"imaginary." Moreover, because (jo + aD,jo + aD) 

= (aD,aD) B, and because (aD,aD) B, > 0 for linear functional 
aD and its corresponding extension (as has just been noted), 
it follows that every root of A (4) (2110) belonging to the sets 
(ii), (iii), (iv), (v), (viii), (ix), (x), (xi), and (xii) is 
"real." All the elements mentioned in the above sets are 
even, except for those in the sets (v), (vi), (xii), and (xiii), 
which are odd. 

For A (4)(2110) for I> I the simple roots may betaken to 
be 

and 

ak = af'- k (for k = 0,1, ... ,1- 1), 

where 

(6.76) 

(6.77) 

(6.78) 

is the highest weight of the representation of .2"~6 4) for which 

.2"~1(4) is the carrier space [cf. (6.54)] and the a:' are the 
extensions of the simple roots of B I • As ea , appears in the set 
(v) it follows that ea , is odd, so a l is an odd root of the Kac
Moody superalgebraA (4) (2110). All the other simple roots 
of A (4) (2110) are even. 

It is then easily checked that the Cartan matrices of 
A (4)(210) and A (4)(2110) (for 1>2) evaluated using 
(2.15) correspond to the generalized Dynkin diagrams giv
en in Figs. 5 and 6, respectively. 
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VII. TWISTED AFFINE KAc-MOODY SUPERALGEBRAS 
CORRESPONDING TO AUTOMORPHISMS OF ORDER 2: 
ROOTS OF C(2)(/+1) (FOR ,= 1 ,2,3, ••• ) 

A. The two-fold automorphlsms 

An explicit realization of the simple Lie superalgebra 
C(I + 1} is provided by the orthosymplectic algebra 
osp(2/2/;C). considered as a complex superalgebra. where 
osp(2/2/;C) is defined as the set of (21 + 2) X (21 + 2) com
plex supermatrices with the grading partitioning 

M=(~ !). (7.1) 

that are subject to the condition that 

MstK + (_1}degMKM = O. (7.2) 

where 

K=(~ ~) . (7.3) 

with 

G=(O II II) 
o · 

(7.4 ) 

and 

J- ( 0 -11 11) 
o · 

(7.5) 

[Here A. B. C. D, K. G. and J are of dimensions 2 X 2. 2 X 2/. 
21 X2, 21 X 2/. (21 + 2) X (21 + 2), 2X2. and 21 X2/. 
respectively.] The condition (7.2) implies that 

AG+GA=O, (7.6) 

DJ +JD=O, (7.7) 

and 

BG-JC=O. (7.8) 

The rank 1° of C(/ + 1) is given by 

1°=1+1. 

The generalized Dynkin diagram of C(/ + 1) is shown in 
Fig. 12. which indicates that its distinguished simple roots 
a~ are even for k = 2.3 •... ,/ + 1. but that a? is odd. With the 
bilinear form BO(.) being defined by 

BO(M.N) = - 2/str (MN). (7.9) 

the basis elements of its Cartan subalgebra ~ may be taken 
to be 

h~? = - {l/4/}{el,1 - e2,2 + e 3•3 - e l + 3.1 + 3}' 

h~2 = {1/4/}{ek+ l .k+1 -ek+I+I.k+I+1 

- ek + 2.k + 2 + ek + 1+ 2.k + 1+ 2} 

(for k = 2.3 .... ,/) 

and 

(7.10) 

(7.11) 

h~7+ I = {l/2/}{el+ 2.1+ 2 - e 2l + 2.21+ 2}. (7.12) 

Again er.s is the matrix of dimension (21 + 2) X (21 + 2) 
that is defined by (6.5), so that with this choice all the matri· 
ces of ~ are again diagonal. The positive even rootsp~tk) 
and p ~ ;:k) and positive odd roots ~ J; and ~;; of C( I + 1) 
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are given in terms of the distinguished set of simple roots a? • 
a~ ..... a~+ I ofC(I + 1} by 

k 

P~;:k)= L a~ (forj.k=I.2, .... I.j<k). (7.13 ) 
r=}+ I 

k I 

pnk) = L a~+2 L a~+a~+1 
r=}+1 r=k+1 

(for j.k = 1.2 ..... /- l.j < k). (7.14) 
I 

p~tl) = L a~ + a~+ I (for j= 1.2 ..... 1-1). (7.15) 
r=}+1 

I 

p~tj) = 2 L a~ + a~+ I (for j = 1,2 ..... /- 1). (7.16) 
r=}+ I 

P~i'!i) = a~+ I' 
} 

~;; = L a~ (for j = 1.2 ..... /). 
r= I 

j I 

~J; = L a~+2 L a~+a~+1 

and 

r=1 r=}+1 

(for j = 1.2 ..... /- 1). 

1+1 
<'1)+ _" ° oil) - £.. a r • 

r= I 

(7.17) 

(7.18) 

(7.19) 

(7.20) 

The corresponding basis elements of C(I + 1) may be taken 
to be 

(for j,k = 1.2 .... ,I;j < k). (7.21) 

° - + ep?t.) -e}+2.k+I+2 ek+2J+I+2 

(for j.k = 1.2 ..... I;j<k). (7.22) 

° elfti1 = e lJ + 2 + ej + 1+ 2.2 

(for j = 1.2 ..... /). (7.23 ) 

and 

(for j = 1.2 ..... /). (7.24) 

The basis elements corresponding to the corresponding neg
ative roots may be chosen in accordance with (2.19). [For 
further information on C(/ + 1) see Comwell.9

] 

Taking the node corresponding to the odd simple root 
ao of C (2) (/ + 1). as the corresponding numerical mark has 
value 1 (cf. Figs. 7 and 8], (2.32) shows that q = 2. More
over. inspection of Figs. 7 and 8 shows that the generalized 
Dynkin diagram with the chosen node and attached lines 
removed corresponds to B ( 0/1). the subalgebra .Y~ 2 ) has to 
be isomorphic to B(O/I). 

The complex simple Lie superalgebra B(O/I) may be 
realized as osp( l/2/;C). which is the set of 
(21 + 1) X (21 + 1) supermatrices m of the form 

(7.25 ) 

where band care submatrices of dimensions 1 X 21 and 
21 X 1. respectively. that experience the constraint 
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b-Jc=O, 

and D is a 21 X 21 submatrix such that 

DJ+JD=O 

(7.26) 

(7.27) 

[ J being defined in (7.5) ]. This will be called the canonical 
form of B(OII). 

One possible twofold automorphism of C( 1 + 1) is pro
vided by r/l, where 1/1 is the automorphism of (4.6). How
ever, as 

r/l(M) = _ ( _ Mst)st = ( A 
-c 

-B) 
D ' 

it follows from (2.33) that if this automorphism is employed 
then the subalgebra .2'~2) would consist of the superma
trices with B = C = 0, and with A and D satisfying (7.6) 
and (7.7), respectively, so that the subalgebra .2'~2) would 
be isomorphic to the even part of C(/ + 1), and not to the 
superalgebra B( 011). Consequently, r/l is not an appropriate 
choice of automorphism. 

As will be demonstrated explicitly in the next subsection 
the correct choice is actually given by 

t,b(M) = L -I( - Mst)L, (7.28) 

where 

L= (~ ~), 
J being as in (7.5), so that 

(
-A 

t,b(M) = _ J-Ijj (7.29) 

It is easily checked that this provides a twofold automor
phism of C(/ + 1). 

B. The subspaces .2'~) (for p=O, 1) 

The two subspaces .2'?:2) (for p = 0,1) corresponding 
to the automorphism t,b of (7.28) will now be considered in 
tum. 

1 . .2'::' 
By (2.33) the subalgebra .2'~2) consists of the superma

trices whose submatrices satisfy the conditions - A = A 
and CJ = B in addition to (7.6), (7.7), and (7.8). Together 
these imply that A = 0 and that 

B = 2 -112( ~ b) and C = 2 -1I2( - C c), (7.30) 

where band care submatrices of dimensions 1 X 21 and 
21 X 1, respectively, that experience the constraint (7.26). It 
is easily checked that subject to these conditions the map
ping 

(7.31 ) 

is an isomorphic mapping of B(OII) onto .2'~2) [the factors 
of 2 - 112 in (7.30) being inserted to help give this result] . 

Some properties of the canonical form of B(OII) and its 
image under the mapping (7.31) will first be summarized 
(the conventions being those of Comwe1l9 

). The Killing 
form B B(O//) (,) is given by 
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BB(OII)(m,m') = - (2/+ l)str(mm') (7.32) 

[for all m and m' of the canonical form of B( 011) ]. Then, by 
(7.31), 

BB(O//)(m,m') = - (21 + l)str('I'(m)'I'(m'», (7.33) 

and so, by (7.9), 

BO('I'(m),'I'(m'» = {21 1(21 + 1)}B B(O//) (m,m') 
(7.34) 

for all m and m' of the canonical form. This implies that 
(2.37) is satisfied if 

It = (21 + 1)1(2/). (7.35) 

Denoting the simple even roots of B(OII) by af(OII) (for 
k = 1,2, ... ,/- 1) and the simple odd root of B(OII) by 
af(O//), the corresponding basis elements of the Cartan sub
algebra )1't"B(O//) of B(OII) defined by 

BB(O//)(hB(OII) h) -aB(OII)(h) 
ar(OII)) - k 

for all hEYr'B(OII) 

[cf. (2.13) and (2.17)] are 

h!r?t}?, = {11 (21 + 1) Hek + I.k + I - e k + 1+ I.k + I + I 

(for k = 1,2, ... ,/- 1) 

and 

h!,?t}?, = {1I(21 + 1) Hel + 1,/ + I - e 21 + 1.21 + I}. 

Thus 

"'(hB(OII) ) 
..... aZ(OIJ) 

and 

= {1I(21 + 1)Hek + 2.k + 2 - e k + 1+2.k+ 1+2 

- ek+3.k+3 + ek+I+3.k+I+3} 

(for k = 1,2, ... ,/- 1) 

'I'(h!Ft}'D = {1I(2/+ l)He/ + 2.1+2 -e2l+2.2/+2}. 

(7.36) 

(7.37) 

(7.38) 

(7.39) 

{7.40) 

The diagonal basis elements of .2'~2) will be considered 
first. As they may be taken to consist of the set 
{ek + 2.k + 2 -ek +I+2.k+I+21 for k= 1,2, ... ,!}, it follows 
that they are all members of the Cartan subalgebra 
~(2)( = )1't"B(OII» of B(OII) (as expected). By (7.11), the 
most general element of ~(2) has the form 

I 

L = I K k(ek+2.k+2 -ek +I+2.k+I+2) 
k 

1+1 

= 41 L Pkh~o, 
k=2 k 

where KI ,K2 , ... ,KI are any complex numbers, and where 
k-I 

and 

Pk = L K, (for k = 2, ... ,/) 
r=1 

1 I 

PI+I =- L K,. 
2 ,= I 

Thus on ~(2) the simple roots of C(/ + 1) are given by 

I. Tsohantjis and J. F. Cornwell 1835 



                                                                                                                                    

a~ (h) = - Kp 

a2(h) =Kk_l -Kk (fork=2,3, ... ,/), 

and 

a?+ 1 (h) = 2K1, 

which implies that on jyO(2) ( = K'B(OII» 

I 

a?+dh ) = -2 I a2(h). 
k=l 

However, as (7.39) and (7.40) imply that 
I 

I= lKk (ek+2.k+2 -ek+l+2.k+l+2) 
k 

I 

=2(2/+ 1) I ILk'l1(h!~?tjJ), 
k= 1 k 

with 
k 

ILk = I Kr (for k = 1,2, ... ,/), 
r= 1 

it follows that on jyO(2) ( = K'B(O/I) 

(7.41 ) 

(7.42) 

(7.43) 

(7.44) 

af(O/I) (h) = Kk + Kk _ 1 (for k = 1,2, ... ,/- 1), 
(7.45 ) 

and 

af(OII) (h) =K1• (7.46) 

Comparison of (7.41 ) to (7.43) with (7.45) and (7.46) then 
shows that on the Cartan subalgebra on jyO(2) ( = K'B(OII» 

of B(OII) the simple roots af(O/I) of B(OII) and a2 of 
C(I + 1) are related by 

I 

a~ (h) = - I a~(OII)(h), 
r= 1 

a2(h) =af<:!.~l)(h) (fork=2,3, ... ,/), 

and 

(7.47) 

(7.48) 

a?+ 1 (h) = 2af(Oll) (h). (7.49) 

Finally it follows from (2.13), (2.17), (2.26)-(2.28), 
(2.36), (2.37), (7.11), (7.12), (7.39), and (7.40) that cor
responding elements of the Cartan subalgebra of the Kac
Moody superalgebra are 

= {21 1(21 + 1)}tO®hoo 
ak+ I 

(7.50) 

(for k = 1,2, ... ,/). 

The nondiagonal basis elements of 2'~~2) will now be 
examined. They fall into six sets. 

(i) For j,k = 1,2, ... ,1, with j < k: For the basis element 
eOo_ of(7.21), it is implied by (7.13) and (7.48) that this 

(3 (j.k) 

corresponds to the root 

(7.51) 
r=j 

of B(OII) [for j,k=I,2, ... ,I, with j<k, and for all 
hEJYO(2) ( = K'B(OII» ]. 

(ii) For j,k = 1,2, ... ,/, with j < k: 

(7.52) 
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which corresponds to the root - f3~;:k) (h) ofB(OII) , where 
f3~;:k) (h) is as in (7.51). 

(iii) For j,k = 1,2, ... ,/, with j<.k: For the basis element 
eO 0+ of (7.22), it is implied by (7.14), (7.15), (7.48), and 

(3 (j.k) 

(7.49) that this corresponds to the root 
k-l I 

f3Uk) (h) = I a~(OII)(h) + 2 I a~(OII)(h), (7.53 ) 
r=j r= k 

of B(OII) [for j,k = 1,2, ... ,/, with j<.k, and for all 
hEJYO(2) ( = K'B(OII», the first term on the right-hand side 
of (7.53) not appearing if j = k]. 

(iv) For j,k = 1,2, ... ,/, with j<.k: 

(7.54) 

which corresponds to the root - f3~tk) (h) ofB(OII) , where 
f3Uk) (h) is as in (7.53). 

(v) For j = 1,2, ... ,/: 

-ej + 2•1 +ej + 2•2 +e2J + 1+ 2 -e1J + 1+ 2 

= _eo + +eo _, (7.55) tf/.j) - tf/.j) 

where e~j) and eO_tf/.J; are given by (2.17), (7.23), and 
(7.24). As (7.18), (7.19), (7.20), (7.47), (7.48), and 
(7.49) imply that 

I 

dtJ; (h) = - dtJi (h) = I a~(OII)(h), (7.56) 
r=j 

[for j = 1,2, ... ,/, and for all hEJYO(2) ( = K'B(O/I) ], the ba
sis element (7.55) corresponds to the root dtJ; (h) of 
B(OII). 

(vi) For j = 1,2, ... ,/: 

+ 0 + 0 e1J + 2 -e2J + 2 ej + 1+ 2.2 -ej +I+2.1 =etf/.j) e_tf/.J;' 
(7.57) 

where e~j) and eO_tf/.J; are given by (2.17), (7.23), and 

(7.24), which corresponds to the root - dtJ; (h) of B(OII), 
where dtJ; (h) is as in (7.56). 

All the elements of the above sets are even members of 
C(I + I), except for those of (7.55) and (7.57), which are 
odd. 

It is easily checked that the set of 2/(1 + 1) nonzero 
roots of (i) to (vi) above, together with the 1 zero roots, are 
all weights of the adjoint representation of B(OII), whose 
highest weight is 

I 
A = 2Af(OII) = 2 I af(OII). (7.58) 

k=l 

2. 2'~2J 

By (2.33) the subspace 2'~?) consists ofthe superma
trices whose submatrices satisfy the conditions 
A = A,DJ - JD = 0, and CJ = - B in addition to (7.6), 
(7.7), and (7.8). Together these imply that D = 0, that 

B=2-1/2~) andC=2- 1/2 (c c), (7.59) 

where band care submatrices of dimensions 1 X 21 and 
21 X 1, respectively, that experience the constraint (7.26), 
and that 
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(7.60) 

- 0(2) where a is any complex number. Thus !f sl possesses a 
single diagonal basis element 

(~/){ell -e22}= -~hoo - ± hOo, (7.61) 
4 . . 2 a,+ I r= I a, 

which corresponds to a zero weight of B(O/I). 
The nondiagonal basis elements of 2"?1(2) fall into two 

sets. 
(i) For j = 1,2, ... ,/: 

- ej + 2.1 - ej + 2.2 + e2J + 1+ 2 + elJ + 1+ 2 

= e~+ + eO «1_, (7.62) 
O(j) - O(j) 

where e~j) and eO_tf/.1i are given by (2.17), (7.23), and 

(7.24), and ~t(h)[ = -~j)(h)] is given for 
j = 1,2, ... ,1, and for all h~(2)( = jfPB(O//» by (7.56), the 
basis element (7.62) corresponds to the weight ~t (h) of 
B(O/I). 

(ii) For j = 1,2, ... ,/: 

° ° e1J + 2 +e2J + 2 +ej +I+2.2 +ej + I+ 2,1 =etf/.j) -e_tf/.1i' 
(7.63 ) 

where e~j) and eO_tf/.1i are given by (2.17), (7.23), and 

(7.24), which corresponds to the root - ~t (h) ofB(O/I), 
where ~t (h) is as in (7.56). 

The diagonal basis element (7.61) is an even element of 
C(/ + 1), but all the nondiagonal elements of the sets (i) 
and (ii) are odd members ofC(/+ 1). 

They form the carrier space of an irreducible representa
tion of B(O/I) of dimension 21 + 1 whose highest weight is 

I 
A = Af(OII) = L af(OI') (7,64) 

k=1 

[See Tsohantjis and Cornwell l8 for a discussion of the super
characters and superdimensions of B(O/I).] 

C. The roots of C(2)(/+1) 

Defining 8(h) as in (3.6) to (3.8), it follows that the 
roots a(h) and the corresponding basis elements ea of 
C (2) (/ + 1) are as follows. 

(i) a = 2J8(h) (forJ = 0, ± 1, ± 2, ... ). There are I lin
early independent basis elements e~k) corresponding to this 
root which may be labeled by an additional superscript, so 
that 

e(k) = {21/(2/+ 1)}t2J®hOo (fork= 1,2, ... ,1) 
a ak+ I 

[which reduces to (7.50) in the special case J = 0]. 
(ii) a(h) = 2J8(h) ±{3~;:k) (h) (for j,k = 1,2, ... ,1, 

with j < k, and for J = 0, ± 1, ± 2, ... ), where {3~;:k) (h) is 
the extension ofthe weight of B(O/I) that is given by (7.51) 
and 

2J ° ea = t ®e±P?;:k> 

(iii) a(h) = 2J8(h) ± {3~tk) (h) (for j,k = 1,2, ... ,1, 
with j<.k, and for J = 0, ± 1, ± 2, ... ), where {3~tk) (h) is 
the extension ofthe weight of B(O/I) that is given by (7.53) 
and 
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2J ° ea = t ®e±po+. 
(},k) 

(iv) a(h) = 2J8(h) ± ~t (h) (for j = 1,2, ... ,1, and 
for J = 0, ± 1, ± 2, ... ), where ~ t (h) is the extension of the 
weight of B(O/I) that is given by (7.56) and 

ea =t2J®{e~lf!_ +eo±lf!+}' 
,. (j) (1) 

(v) a(h) = (2J + 1)8(h) (for J = 0, ± 1, ± 2, ... ), 
with 

e = t 2J + I ® {~ hO 0 + ± hO o} . 
a 2 G'+I r=l a,. 

(vi) a(h) = (2J + 1 )8(h) ± ~t (h) (for j = 1,2, ... ,1, 
and for J = 0, ± 1, ± 2, ... ), where ~t (h) is the extension 
of the weight of B(O/I) that is given by (7.56) and 

2J{0 +0 } ea=t ®e=t=tf/.j)_e±tf/.1i' 

(vii) a(h) = 0, with c and d as basis elements. 
With/l chosen as in (7.35) [so that (2.37) is valid], it 

follows that 

(ao,{30) = (aO,{30)B(O//), (7.65) 

where on the right-hand side of (7.65) aO and {3 ° are any 
pair of linear functionals defined on ~(2) ( = jfPB(O//», the 
evaluation being performed with respect to the Killing form 
of B(O/I) , and where on the left-hand side of (7.65) aO and 
{3 ° denote the corresponding extensions to the Cartan subal
gebra of the Kac-Moody superalgebra C (2) (/ + 1), the e
valuation being performed with respect to its supersymme
tric bilinear invariant form B(,). As (aO,aO)B(OII) > 0 for 
every nonzero linear functional aO defined on jfPB(OII), then 
(aO,aO) > 0 for the corresponding extension. Moreover 
(2.13), (2.28), (2.30), (2.31), (2.36), and (7.35) imply 
that 

h/j = {21 /(21 + 1)k (7.66) 

Thus if a~ is the extension of any simple root of 2"?, then 

(8,a~) = 0 (7.67) 

and 

(j8,j8) = o. (7.68) 

Thus (j8,j8) = 0 for integer j, so every nonzero root of 
C (2) (/ + 1) belonging to the sets (i) and (v) is imaginary. 
Moreover, because (j8 + aO,j8 + aO) = (aO,aO)B(OII) and 
because (aO,aO) B(OII) > 0 for linear functional aO and its cor
responding extension (as has just been noted), it follows that 
every nonzero root of C (2) (/ + 1) belonging to all the above 
sets except (i) and (v) is real. All the elements mentioned in 
the above sets are even, except for those in the sets (iv) and 
(vi), which are odd. 

For C (2) (/ + 1) the simple roots may be taken to be 

ao = 8 - a~, (7.69) 

and 

a k = af(O//) (for k = 1, ... ,/), 

where 
I 

ao - AB(OII) - ~ aB(O//) 
H- I -£.. k 

k=1 

I. Tsohantjis and J. F. Cornwell 
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is the highest weight of the representation of 2'~ for which 
2'~?) is the carrier space [cf. (7.64)] and the af(o//) are the 
extensions ofthe simple roots of B(OI/). As eao and ea , ap
pear in the sets (vi) and (iv), respectively, it follows that eao 

and ea , are odd, so ao and al are odd roots of the Kac
Moody superalgebra C (2) (l + 1). All the other simple roots 
of C (2) (l + 1) are even. 

It is then easily checked that the Cartan matrices of 
C(2)(2) and C(2)(l + 1) (for />2), evaluated using (2.15), 
correspond to the generalized Dynkin diagrams given in 
Figs. 7 and 8. 
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The properties of quantum fields generating local nets of von Neumann algebras are discussed. 
For fields that satisfy certain energy bounds, necessary and sufficient conditions for the 
existence of such a net and for the existence of product states are given in terms of the vacuum 
expectation values. 

I. INTRODUCTION 

The relationship between the two familiar settings of 
local quantum field theory based on unbounded field opera
tors,' respectively, algebras of bounded operators, 2 has long 
been an interesting problem. (For a recent review and list of 
references cf. Ref. 3.) Here we are concerned with the char
acterization of quantum fields which generate local nets of 
von Neumann algebras. This problem was thoroughly dis
cussed in Ref. 4, where several algebraic conditions involv
ing the field operators have been given that all imply that 
such a net exists. It is the aim of the present investigation to 
amend these results by conditions that can be stated directly 
in terms ofthe vacuum expectation values (Wightman func
tions) of the fields. 

In the interest of simplicity we treat here only the case of 
a single Hermitian local scalar field rjJ, as described in Chap. 
III of the monograph of Streater and Wightman. • We adhere 
to the usual assumptions concerning the locality, the Poin
care covariance, the spectrum condition, and the existence of 
a unique vacuum vector n. By and large our notation is 
standard, but a few points have to be mentioned here. 

For any open subset fYl of Minkowski space.AI we de
fine ~ (fYl) as the smallest unital * algebra that contains the 
averaged field operators rjJ(f} for every test function f with 
compact support in fYl. (For clarity we consider only open 
subsets fYl of .AI. Accordingly, the spacelike complement fYl' 

of fYl is defined as the set of all points in.AI which are space
like separated from the closure of fYl. We also use the nota
tion fYl. e e fYl2 if the closure of fYl. is contained in the interi
or of fYl 2.) The elements X E~ ( fYl) are regarded as defined on 
the usual domain ~ including the vacuum vector nand 
their closures X ** and adjointsX * are always with respect to 
this domain. The Hermitian conjugate of X is defined as X t 

= X * ~ ~ and for the field one has, in particular, rjJ ( j) t 
= rjJ ( f*) . We recall the well-known factS that ~ (fYl ) n is a 
core for the operators X**, i.e., (X ~ ~(fYl)O)- = X **. 

In this paper we employ the notation ~w for the weak 
commutant of any * algebra ~ of operators defined on a 
common dense domain ~ : It is the set of all bounded opera
tors B such that 

( l.la) 

for all XE~ and <1>, \{IE~. An equivalent statement of condi
tion (1.1 a) is that 

(1.1b) 

for all XE~. We recall that the weak commutant of a * alge
bra of unbounded operators is a weakly closed linear mani
fold of operators that is stable under taking adjoints. In gen
eral, however, it need not be stable under taking products, 
i.e., it need not be an algebra. 

It is apparent that the structure of the weak commutants 
of the algebras ~ (fYl) in quantum field theory is of impor
tance for the question of whether the quantum field rjJ is affi
liated with a system of local von Neumann algebras. This 
question has an affirmative answer if these commutants sat
isfy the following two clear-cut conditions. 

(a) The weak commutants ~(%)W are algebras for 

each double cone %. 
(b) The vacuum vector n is cyclic for ~ (%') W for each 

double cone %. 
It can be shown that condition (a) implies that the map 

K -+ 21(%): = ~(%')W defines a local net of von Neumann 
algebras on JY. Yet these algebras might well be trivial. That 
they are sufficiently big in order to accommodate bounded 
functions of the field operators follows from condition (b). 
In fact, slightly less information is required in order to arrive 
at the desired conclusion. The following proposition is based 
on such an apparently weaker version of the above condi
tions. 

Proposition 1.1: Let rjJ be a quantum field such that 
~ (%) W is an algebra for each open double cone % and n is 

cyclicfor U ~ (%') w. Then thefollowing holds. 
.Y 

(i) The mapping (as usual, the commutant of any set ~ 
of bounded operators on JY is denoted by ~') 

% -+21(%): = ~(%)W' 
defines a local, irreducible, Poincare-covariant net of von 
Neumann algebras. Moreover, n is cyclic for each 21(%). 

(ii) Each operator XE~(5Y) has some closed extension 
Xe ext. which is affiliated with 21(%). 

Proof: Proposition 1.1 is a variant of known results; it is, 
for example, a simple corollary of Theorem 2.7 in Ref. 4. For 
the convenience of the reader we indicate here the relevant 
steps in the argument. To begin we note that for any wedge 
region 'lr (i.e., any region of Minkowski space that is Poin
care equivalent to rr. = {xEJ/:x. > IXol}) one has 

( 1.2) 

as a consequence ofthe definition ofthe algebras ~ (fYl ). It 
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thus follows from our assumptions and the Reeh-Schlieder 
theorem that ~(?'r)W is a von Neumann algebra for which 
the vacuum vector n is cyclic and separating. The results in 
Ref. 6, Lemma lIon the relation between the modular con
jugation corresponding to the pair ~ ( ?'r) w, n and the PCT 
operator can therefore be applied, leading to the crucial 
equation 

(1.3 ) 

Proceeding from relation (1.2) to the commutants we 

obtain ~(?'r)WI = V ~(Y) and in view ofEq. (1.3) it 
xc'}'r 

is then obvious after some geometrical considerations that 
the net Y -+ ~ (Y) is local. The Poincare covariance of the 
net is a consequence of the covariance properties of the un
derlying quantum field ¢. 

SettingXe = (Xt*~l)-' whereXE~(Y) and ~l is 
the linear span of ~ (Y) W ~, the assertion about the exten
sions in Proposition (1.1) (ii) follows from the assumption 
that ~ (Y) W is an algebra. Hence n is cyclic for ~ (Y) 
[since it is cyclic for ~ ( Y) by the Reeh-Schlieder 
theorem] and, consequently, the net is irreducible. 0 

If the conditions described in Proposition ( 1.1) are sat
isfied, then the theory has many desirable properties.4 

Among the interesting features we mention here only that 
~(yI)Wd~(Y), which means that condition (b) holds. 
Cf. Ref. 4 for further consequences. We also adopt from Ref. 
4 the following definition. 

Definition: A quantum field theory is said to comply 
with scenario G if statements (i) and (ii) in Proposition 1.1 
are satisfied. 

Conditions (a) and (b) guarantee that there is a local 
net of von Neumann algebras that is associated with the 
quantum field ¢. Yet not much is known about the necessity 
of these conditions. Whereas condition (b) must be satisfied 
if ¢ is to be affiliated with a local net in the sense of Proposi
tion (1.1) (ii), it is conceivable that condition (a) does not 
need to hold in this case. An apparently weaker (necessary 
and sufficient) condition is the requirement that the weak 
commutants ~ (Y) W contain sufficiently large subalgebras 
for which n is cyclic. Thus the somewhat awkward possibil
ity that the weak commutants ~ (Y) w themselves might not 
be algebras under these circumstances is left open. 

However, as far as condition (a) is concerned, the situa
tion is quite simple for the class of fields satisfying so-called 
energy bounds. We recall that a field ¢ is said to satisfy an H 
bound, where H is the Hamiltonian, if for each test function 
f there exists some number n such that ¢ ( f) . ( 1 + H) - n is 
a bounded operator, 

11¢(f)·(1 +H) -nil < 00. (1.4) 

(For the notion of generalized H bounds cf. Ref. 4.) The 
specific implication that is of interest here is the following 
result, based on Lemma 5.4 in Ref. 4. 

Proposition 1.2: Let ¢ be a quantum field satisfying a 
(generalized) Hbound. Then the weak commutants ~ (:?II) W 
are algebras for all open regions:?ll eJi. 

Proof' The regularized field operators ¢(j)E~(:?II) 
have the property that they also belong to ~ (:?II) for small 
time translations. (Recall that suppfis compact and :?II is 

1840 J. Math. Phys., Vol. 31, No.8, August 1990 

open.) We can therefore make use of the assumption that ¢ 
satisfies a (generalized) Hbound and apply the above-men
tioned result of Ref. 4, saying that each B~ (:?II) W commutes 
strongly with ¢(f), i.e., ¢( f)**B~B¢( f)**. It is appar
ent from this relation, also, that the product of any two ele
ments of~(:?II)W commutes strongly with ¢(j). However, 
the elements of ~ (:?II) are finite sums and products of field 
operators ¢ (f) with supp fe:?ll, so that Proposition 1.2 fol
lows by repeated application of these facts in the defining 
relation for ~ (:?II ) w. 0 

The H-bound condition (1.4) can be stated directly in 
terms of the system of Wightman functions of the field ¢ and 
therefore fits naturally into a field-theoretic setting: More
over, it has a simple intuitive meaning which says that the 
field strength is bounded in all states of limited energy and 
does not grow too rapidly with the energy of these states. 
Energy bounds have been established in various models (cf., 
for example, Refs. 7 and 8). There also exist counter exam
ples, such· as the free massless scalar field in three space-time 
dimensions, for which states of unlimited field strength and 
arbitrarily small energy exist because of infrared problems.9 

However, apart from theories with such peculiar properties, 
the H-bound condition seems to be a reasonable requirement 
in quantum field theory. 

The taming influence of H bounds on the domain prob
lems that plague quantum field theory is well known and has 
been used in previous work. For example, it has been shown 
by Driessler and Frohlich8 that fields satisfying a linear H 
bound [where one can put n = 1 in relation (1.4)] are affi
liated with a local net in the sense of Proposition 1.1. Unfor
tunately, the requirement of a linear Hbound seems to be too 
restrictive for certain composite fields (currents, etc.) ap
pearing in theories of physical interest. Consequently, one 
must allow for exponents n> 1 in the general condition 
(1.4). However, in the latter case it is not known whether 
such fields ¢ are necessarily affiliated with a local net. 

Whereas the H-bound condition provides a useful tool 
that suffices in many cases for verifying that a given field 
satisfies condition (a), no such simple test is known in the 
case of condition (b). (Cf., however, the recent interesting 
publication in Ref. 10.) As a step toward such a more mana
gable criterion we demonstrate in the present investigation 
that condition (b) is related to positivity requirements on 
the Wightman functions, which in principle can be checked 
directly. 

Our results are based on the observation that the size of 
the weak commutant of a * algebra ~ of unbounded opera
tors can be determined with the help of a suitable seminorm 
on~. The same device can also be used to establish the exis
tence of weak intertwiners between different representations 
of~. We discuss this more general issue in Sec. II. 

In Sec. III we apply our results to the question of when a 
quantum field admits "well-localized states,,,11.12 respec
tively, "product states.,,\3 The existence of such states in 
sufficient abundance is on one hand closely related to condi
tion (b): On the other hand, it manifests itself in certain 
specific positivity properties of the above-mentioned semin
orms, which can be expressed in terms of the Wightman 
functions. This fact will lead us to several new criteria which 
imply the desirable Scenario G. 
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II. WEAK INTERTWINERS AND SEMI NORMS 

Before we enter into the discussion of quantum fields we 
collect here some general facts about representations of alge
bras of unbounded operators. 

Definition: Let $ be a unital * algebra. A representation 
1T of $ on a separable Hilbert space K is said to be standard 
if 

(i) there exists a common dense domain Pfl CKforthe 
elements of 1T( $ ); 

(ii) 1T(Xt) C1T(X)* for all Xe$; 
(iii) there is a vector OePfl that is cyclic for 1T($) and 

the dense set of vectors 1T($) 0 is a core for each 1T(X) , Xe$. 
Such vectors will be called standard vectors. 

Standard representations are obtained from any state w 

on $ by the GNS construction. Then 

w(X) = (O,1T(X)n), Xe$, (2.1) 

where n is the GNS vector representing w. We will only deal 
with such representations. In order to be able to explore the 
relation between different representations of$ we introduce 
the notion ofthe "weak intertwiner." 

Definition: Let (1T I,KI ) and (1T2,K2) be standard rep
resentations of a unital * algebra $. A linear operator T: 
KI--+K2 is called a weak intertwiner between these repre
sentations if 

(2.2) 

for all Xe$. (If one interchanges the order of the two repre
sentations an analogous relation involving T * holds.) 

We note that the set of weak intertwiners between two 
standard representations is a weakly closed linear manifold 
of bounded operators. We are interested in conditions on the 
underlying standard vectors that imply that such in
tertwiners exist in sufficient abundance. 

From the definition of weak intertwiners and the fact 
that $ is an algebra we see that for any decomposition of a 
given Ze$ of the form 

Z= LXTY; with X;.Y;e$, (2.3) 
; 

the equality for any pair of standard vectors n;EK;. i = 1,2 
holds: 

(ffi l,1T2(Z)n2) = L (T1T1 (X; )nl,1T2( Y;)n2). (2.4) 
; 

Hence we obtain the bound 

l(ffi l,1T2(Z)02)1<IITIi' L 111TI (X;)n l llll 1T2(Y;)n& (2.5) 
; 

Since the lhs of (2.5) does not depend on the particular de
composition of Z, we may replace the sum on the rhs by 

r(Z) 

=inf{~ 111TI(X;)nlllll1T2(y;)n211:z= ~XTY;}, 
(2.6) 

where the infimum refers to all decompositions of Z in $. 
Some elementary properties of this quantity ~re given in the 
following lemma. 

Lemma 2.1: We have that 
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(i) r(.) is a seminorm on $. (After completion ofthis 
work we became aware of the fact that such seminorms were 
also introduced in Ref. 14 in a similar context), 

(ii) r(xty) < 111T1 (X)ndl'II1T2( Y)n211 for X, Ye$. 
We omit the simple proof of Lemma 2.1. It is of interest here 
that on one hand, the seminorm r can be expressed directly 
in terms of the standard vectors 0 1 and 02' We note in this 
context an alternative expression for r: 

r(Z) 

=inf{~ L. (wl(XTX;) +w2(YTY;»:z= LXTY;}. 
2 I ; 

(2.7) 

Here, again, the infimum refers to all decompositions of Z in 
$ and WI' W 2 are the states induced by 0 I and O2, respective
ly. (We omit the straightforward proof of this assertion.) On 
the other hand, r contains some information about the size of 
the set ~ of weak intertwiners. This is made apparent in the 
following lemma. 

Lemma 2.2: Let r be the seminorm defined in (2.6), 
respectively, (2.7). Then one has, for any Ze$, 

r(Z) = sup{l(ffil,1T2(Z)n2)I:Te~,IITII<l}, 

where ~ is the set of weak intertwiners between 1T1 and 1T2. 
Proof We have seen before that the expression on the 

rhs of the inequality in Lemma 2.2 is not larger than r(Z). 
To see that equality is obtained, let Zoe$ be fixed and let ({J be 
any linear functional on $ such that ((J(Zo) = r(Zo) and 
1({J(Z)I<r(Z), Ze$. That such a functional exists follows 
from the Hahn-Banach theorem. From Lemma 2.2 we ob
tain 

1({J(xtY) I <r(Xty) <1I1T1 (X)n lll'II1T2( Y)n211 (2.8) 

for all X, Ye$. Bearing in mind that 0 I and O2 are cyclic for 
1T1 ($) and 1T2($), respectively, we see that there exists some 
operator To:KI--+K2 of norm IITolI<1 such that 

(To1T1 (X)n l,1T2( Y)n2) 

(2.9) 

Since the domains 1T I ($ ) 0 I and 1T 2 ($ ) O2 are cores for the 
respective representations of$ we infer from Eq. (2.9) that 
To is a weak intertwiner. On the other hand, we have, by 
construction, r(Zo) = ({J(Zo) = (TOn l ,1T2(Zo)n2) and 
since Zo was arbitrary, Lemma 2.2 follows. 0 

We conclude from the above result that nontrivial weak 
intertwiners between two given standard representations ex
ist iff r¥O. This raises the question of whether one can also 
characterize the size of ~ in terms of the seminorm r. In 

particular, we are interested in the cases where ~O I = K2 
(resp., ~*02 = K I). If this is to be the case, then r must 
induce a norm on 1T2($)02 [resp., 1T1 ($)0.], yet this con
dition need not be sufficient. Some more stringent require
ments are discussed in the following lemma. 

Lemma 2.3: Let (1T,K) be a standard representation of 
\13 and let ube a seminorm on \13 such that u(X) <1I1T(X)nll, 
Xe\13, where 0 is a standard vector. Then the following state
ments are equivalent. 

(i) The map 

X--+1T(X)n, Xe\13 
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is uclosable. This means that if u(Xn) -+0 and 1T(Xn )0.-+<1> 
for some sequence XnE~, then <I> = O. 

(ii) There exists an absolutely convex and total set Y of 
vectors in the unit ball of JY' such that 

u(X) = sup{I('I',1T(X)D.}I:'I'EY} 

forallXE~. 
(iii) There exists a bounded invertable operator P on JY' 

such that u(X»IIP1T(X)o.ll for all XE~.15 
Proof Making use of the assumption that 

u(X) <111T(X)o.ll we conclude by a similar argument as in 
Lemma 2.2 that there exists an absolutely convex set Y of 
vectors in the unit ball of JY' such that for all XE~, 

u(X) = sup{I('I',1T(X)D.}I:'I'EY}. 

Now let <l>EJY' and let XnE~ be any sequence such that 
1T(X n ) 0. -+ <1>. [Recall that 0. is cyclic for 1T( ~).] Condition 
(i) of Lemma 2.3 then says that <l>EY1 is only possible if 
<I> = O. Hence Y is total, i.e., condition (ii) holds. Under 
these circumstances we can select from Y (since JY' is sep
arable) a sequence of vectors 'I' n' nEN which is still total in 
JY'. The operator P given by 

N>: = L 2 -n'('I'n,<I»''I'n 
n 

then satisfies condition (iii) in Lemma 2.3. Finally, given 
any operator P that satisfies condition (iii), it follows from 

1T(Xn )0.-+<1>=1-0 that lim inf u(Xn) > liN> II > 0; hence con-
n 

dition (i) holds. 0 
Definition: A seminorm u on ~ that satisfies the condi

tions in Lemma 2.3 relative to some standard representation 
(1T,JY') is said to be 1T compatible. With the help of Lemmas 
2.2 and 2.3 we can now establish the following proposition. 

Proposition 2.4: Let (1T1,JY'1) and (1T2,JY'2) be two stan
dard representations of~, let % be the corresponding set of 
weak intertwiners defined in (2.2), and let 7 be the semin
orm defined in (2.6), respectively, (2.7). Then 

(i) %=I-{O} iff7~O, 

(ii) %0. 1 = JY'2 iff 7 is 1T2 compatible. 

(An analogous statement holds for the adjoint intertwiners 
in %*.) 

Proof Statement (i) of Proposition 2.4 is a direct conse

quence of Lemma 2.2. If %0. 1 = JY'2' then Lemmas 2.1 and 
2.2 show that 7 satisfies the assumptions in part (ii) of 
Lemma 2.3, i.e., 7is 1T2 compatible. Conversely, if<l>E(%o. 1)1 

we pick a sequenceXnE~ such that 1T2 (Xn )0.2 -+<1>. Accord
ing to Lemma 2.2 this implies that 7(Xn ) -+0. Thus if Tis 1T2 
compatible it follows from part (i) of Lemma 2.3 that 
<I> = 0, i.e., %0. 1 is total in JY'2' 0 

It is a nice feature of the 7 norm that it allows us to 
characterize the relation between the representations of~ by 
properties of the corresponding states. In order to obtain 
some further insight into the meaning of 7 let us briefly dis
cuss the simple case that ~ = f!lJ (JY') and that WI' W2 in 
relation (2.7) are two normal states on f!lJ (JY'). In the uni
versal representation of f!lJ (JY') the states WI' W 2 are repre
sented by density matricesPI,P2 and the set % ofintertwiners 
is represented by the elements of f!lJ (JY') which act on vec-
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tors by right multiplication. Applying Lemma 2.2 we there
fore have, for XEf!lJ (JY'), 

7(X) = sup{ITr«p:12 n*XpY2)I:TEf!lJ (JY'),IITII<!} 

= Trlp:12Xp~12I. (2.10) 

Expression (2.10) is precisely the transition probability 
between the (unnormalized) states X *wIX and W 2 invented 
by Uhlmann. 16 Making use of results of Haagerupl7 one ar
rives at the same conclusion if ~ is an arbitrary von Neu
mann algebra. 18 It would be of some interest to also establish 
this simple interpretation of 7 for algebras ~ of unbounded 
operators. 

III. QUANTUM FIELDS AND LOCAL ALGEBRAS 

Let us now return to the problem of characterizing 
quantum fields that generate local algebras. Since the as
sumption of an energy bound for the fields provides a quite 
satisfactory substitute for condition (a) we will concentrate 
on condition (b). We will reformulate condition (b) on one 
hand in terms of semi norms of the type considered in Sec. II. 
Condition (b) will then appear as a stringent positivity re
quirement on the underlying Wightman functions, which 
fits naturally into the Wightman framework. On the other 
hand, we will relate condition (b) to properties of the state 
space: Then it has a more transparent physical interpreta
tion. We begin by considering well-localized states for quan
tum fields. 

A. Well-localized states for quantum fields 

If scenario G holds in quantum field theory, then there 
exists an abundance of states that may be regarded as well
localized excitations of the vacuum: Given any open double 
cone Y we obtain, for eachAEm:(Y), a positive functional 
W A on ~ (Y') by setting 

W A (X) = (Ao.,Xt*Ao.), XE~(Y'). (3.1) 

[That WA is well defined and positive follows from the facts 
that 2I(Y) C~(y')W and m:(Y) is an algebra.] Since 

W A (xtX) = (Ao.,(XtX)*Ao.) 

= (A *Ao.,XtXo.) 

= (Xo.,A *AXo.) <IIA 11 2. (o.,xtXo.) (3.2) 

we see that W A is dominated by the vacuum state; if A is an 
isometry the two states even coincide. Hence the functionals 
W A correspond to subensembles of the vacuum state on 
~(Y') and in thi~ sense the operation A produces a well
localized excitation of the vacuum in the region Y. 

The fact that there exist many such well-localized states 
can be expressed in terms of a seminorm on ~ (Y') given by 

7 1(X) = sup{lw(X) I:w<wo ~ ~(Y')}, (3.3) 

where Wo is the vacuum state. It follows from the Cauchy
Schwarz inequality that 71(X)<IIXo.ll. On the other hand, 
we see from (3.2) that 

71 (X»sup{1 (A *Ao.,Xo.)I:AEm:(Y),IIA II<!}. (3.4) 

If scenario G holds, then the set of vectors m: (Y) 0. is dense 
in JY' and, consequently, the set A *Ao., AEm:(Y) is total. 
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According to Lemma 2.3 this implies that r 1 is t compatible, 
where t denotes the defining ("identical") representation of 
~(%') on K, i.e., t(X) = X. These facts motivate the fol
lowing definition. 

Definition: A quantum field theory is said to have afull 
set of well-localized states for some double cone % if the 
seminorm T. defined in (3.3) is t compatible. 

It is of interest that the existence of a full set of well
localized states for some double cone % in tum implies sce
nario G if condition (a) holds. For the proof of this assertion 
we pick any w.<;wo ~ ~(%') and consider the correspond
ing GNS representation (1T.,K.,n.). Since for XE~(%'), 

111T. (X)n.1I 2 = w. (xtX) <;wo(xtX) = IIxnll2, (3.5) 

we can define an operator S: K --K. by 

sxn = 1T.(X)n., XE~(%'). (3.6) 

Clearly, liS II <; 1. From 

(ZYn,s*SXn) = (1T. (Zy)n.,1T. (X)n.) 

= (1T. (y)n.,1T. (ztX)n.) 

= (yn,s*sztxn) (3.7) 

we see that S *SE~(%')w. Since w. was arbitrary we con
clude that for any XE~(%') the bound 

T.(X)<;To(X) 

: = sup{l(m,Xn)I:TE~(%')W,IITII<;l} (3.8) 

holds. Hence if T. is t compatible it follows from part (iii) of 
Lemma 2.3 that To is also L compatible. 

Now the elements of ~(%')W are just the weak in
tertwiners between t and t [cf. relations (1.1 b) and (2.1) 1 ; 
hence we may apply the general results of Sec. II. Making 
use of Lemma 2.2 we can represent To in the form 

TO(Z) =inf{~ LWo(X;X; + YjY;):Z= LX;Y;}, 
2 ; I 

(3.9) 

where the infimum refers to all possible decompositons of Z 
in ~(%'). The dependence of To on the underlying system 
of Wightman functions is made explicit here. The require
ment that To is L compatible may thus be regarded as a strin
gent positivity condition on these functions. On the other 

hand, we see from Proposition 2.4 that ~ (%') wn = K iff 
To is t compatible. 

However, if condition (a) is given and if ~(%')Wn 
= K for some double cone %, then scenario G holds ac

cording to Proposition 1.1, as claimed. We summarize these 
findings in the following proposition. 

Proposition 3.1: Consider the following statements 
about a quantum field theory: 

(i) scenario G holds, 
(ii) There exists a full set of well-localized states for 

some double cone %, 
(iii) The seminorm To is t compatible for some double 

cone%, 
----

(iv) ~ (%') wn = K for some double cone %. 
The implications (i) => (ii) => (iii){::}(iv) hold. The same is 
true if the term "some" in the above statements is replaced 
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by "every." If condition (a) holds, then all the above state
ments are equivalent. 

B. Product states for quantum fields 

The condition that operators that represent physical ob
servables in spacelike separated regions must commute is 
clearly an indispensible requirement in relativistic quantum 
field theory. A somewhat stronger formulation of the princi
ple of relativistic causality is the assumption that there exist 
physical states w without any correlations between the ob
servablesA, B localized in fixed spacelike separated regions. 
In formula form, 

w(A' B) = w(A) ·w(B). (3.10) 

We refer to Refs. 19-21 for physical motivations of this pos
tulate. It is our aim to demonstrate that the existence of such 
product states manifests itself in the structure of the underly
ing quantum fields. 

We begin by recalling some relevant facts. Let us assume 
first that scenario G holds. Then the map 

(3.11 ) 

defines a local net of von Neumann algebras on K. We de
fine the algebra ~((%') as the smallest von Neumann alge
bra containing all local algebras m(%o) with %oC%'. By 
a standard partition-of-unity argument it follows that 
m(%') = ~(%')W'. 

It has been shown by Roos22 that for any pair of double 
cones %. C C%2 the algebras m(%l) and m(%;) are 
algebraically independent. This means that the * algebra 
generated by m (% 1) and m (%; ) is isomorphic to the alge
braic tensor product m (% 1) 8m (%; ). It will be advanta
geous to work with this tensor product. 

Systems without any correlations between the spacelike 
separated regions % • and %; are described by vector states 
in the representation (1Tp,Kp) ofm(%. )8m(%;), where 
K p = K ® K and 1T p is given by 

(3.12 ) 

for AEm(%I)' BEm(%;). Each normalized vector 
<I> ® 'l'EK p induces a product state on m (% • )8m (%; ). 

The original (defining) representation is recovered by 
setting 

1T(A8B) = A . B (3.13 ) 

onK, where the product on therhs refers to g(J (K). [Note 
that 1T is a * representation since m(%.) C m(%; )'.] We 
call (1T,K) the vacuum representation. 

The assumption that product states exist in the vacuum 
representation can be expressed in several ways.·3 Here we 
employ the condition that the representations 1T p and 1T are 
not disjoint. (This means that there exists some nontrivial 
intertwiner between 1T p and 1T.) This rather weak require
ment implies that there exist product states in the vacuum 
representation of the algebra m (% a )8m (%;' ) for any pair 
of double cones %a, %b with %a C C%., 
% b :J :J % 2' .3 We note for later reference the following de
finition. 

Definition: A quantum field theory is said to comply 
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with scenario P for a given pair of double cones % • e e % 2 

if 
(i) scenario G holds, 
(ii) the representations 1r p and 1r of ~ ( % 1 ) 0~ ( % i ) 

are not disjoint. 
Scenario P has interesting consequences for the struc

ture of the underlying quantum fields that we wish to discuss 
now. In analogy to the preceding procedure we introduce the 
algebraic tensor product \t3 = \15(%.)0\15(%i). The ele
ments of\t3 will be denoted by the boldfaced letters X, Y, etc. 
We recall that the * operation on \t3 is defined by (X0Y)t 
=Xt0 yt. 

The product state representation (11' p,K) of the algebra 
\t3 is defined on the domain § p = span{ <I> ® '1':<1>, 'l'E.~} by 

11'p(X0Y) = X® Y (3.14) 

for X e\15 ( % • ), Ye\15 ( % i ). We note that 11' p is a standard 
representation since 11 p = 11 ® 11e§ p has all properties of a 
standard vector; cf. Sec. II. The vacuum representation 
( 11' ,K) of \t3 acts on SD by 

11'(X0Y) =X·Y. (3.15) 

Note that the range of 11' coincides with the algebra 
\15(%. U%;). 

Now let T: K p -+K be any intertwiner between the 
representations 1r p and 1r. This means that for any 
Ae&(%.) and Be~(%;) the equality 

AB'T=T'(A®B) (3.16) 

holds. We make use of the fact that in the case of scenario G 
every operator X E\15 ( % .) has some closed extension Xe 
ext* which is affiliated with &(%.). Hence each member 
of the sequence of bounded operators An = Xe '(1 + (1/ 
n)X:Xe)-·, nEN is an element on{(%.). Moreover, An 
-+ X and A ~ -+ X t in the sense of strong convergence on § . 
Similarly, we can find for any Ye\15(%;) some sequence Bn 
e&(%;) such that Bn-+Yand B~-+yt on §. We can 
therefore proceed from relation (3.16) to the equality 

(Xy)t*'T= T'(X® Y), (3.17) 

which holds on the domain § p. Hence we conclude that Tis 
a weak intertwiner between the representations 11'p and 11'. 
From relation (3.16) it also follows that 
T*TE(~(%.) ® ~(%;»' = (\15(%.)W ® \15(%; )W) and, 
consequently, T*TE11'p(\t3)w. 

These facts allow us to define a positive functional (J) on 
\t3, setting 

(J)(X) = (mp,11'(xt)*mp). (3.18) 

Making use of the properties of T we have 

1111'(xt)*mp Il 2 

= IIT11'p(X)11pI1 2 = (T*mp,11'p(xtX)11p) 

= (mp,11'(xtX)*mp) = (J)(xtX). (3.19) 

From Eqs. (3.18) and (3.19) it follows on one hand that (J) is 
positive, as claimed. On the other hand, we see from the 
second member of (3.19) that (J)(xtX) <II TII 2 '(J)p(xtX), 
where (J)p is the product state induced by the vector 11p 
= 11 ® 11 in the representation 1r p. Hence (J) corresponds to a 

subensemble of the uncorrelated state (J) p. If the intertwiner 
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T happens to be an isometry, then the two states even coin
cide. We specify the relevant properties of (J) in the following 
definition. 

Definition: 
(i) A state (J) on \t3 is said to be a vector state in the 

representation (11', K) if there exists a vector <l>EKthat lies 
in the domain of all operators 11' (xt) *, XEjJ3 and for which 
(J)(xtX) = 1111'(xt)*<I>1I2

• 

(ii) A state(J) on \t3 is said to be weakly correlated if there 
exists some number c> 0 such that (J)<c·(J)p. 

The existence of weakly correlated vector states in the 
vacuum representation (11',K) is thus a necessary condition 
if scenario P is to be valid. We will now demonstrate that the 
existence of such a state (J) in quantum field theory in turn 
implies scenario P, provided that the theory satisfies condi
tion (a). 

Given (J) we can construct a nontrivial weak intertwiner 
Tbetween the representations 11'p and 11', setting 

T11'p(X)11p = 11'(xt) *<1>, XE\t3, (3.20) 

where <l>EK is the vector that represents (J). Since (J)<c'(J)p 
for some C > 0 we have II T II <c· /2. Making use of the fact that 
!lp is a standard vector in the representation 11'p and 
11'«Xy)t)*<I> = 11'(xt) *11'(yt) *<1> itis apparent from (3.20) 
that T is a nontrivial weak intertwiner between 11' p and 11'. 

In order to proceed we have to analyze the properties of 
the von Neumann algebras ~ (% .) = \15 (% • ) WI and 
&(%;) = \15(%; )W'. Denoting the set of weak intertwiners 
T between the representations 11' p and 11' by ~ we have the 
following lemma. 

Lemma 3.2: 
(i) Let TE~. Then 

AB'T= T'(A®B) 

for allAE&(%.) and BE~(%;)Y 
(ii) If there exists a family of weak intertwiners TaE~ 

whose ranges generate K, then ~ (% • ) e ~ (%; ) I and !l is 
separating for &(%;). 

Proof: 
(i) Let TE~ and <l>e§. Then we define an operator T ¢> : 

K-+Kby 

T ¢> • 'I' = T' ('I' ® <1» for 'l'EK. 

We easily see that II T¢> 11<11 TII·II<I>II· If'l'E§ and XE\15 (% .) 
we have 

T¢>X'I' = T'(X'I'®<I» = T'11'p(X01)('I' ®<1» 

= 11'(X t01)*T('I' ® <1» = Xt*T¢> '1'. 

Hence T¢>E\15(%.)W and if AE&(%.) = \15(%. )W' we ob
tain 

AT('I' ® ct» = AT¢> 'I' = T¢>A'I' = T(A ® 1)('1' ® ct». 

Since the vectors 'I' ® <I> generate K p it follows that A ·1 
= T· (A ® 1). By a similar reasoning we prove that B· T 
= T· (1 ®B) for BE~(%i). 

(ii) According to step (i) we have for Ta~ thatAB' Ta 
= Ta . (A ® 1) ( 1 ® B) = Ta . ( 1 ® B) (A ® 1) = BA· Ta 

and, consequently, AB = BA if the ranges of Ta generate K. 
If BE~(%i) and B11 = 0 we obtain, for <l>pE~ p and 
Xe\15(%I)' 
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(Ta (1 ®B *)<I>p,x!l) = (Ta (X t ® 1)**(1 ®B *)<I>p,!l) 

= (Ta (1 ®B*)(X t ® I )<I>p) 

= (Ta (X t ® 1)<I>p,B!l) = 0. 

From the above equation we conclude that Ta ( I ® B *) 
= B * Ta = ° since the sets \lS (%.) 0 and fiJ p are dense in 
~ and ~ p, respectively, and, consequently, B = 0. D 

The second technical result that we need is the following 
lemma. 

Lemma 3.3: Let 0;6 Terr, letffbeany open set of space
time translations x, and let U(x) be the corresponding uni
tary representers on ~. Then the ranges of the operators 
U(x) T, xeff generate~. 

ProoF Let <I>~beany vector such that T*U(x)<I> = ° 
for xe - ff: It then follows from the spectrum condition, 
with the help of the edge-of-the-wedge theorem, that this 
equality holds for all x. On the other hand, we will see below 
that for any '11~, 

lim inf II T*U(x)'I1I1> II T*OII'II'I111 (*) 
x 

if x approaches spacelike infinity. Since standard vectors are 
separating for weak intertwiners we have T*0;60. Hence 
<I> = 0, as claimed. For the proof of inequality (*) we fix a 
double cone % and pick any Ye\lS(%). If x is a 
sufficiently large spacelike translation we have Y(x): 
= U(x) YU(x) -·e\lS(%;) and, consequently, 

IIT*U(x) YO II = IIT*11"(10Y(x»OIl 

= l111"p(10Y(x)t)*T*OIl· 

Multiplying the above equation by l111"p(10Y(x»'I1pll, 
where '11 pefiJ p, we proceed with the help of the Cauchy
Schwarz inequality to the estimate 

II 11"p(10 Y(x»'11 pll'lI T*U(x) YO II 

> I (11"p(10( yty) (x»'11 p,T*O) I· 
Now, according to the cluster theorem we have 

w-lim11"p(10(yty)(x»'I1p = IIYOI12.'I1p 
x 

if x tends to spacelike infinity; it therefore follows from the 
above estimate that 

11'11 pll' lim inf II T*U(x) YOII> 1('11 p,T*O) I'll YOII· 
x 

Since \lS (%) 0 and fiJ p are dense in ~ and ~ p, respective
ly, and Tis bounded we conclude that inequality (*) holds.D 

After these preparations we choose any pair of double 
cones % a' % b such that % a C C %. and % b ::J ::J % 2 
and consider the subalgebra $ = \lS (% a ) 0\lS (% ~) of $. 
We also introduce the representations Tr = 11" t $ and Trp 
= 11" p t il3 and the set 'f of weak intertwiners between Tr p 

and Tr. With our choice of % a' % b there exists an open set 
ff of translations such that % a + xC %. and % ~ 
+ xC%; for xeff and, consequently, \lS(%a 
+ x)0\lS(%~ + x) C$ if xeff. Hence if Tis any nontri
vial weak intertwiner between the representations 11" p and 11" 

of $ we have U(x) Te'f for xe - ff. 

From Lemma 3.3 it follows that the ranges of the opera-
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tors U(x) T, xe - ff span ~ and applying the second part 
of Lemma 3.2 we conclude that ~ (% a ) C ~ (% ~ ) I. From 
the above we see in particular that ~ (% a ) C ~ (% a + x) I 

for large spacelikex, i.e., the operators in ~(%a) are local. 
However, we cannot exclude the possibility that the algebra 
~ (% a) is too small in the sense that the elements of 
\lS(%a) do not have any extensions affiliated with it. 

It is at this point where condition (a) enters: If \lS (%) W 

is an algebra (and hence a von Neumann algebra) for all 
double cones %, the same is true for \lS (% ~ ) W 

n \lS(%)w. Making use of part (ii) of Lemma 3.2 we 
.CVC.h~i, 

see that the vacuum vector 0 is separating for \lS (% ~ ) WI 

= ~(%~) and therefore cyclic for \lS(%~ )WII = \lS(%~ )w. 

Hence we infer from Proposition 1.1 that scenario G is ob
tained. Moreover, applying part (i) of Lemma 3.2 we see 
that the representations 1Tp and 1T of ~(%. )0~(%;) are 
not disjoint. We have thus recovered scenario P for this par
ticular pair of regions. 

It is clear from the preceding discussion that the exis
tence of a nontrivial weak intertwiner between the represen
tations 11" p and 11" of$ is a necessary and sufficient condition 
for scenario P. As discussed in Sec. II, this condition can also 
be stated in terms of the seminorm 7 p on $ given by 

7 p (Z) 

=inf{l. L({Up(XiX;) + {Uo(ViV;»:Z = LXiv;}. 
2 ; ; 

(3.21 ) 

Here the infimum refers to all decompositions of Z in $ and 
{Up, {Uo are the states induced by the vectors Op = 0 ® 0 and 
o in the representations 11"p and 11", respectively. (Note that 
the expression for 7 p involves only the underlying Wight
man functions. ) 

According to Proposition 2.4 7 p ¢0 holds itfthere exists 
a weak intertwiner between the representations 11" p and 11". In 
fact, it suffices to determine the value of 7 p ( 1). Namely, if 
scenario G holds we have, for any double cone %3C%; 
n%2' the inclusion ~(%3) C~(%.)'n~(%i)' because 
oflocality: Hence if Tis an intertwiner between the represen
tations 1T p and 1T of ~ (%. )0~ (%; ) the same holds true 
for the operators in ~ (%3) . T. In the presence of scenario G 
each intertwiner between 1T p and 1T is a weak intertwiner 
between the representations 11" p and 11" of $, as we have 
shown before. Applying Lemma 2.2 we conclude that 7p 
(1) = Oisonlypossibleif(Cmp,O) = ° for all Ce~(%3)' 
which in turn implies that T = ° since 0 is cyclic for~(% 3) 
and 0 p is separating for the set of weak intertwiners between 
11" p and 11". Summarizing these results we have established the 
following proposition. 

Proposition 3.4: Consider the following statements 
about a quantum field theory for a given pair of double cones 
%.CC%2: 

(i) scenario P holds, 
(ii) the seminorm 7 p on \lS ( % 1 ) 0\lS ( % i) satisfies 

7 p (1) ;60, 
(iii) the seminorm 7p on \lS(%.)0\lS(%;) is nontri

vial, 
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(iv) there exists a vector state tV in the vacuum represen
tation of$(% 1)0$(%~) which is weakly correlated. 
The implications (i):::::} (ii):::::} (iii)<::>(iv) hold. If condition 
(a) holds, then all the above statements are equivalent. 

On the basis of the results in Refs. 19 and 23 one may 
expect that the existence of weakly correlated vector states in 
the vacuum representation is intimately related to phase 
space properties of the theory. As in the algebraic frame
work, one can characterize theories with physically accepta
ble phase space properties with the help of a nuclearity con
dition involving the underlying quantum field <p. It would be 
desirable to establish scenario P starting from such a condi
tion. 

We conclude this discussion of product states in quan
tum field theory with the remark that if scenario P holds for 
the net % -+m:(%) it may happen that its maximal local 
extension % -+ m: (%')' (which satisfies the condition of du
ality6) does not admit any product state. Therefore, scenario 
P does not necessarily imply that the theory has the so-called 
split property.24 

IV. CONCLUSIONS 

We have shown in the present investigation that the se
minorms To and Tp provide relevant information about the 
nature of the weak commutants $ (~ ) Wand hence about the 
validity of scenarios G and P, respectively. It is a nice feature 
of these seminorms that they are directly related to the un
derlying Wightman functions and as such, fit naturally into 
the Wightman framework. 

Concerning their potential utility as a tool of investiga
tion, these seminorms might on one hand be suited for the 
possible refutation of a quantum field theory. By "refuta
tion" we mean here the demonstration that scenario G, re
spectively P, cannot be obtained. From the physical point of 
view one may, on the other hand, regard these scenarios as 
indispensible requirements. Our results then in turn provide 
specific information about the underlying Wightman func
tions which could be used as a starting point for further in
vestigations. 

Another potential field of application for the concepts 
and results in the present investigation is the reformulation 
of the general analysis of superselection sectors expounded 
in Ref. 25 in terms of quantum fields. The states of interest 
representing local excitations of the vacuum of arbitrary 
charge can be characterized with the help of seminorms of 
the form (2.7). In this context there arises the interesting 
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problem of whether there holds a composition law for the 
resulting weak intertwiners which corresponds to the com
position of superselection sectors (addition of charges) in 
quantum field theory. 
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A new kind of Fourier transformation is proposed for distributions taking values in the 
Clifford algebra of three-dimensional space, with the unit imaginary replaced by the unit 
trivector. The transformation is used to introduce special distributions that describe the free 
electromagnetic field. 

I. INTRODUCTION 

The real Clifford algebra of n-dimensional Euclidean 
space En 1-3 is 2n-dimensional associative algebra with uni
ty, containing Rand En as subspaces so that the condition 

ab + ba = 2a'b, (1) 

is satisfied for all a, bEE n, where a' b denotes the scalar prod
uct in En. 

Let {e l ,e2 ,e3 } be an orthonormal basis in E 3. The Clif
ford algebra of E3 is called the Pauli algebra.2 Denote 
eij = ejej for i#j and e123 = el e2 e3 . The sets 

{I}, {et>e2 ,e3 }, {e12 ,e23 ,e13 }, {e123}' (2) 

span the subspaces of scalars, vectors, bivectors, and trivec
tors, respectively, or, in other words, multivectors of zeroth, 
first, second, and third grade. The elements of the basis (2) 
are written symbolically as eA , where A is an ordered set of 
indices, and e", = 1. An arbitrary element X of the algebra, 
that is a combination X = }:AXAeA, XAER, of multi vectors 
of various grades, is referred to as the Clifford number. The 
magnitude IX I of X is defined by 

(3) 

which for vectors coincides with magnitUde determined by 
the scalar product. 

Pauli algebra furnishes a good language for describing 
the classical electromagnetic field. 2

,4 This is done by a func
tion Fofthe space-time variables r, Xo = ct, which assumes 
its values as sums of vectors and bivectors only. Moreover, 
the so-called regularity condition should be satisfied by 

\ 

VF+ aF =0, 
axe 

which is equivalent to the Maxwell equations in regions de
void of electric charges and currents in a given uniform, iso
tropic and stationary medium. Here, V = e; a lax; acts as 
differentiation and Clifford algebra multiplication by ej • 

This paper uses the results of Ref. 4, Chap. 4, where it 
has been shown that the expressions 

e ± l(kXo - k'r) N, 

e ± I [loco - n(k'r)IN, 

(4) 

(5) 

for any constant vector kEE 3
, k = Ikl, n = k/k, where 

1= e123 and N is a Clifford number such that Nk = - kN, 
correspond to plane electromagnetic waves that are general
izations of the circularly polarized wave. The solutions (4) 

are superpositions of two circularly polarized waves of oppo
site polarizations (left and right), traveling in opposite di
rections ± n-they are called waves with round polariza
tion. The expressions (5), called waves with spiral 
polarization, are sums of two circularly polarized waves of 
the same (left or right) polarizations, traveling in opposite 
directions ± n. 

Since the unit trivector I commutes with all Clifford 
numbers andI 2 = - 1, the expression elk

·
r can play the role 

of e'k-< for ibeing the imaginary unit of the complex numbers. 
Therefore, we propose to consider an integral transforma
tion with the exponentials ek

·
r that resembles the well

known Fourier transformation-we call it trivector Fourier 
transformation. We apply this to Pauli algebra valued distri
butions introduced in Sec. II in close analogy to the tempered 
distributions of Schwartz.5 Special kinds of such distribu
tions, considered in Sec. III, correspond to the electromag
netic fields in empty space (we call them free electromagnet
ic fields)-they can be treated as superpositions of fields 
(4 ). 

II. DISTRIBUTIONS 

The Pauli algebra can be treated as an eight-dimensional 
normed space equipped with norm (3). Each finite-dimen
sional normed space is complete, hence we ascertain that the 
Pauli algebra is a complete normed space, i.e., a Banach 
space. But the question arises whether it is a Banach algebra. 
According to Ref. 6 the condition IXI X 2 1,;;;; IXI IIX2 1 should 
be satisfied for all elements XI' X2 of the algebra. This condi
tion, however, generally is not satisfied for the Pauli algebra 
with norm (3). Yet one may introduce another norm. Each 
Clifford number Y can be treated as a linear operator acting 
according to X - YX and the following operator norm: 

II Y II = sup I YX I, (6) 
IXI=I 

can be defined. This expression has all the desired properties 
of the norm and additionally satisfies 

(7) 

(see Theorem 10.2 in Ref. 6). Thus we may claim that the 
Pauli algebra with norm (6) is a Banach algebra. 

As an easy exercise, one may verify that leaX I = IX I 
for any aElR and any Clifford number X, hence it follows 
from (6) that lIelall = 1. 

Now we consider functions rp of three variables 
r = (x I ,X2 ,x3 ) taking values in the Pauli algebra. We call rp 
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a rapidly decreasing function if it is differentiable arbitrarily 
many times and for an arbitrary multi-index q = (q. ,q2 ,q3 ) 
with natural q; satisfies the condition 

sup sup(1 + Irl2)mllrp (q)11 < 00, 
Iql<;n rEE3 

for arbitrary natural n, m, where Iql = q. + q2 + q3' 
a1q1m 

rp(q) = T, (8) 
ax. q, aX

2 
q2 aX3 q3 

and IIrp II is the norm (6) of the Clifford numberrp. The set Y 
of all rapidly decreasing functions is a linear space. The to
pology in Y is defined in close analogy to the classical one:5 

A sequence of functions rp n EY is convergent to zero if for 
arbitrary multi-indices p, q the sequence x. p, X2 P2 X3 P3 rpn (q) 
tends to zero uniformly on E3. 

A linear continuous mapping from Y into the Pauli 
algebra is called the Pauli algebra valued tempered distribu
tion, or for short the distribution. The value of F on a func
tion rp is denoted (rp,F). The following integral form for dis
tributions will be used: 

(rp,F) = J d 3r rp(r)F(r), 

in analogy to what is often done for ordinary distributions. A 
distribution F is k-vector valued if its value on each scalar 
function rp is a k-vector. 

The qth partial derivative of a distribu tion F is defined by 

(rp,F(q» = ( - 1)lql(rp (q),F), 

where rp (q) is given by (8). One may check that this is a 
distribution. The Clifford derivative of a distribution F is de
fined by 

(rp,VF) = - (rpV,F) = - (arp eoF) , 
ax; 

with the summation convention over repeated indices. The 
Clifford derivative coincides with the gradient when acting 
on a scalar-valued distribution, but is a combination of the 
divergence and curl for a vector-valued distribution. 

Now we introduce the main notion. The mapping rp ..... (p 
of rpEY, defined by 

(p(k) = (21T) - 3/2 J d 3r rp(r)e -lkor, 

is called the trivector Fourier transformation. The novelty in 
comparison with the usual Fourier transformation is the re
placement of the complex imaginary i by the unit trivector 
1= e123 • Function (p is called the trivector Fourier transform 
of rp. One may check, similarly as in Ref. 5 for ordinary 
complex functions, that 'fpEY with respect to the variable 
kEE 3. The commutativity of I with all Clifford numbers and 
thefactthat lIelkorll = 1 areessentialforthis. These facts also 
allow us to apply all theorems and results established for 
ordinary complex-valued distributions. 

An inverse of the trivector Fourier transformation ex
ists and is given by ¢ ..... "ijJ, where 
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As one can easily check, the identity 

(rpV)-(k) = - ~(k)Ik, 

is satisfied. 

(9) 

A 

We define the trivector Fourier transform F of a distribu-
tion Fby 

A A 

(¢,F) = (¢,F), 

which can be written in the integral form: 

J d 3k ¢(k)P(k) = J d 3r ~(r)F(r). 
This implies that P can be written symbolically as 

P(k) = (21T) -3/2 J d3re-IkOrF(r). 

(10) 

The inverse of this transformation is given by G ..... G, where 

G(r) = (21T) -3/2 J d3kelkorG(k). (11) 

Equation (to) has its analog: 

(rp,G) = (~,G). (12) 

The distributions can be multiplied by functions of a 
special class. We say that an infinitely differentiable Pauli 
algebra valued function a belongs to & M if each its deriva
tive a(q) is majorized by a polynomial, i.e., 

Ila(q)(k)II..;;C(1 + Ikl m), 

where C> 0 and natural m depend on q. Then, due to (7), for 
any rpEY the product rpa belongs to Y and we define the 
product aF for a distribution F as 

(rp,aF) = (rpa,F). ( 13) 

Let a Xo be a function defined by 

a Xo (k) = e -11<"'0 = cos kxo - In sin kxo, (14) 

where n = k/k. Its value is a combination of scalar and bi
vector, it is infinitely differentiable: 

a Iq1aXo (k) 

ak. q, ak
2 

q2 ak3 q3 

= (-Ie.xo)q,( -Ie
2
xo)q2( -Ie3xo )q,/kxo, 

and lIaXo(q)(k)II=lxol,q" hence aXoE&M' Therefore, we 
may consider the product a Xo G for any GEY. 

III. REGULAR TIME-DEPENDENT DISTRIBUTIONS 

We assume that the distributions may depend on a real 
parameter Xo to be interpreted as time. We assume, more
over, that such time-dependent distributions FXo are differ
entiable with respect to Xo in the sense that the function 
Xo ..... (rp,F "'0 ) is differentiable for each rpEY. We define sym
bol aoFXo = aFx/axo by 

d 
(rp,aoFXo ): = -- (rp,FXo )· 

dxo 
This equality determines obviously a linear functional on Y. 
If it is continuous on Y, it defines a tempered distribution
in this case we call FXo the time-dependent differentiable dis
tribution and call aoFXo the derivative ofF "'0' 
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Now we define the following time-dependent distribu
tion: 

(15) 

for a "'o given in (14). Using the symbolic expression (11), 
one can write this as 

F"'o(r) =(217') -3/2 f d3kek're-IkxoG(k). (16) 

Proposition 1: F"'o defined in (16) is a time-dependent 
differentiable distribution. 

Proof We have by virtue of (15) and (12) 

d d - d_ 
- (f/',F"'o ) = - (f/',(a"'o G) ) = - (f/'a"'o,G). 
dxo dxo dxo 

This derivative exists for each rpeY, is equal to (ip aoa"'o,G) 
and defines a linear and continuous functional on Y, hence 
the statement is true. 0 

If a time-dependent differentiable distribution F"'o satis
fies the equation 

(f/',aoF"'o) + (f/',VF"'o ) = 0, (17) 

for any rpeY, we call F"'o the regular time-dependent distri

bution or, for short, the regular distribution. When F "'0 is 
represented by a locally integrable function F(xo,r), Eq. 
( 17) implies 

aoF(xo,r) + VF(xo,r) = O. 

Clifford algebra valued functions satisfying this condition 
are referred to as regular7 or monogenic. 8 

Proposition 2: F"'o given by ( 16) is a regular distribution. 
Proof We have 

(f/',aoF"'o) + (f/',VFXo ) 

d -= - (f/',F"'o ) - (f/'V,(a"'oG) ) 
dxo 

= (ip aoa"'o,G) - «f/'V) -a"'o,G) 

= (ip aoa"'o - (f/'V) - a"'o,G)· 

Now, using (9) and (14), 

ip(k)aoa"'o (k) - (f/'V) - (k)a"'o (k) 

= _ ip(k)Ike - Ikxo + ip(k)Ike - Ikxo = O. 

This, substituted into (18), yields 

aoFXo + VF"'o = 0, 

in the distribution sense. 

(18) 

(19) 

o 
The value of F "'0 at Xo = 0, denoted F, is a tempered 

distribution. In this case F Xo is called a regular extension 0/ F. 

Since each tempered distributionF has its Fourier transform 
P, related through the formula 

(20) 

"'-
one can substitute G = Finto (16) and obtain, in this man-
ner, the regular extension of F: 

F"'o(r) = (217')-312 f d3kek're-IkxoP(k). (21) 
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For the three-dimensional Dirac delta 83(r) its Fourier 
transform is (217') - 3/2, hence we can write regular extension 
of the Dirac delta: 

8!., (r) = (217') - 3 f d 3k /k'r - Ikxo. (22) 

We shift to Appendix A the calculations leading to the result 

8!.,(r) =_I_(v _~)J.. [8(r+xo) -8(r-xo)]. 
417' axo r 

(23) 

The regular extension of the two-dimensional Dirac delta is 

8;" (r) = - [(sgn Xo )/217'] (xo + r)PV(x~ - r2) - 3/2, 
(24) 

as shown in Appendix B. Here, r = x I e l + x 2 e2 and PV 
means the principal value. The regular extension of the one
dimensional Dirac delta is 

8"'0 (r) =!(1 + e l )8(xo - XI) +!(1 - e l )8(xo + XI ), 

(25) 

which has been demonstrated in Ref. 4, Chap. 4. 
Comparison of formulas (20) and (22) helps us to no

tice what is the Fourier transform of the regular extension of 
three-dimensional delta: (8!.,(k) = (217') -3/2e- 1kxo. 

Now Eq. (21) can be written as 

F"'o(r) = (217') -3/2 f d 3k ek 'r (217')3/2(8!., (k)P(k), 

and shows that the Fourier transform of F "'0 is the product of 

two distributions: (F"'o ( = (217')312(8!.,(P. The distribu

tion (8!.,) "'-belongs to tJ M' hence 8!.,etJ;;, so we can use the 
famous "multiplication and convolution theorem" (Ref. 5, 
Chap. VII, Theorem XV) and write F"'o = (217') 3128!., • F, or 
more explicitly: 

F"'o(r) = f d 3r'8!.,(r-r')F(r'). (26) 

We can interpret formula (26) as the solution of the Cauchy 
problem for the operator ao + V: find a solution of Eq. (19) 
when the initial value of F"'o is F. It is the reason why 
8~. (r - r') is called the Cauchy kernel of the operator 
ao +V. 

It is interesting to notice that the cases of odd and even 
dimensions differ considerably. The regular extensions of 
one- and three-dimensional deltas have their support on the 
light cone, i.e., at points r = Ixo I, whereas the extension of 
the two-dimensional delta has its support in the full (solid) 
light cone, that is at points r< Ixo I. This is a manifestation of 
more general regularity for the Cauchy kernels as discussed 
in Ref. 9. A similar distinction between even and odd num
ber of independent variables occurs also for traditional hy
perbolic partial differential equations as one can notice for 
instance in a classical work of Hadamard. \0 

IV. THE ELECTROMAGNETIC FIELD 

As shown in Refs. 2, 4, and 7, the regularity condition 
(17) or (19) is equivalent to homogeneous Maxwell equa
tions if the distributions consist only of vector and bivector 
parts, hence we claim that such distributions describe free 
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electromagnetic fields. Expression (21) helps us to see that 

F"" contains only vectors and bivectors iff e -lkxop fulfil~ 
the same condition. After using ..(14) and decomposing F 
into its vector and bivector parts F = Gv + Gb we get 

e -lkxop(k) = - I(n 1\ Gb )sin kxo 

+ [Gv cos kxo - I(n 1\ Gv )sin kxo] 

+ [Gb cos kxo - I(n'Gb )sin kxo ] 

- I(n'Gy )sin kxo. 

The first term is a scalar, the last term is a trivector-they 
should be absent in this combination, which implies 

n 1\ Gb = 0, noGy = O. (27) 

This can be united into a single condition: 
A A 

kF(k) = - F(k)k. (28) 

The factor elk-< does not produce any scalar nor trivector 
A 

terms, so it does not impose any new condition on F. Thus we 
may summarize our present ~iscussion: For any vector-plus
bivector valued distribution F satisfying (28) the expression 
(21) yields a time-dependent distribution Fxo describing a 
free electromagnetic field. 

As proven in Ref. 11, Sec. 16.5, the time-dependent elec
tromagnetic field F"" is unique for any initial electromagnet
ic field F and is related to F through F"" (r) I"" = 0 = F( r ) . 
We may express this in other words: Each time-dependent 
free electromagnetic field is the regular extension of its initial 
value at Xo = O. This is uniqueness of the Cauchy problem 
solution for the operator ao + V. In this manner the pre
scription of obtaining time-dependent electromagnetic fields 
through (21) or, equivalently, through (26), is unique. 

In particular, when 

P(k) = (21T) 3/283 (k - q)N, (29) 

one gets 

(30) 

which is the example ( 4) of (not necessarily traveling) plane 
harmonic electromagnetic wave with round polarization in 
direction - Iq/ q, discussed in Ref. 4. By demanding 
qN = - Nq, condition (28) is satisfied due to the fact that 
(29) has its support in single point k = q. If, in addition, N 
satisfies the eigenequation 

qN=qN, (31) 

for q = Iql, one gets F",,(r) = e-l(q",,-q.r)N, which is the 

traveling (in direction q/ q) plane wave with the left circular 
polarization. Alternatively, if 

qN= -qN, (32) 

one gets F"" (r) = /(q"" + q·r) N, which is the traveling (in di
rection - q/q) plane wave with the right circular polariza
tion. 

In this manner we infer from (21 ) that each free electro
magnetic field is a (generalized, because integral) superposi
tion of plane waves with the round polarization. 

If neither of conditions (31) and (32) is met, wave (30) 
is a superposition of two waves traveling in opposite direc
tions ± q/q. This occurs in spite of the fact that its Fourier 
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transform (29) has the support in one point + q only. This 
is something new in comparison with the situation known 
from quantum mechanics: If a wave function has its support 
at a single point in the space of wave vectors, it describes a 
state with a definite momentum. 

The regular extensions (23 )-(25) of various Dirac del
tas do not represent any electromagnetic fields because they 
are scalar-plus-vector valued. One can improve this by mul
tiplying them from the right by constant vector-plus-bivec
tor Clifford numbers N [constant ones, since only such ele
ments do not destroy the regularity condition (17)]. The 

A 

constant is also present at the Fourier transform FN of the 
initial distribution FN and condition (28) takes the form 

A A A 

kF(k)N = - F(k)N k.ForallthenamedDiracdeltasFare 
scalar valued, so we obtain 

kN= -Nk, (33) 
A 

for all kESUPP F. 
For the three-dimensional delta its Fourier transform is 

(83(k) = (21T) -312, so supp (83( = E3 and, therefore, 
one cannot find constant vector-plus-bivector Clifford num-

A 

ber N satisfying (33) for all kESUPP (83) . [Remember that, 
as seen from (27), Nv must be perpendicular to k and Nb 
parallel to k.] Hence we conclude that the regular extension 
of the three-dimensional Dirac delta can not be used to rep
resent any electromagnetic field. (This fact probably has a 
bearing on the impossibility of localization of photons in a 
point, see Refs. 12-14.) 

The situation is better for lower-dimensional Dirac del
tas. For instance, Fourier transform of 82 (x\ 'X2 ): 

A 

(82
) (k) = (21T) - 1I28(k3 ), (34) 

has its support on the (k\ ,k2 ) plane, so after multiplying 
(34) by a constant element N = Nv + Nb with Nv IIe3 
and Nb1e3 one gets kN = - Nk and then (28) for all 

A 

kESUPP (82
) ,which is sufficient. In this way we obtain the 

regular extension of 82 N as (24) multiplied by the above N, 
and this describes a free electromagnetic field. 

The one-dimensional Dirac delta 8(x\ ) has the Fourier 
transform 8(k) = (21T) 1I28(k2 ,k3 ) with the support on the 
k\ axis. In this case the element N = Nv + N~ with Nvle\, 
Nblie\ ensures (33) and (28) for all kESUPP 8. The regular 
extension of 8(x\ )N is (25) multiplied by Nand is a partic
ular case of the plane electromagnetic field discussed in Ref. 
4, Chap. 4. 

v. CONCLUSION 

Due to the fact that free electromagnetic fields can be 
identified with vector-plus-bivector valued time-dependent 
regular distributions, we have shown that they can be 
uniquely represented as regular extensions of their initial 
values at time Xo = O. Two ways of expressing them are giv
en: first one based on the trivector Fourier transformation 
formula (21), second one using the convolution formula 
(26) of the initial field with the regular extension of the 
three-dimensional Dirac delta. 

The lower-dimensional Dirac deltas can be immediately 
used to describe electromagnetic fields after multiplying 
them by an appropriate constant Clifford number. These 
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time-dependent distributions can be interpreted as electro
magnetic fields initially localized on planes or straight lines. 

When contemplating expansion (16) or (21) of a time
dependent electromagnetic field F"o into plane waves with 
the round polarization, one naturally asks the question: Can 
similar expansion: 

T"o(r) = (217') -3/2 f d 3ke- In(k.,)/kxoG(k), (35) 

be considered into plane waves with the spiral polarization? 
The answer to this question must be negative, because the 
mapping G-+ T"o defined by (35) is not one-to-one. It yields 
the same image for G and G', where G'(k) = G( - k). 
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APPENDIX A 

Due to ( 14) , the regular extension of t? can be written as 

153"0 (r) = (217') - 3 f d 3k (cos kxo - l
k
k sin kxo) elk". 

Extract from this the scalar and vector parts: 

A (xo,r) = (217') - 3 f d 3k cos kxoelk", 

f ksin kxo 
B(xo,r) = - 1(217') - 3 d 3k k elk". 

Change Cartesian coordinates kl k2' k3 into spherical ones 
k, {J, tfJ, where {J is the angle between k and r: 

A = (217') - 3 f dk f d{J f dtfJ k 2 sin {J cos kxo~kr(X)S {} 

= (217') - 2 f dk k 2 cos kxo f d{J sin {J~kr(X)S{} 

2 L"" = --- dk k cos kxo sin kr 
(217')2r 0 

= 1 [f"" dk k sin k(r - Xo ) 
2(217')2r - "" 

+ f:"" dkksink(r+xo) l 
Use the known identities from the distribution theory 

A = __ 1_ [15'(r+xo ) +15'(r-xo )] 
417'r 

1 a = --- [15(r+xo) -15(r-xo )]' 
41Tr axo 

We similarly integrate the vector part 

B = - (217') -3 V f d 3k sin :0 elk-< 

= - (217') -3V f dk f d{J f dtfJk 2 
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sin kxo X sin {J ___ elkr (X)S {} 

k 

= - (217') - 2 V f dk k sin kxo f d{J sin {J ~kr(X)S {} 

= - V __ 2_ ("" dk sin kxo sin kr 
(217')2r Jo 

= - V 1 [f"" dk cos k(r - xo ) 
2(217')2r - 00 

-f: 00 dk cos k(r + xo ) l 
Again, by known facts from the distribution theory; 

1 
B = V- [15(r+ xo ) -15(r -xo )]. 

417'r 
Thus at last 

15!., =A + B 

= _1_ (V -~) J..[ l5(r + xo ) -15(r- xo)]. 
417' axo r 

APPENDIXB 

We apply (26) to find the regular extension oftwo-di
mensional Dirac delta: 

152"o(r) = f d 3r' 153"o(r - r')152(r'). (36) 

Explicitly, 

15
2
"0 = ~1 f d 3r , { (V' + a~o) 

15(lr-r'l +xo ) -15(lr-r'l-xo)} 2 , 
X I I 15 (r ). r-r' 

(37) 

Relation (36) becomes trivial for Xo = O. If Xo > 0, only sec
ond term in the numerator gives nonzero contribution: 

152"o(r) = ~17'1 f Ird~r~'II5'(lr-r'l-xo)I5(Xl')I5(X2') 
+-1-fd

3
r'{(e l ~+e2~) 

417' aX l aX2 

X 15( Ir; ~Ir~ x o )} l5(xl ')I5(x
2 
'). 

The last term e3 a lax/ in the nabla was omitted since it 
gives zero after integration. We select the scalar and vector 
parts: 
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The integrands are symmetric with respect to point z' = z, 
hence 

-1 i"" dz' 
A = 21T z [x2 + Y + (z' _ Z)2] ./2 

Xt5'( [x2 + Y + (z' - Z)2] 112 - x o ), 

-1 i"" (a a) B=-- dz' e. -+~-
21T z ax iJy 

t5( [xl + y + (z' - Z)2] 112 - x o ) 
X . 

[xl + y + (z' _ Z)2] 112 

It is clear that for x2 + y > x~ both expressions are zero, so 
the result should be multiplied by 8(x~ - x 2 - y) where 8 
is the Heaviside or step function: 

{
I, 

8(x) = 0, 
for x>O, 
for x<O. 

Change the variables: 

u = ~X2 + Y + (z' - Z)2, dU/~U2 - x 2 - Y = dz'/u. 

Then 

-1 i"" du A =-- t5'(u -xo) 
21T 0 (u2 _ x 2 _ y)./2 

-1 i"" udu =-- t5(u-xo )' 
21T 0 (u2 _ x 2 _ y)3/2 

Thus we get the result for the scalar part 

We proceed to the vector part: 

B = -=-!. i"" dz' e. x + e2y 
21T z x 2 + Y + (z' _ Z)2 

X {t5'( [x2 + Y + (z' - Z)2] ./2 - x o ) 

_ t5( [x2 + Y + (z' - Z)2] 112 - xo)} . 

[x2 + Y + (z' _ Z)2] 112 

Change the variables as previously: 

B = e. x + e2y {"" du 

21T Jo (u2 _ x 2 _ y) 112 

X [: t5(U-Xo )-t5'(U-xo )] 

e. x + e2y {"" d { 1 
= 21T Jo U U2(U2 _ xl _ y) 112 

+ t5(u - x o ) [ I]'} 
u(u2 _ x2 _ y) 112 

e.x + e2y [ 1 
= 21T Xo 2(xo 2 _ x 2 _ y) ./2 
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2x~ _x2 _y ] 
Xo 2(XO 2 _ x 2 _ y)3/2 

e.x+e2y -1 
= --=-----"'---------

21T (xo 2 _ x 2 _ y)3/2 

Hence the result for the vector part is 

B= _ e.x+e2y 8(x02_xl-Y). 
21T(Xo 2 _ x2 _ y)3/2 

Having denoted r = e. x + e2y we write the net result: 

(38) 

For Xo < 0 the other term in the numerator of (37) remains, 
but this can be reduced to the previous case by writing 
Ir - r'l + Xo = Ir - r'l- Ixo I as the argument of the delta 
This yields only opposite sign for the vector part, hence 

152 (r)= -lxol+r 8(x 2 _r2), forxo<O. 
"0 21T(Xo 2 _ r2)3/2 0 

After combining this with (38) we get 

2 xo+r 2 2 15 "o(r) = - sgnx0 8(xo - r ). 
21T(Xo 2 _ r2)3/2 

This result is not correct for distributions because of too 
large power ~ in the denominator. One should rather use the 
principal value distribution 

PV(x - 3/2) = lim H (x + i€) - 3/2 - (x - i€) - 3/2]. 
E-O 

In this case the Heaviside function is not needed because the 
complex function rz has singularities on the positive half
line. So PV (x - 3/2) vanishes for negative values of x. In this 
manner we obtain at last 

152
"0 (r) = - (sgn Xo/21T)(Xo + r) PV (x~ - r2) - 3/2. 

I I. R. Porteous, Topological Geometry (Cambridge U.P., Cambridge, 
1981), 2nd ed. 

2 D. Hestenes, Space- Time Algebra (Gordon and Breach, New York, 
1966). 

3 D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus 
(Reidel, Dordrecht, 1984). 

4B. Jancewicz, Multivectors and Clifford Algebra in Electrodynamics 
(World Scientific, Singapore, 1988). 

5 L. Schwartz, Theorie des Distributions (Hermann, Paris, 1966). 
6W. Rudin, FunctionalAnalysis (McGraw-Hill, New York, 1973), Chap. 

10. 
7 K. Imaeda, Quaternionic Formulation of Classical Electrodynamics 

(Okayama Univ. of Science, Okayama, 1983). 
• F. Brach, R. Delanghe, and F. Sommen, Clifford Analysis, Research 

Notes in Mathematics Vol. 76 (Pitman, London, 1982). 
• F. Sommen, Q. J. Pure Appl. Math. 62, 293 (1988). 
10 J. Hadamard, Lectures on Cauchy'S Problem in Linear Panial Differential 

Equations (Yale U.P., New Haven, 1923). 
II R. D. Richtmyer, Principles of Advanced Mathematical Physics (Spring

er, New York, 1978), Vol. 1. 
12 J. M. Jauch and C. Piron, Helv. Phys. Acta 40,559 (1967). 
13 A. Z. Jadczyk and B. Jancewicz, Bull. Acad. Pol. Sci. Ser. Math. Astr. 

Phys. 21,477 (1973). 
14 K. Kraus, in The Uncenainty Principle and Foundations of Quantum Me

chanics, edited by V. C. Price and S. Chissick (Wiley, New York, 1977). 

Bernard Jancewicz 1852 



                                                                                                                                    

Representations of affine Kac-Moody algebras and the affine scalar product 
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Simple procedures are given for finding all the dominant weights in a highest weight 
representation of an affine algebra, for finding the Weyl orbit of an arbitrary weight, and for 
determining whether or not any given weight is in any given representation. A simple 
definition of congruency is given that applies to all affine algebras. The standard indefinite 
scalar product is generalized; the generalization is used in the procedures. 

I. INTRODUCTION 

Affine Kac-Moody algebras are important in many 
branches of modern physics, including string theories, con
formal field theories, and other field theories. This paper is 
concerned primarily with one type of irreducible representa
tion (irrep) of simple affine algebras, highest weight irreps. 
In many papers such irreps are treated within the context of 
some field theoretic model, so that field theory concepts are 
used. The point of view taken here is that it is useful to con
struct and discuss irreps with purely mathematical concepts, 
in analogy with well-known procedures used for finite alge
bras. The approach used is motivated by Kac, who points 
out that the properties of an affine algebra may be deter
mined from the generalized Cartan matrix. I When one uses 
this approach, the twisted affine algebras are not much more 
complicated than the untwisted algebras. 

Every highest weight irrep except the identity irrep con
tains an infinite number of weights. Since the multiplicities 
of all weights in the same Weyl orbit are the same in any 
irrep, it is logical to organize the weights by their orbits. 
However, each irrep contains an infinite number of orbits, 
and each orbit contains an infinite number of weights. 
Therefore, even if one knows the basic construction rules,2 

one cannot construct an entire irrep, and it is difficult to 
picture an irrep, except in the simplest cases. One of the two 
main purposes of this paper is to help illuminate this situa
tion by finding a simple procedure for answering the follow
ing key question: Given an arbitrary affine algebra, an arbi
trary highest weight irrep A and an arbitrary weight M, is M 
in A? Of course the procedure given, when the order of oper
ations is changed, provides a simple method for constructing 
the top weights of an irrep. We are not concerned here with 
the multiplicities of weights; mUltiplicity calculations are 
discussed in the literature. 3 

Every simple affine algebra .xl of rank n - 1 is repre
sented by an indecomposable, generalized Dynkin diagram 
with n vertices. If anyone of these vertices Ri is deleted 
(with its connecting lines), the resulting diagram represents 
a finite subaJgebra Yo called here a basic subalgebra. An 
irrep of d is a sum of irreps of any of the Y i' and is most 
easily understood in terms of the Y i' The second main pur
pose of this paper is to treat the n basic subalgebras on equal 
footing, as much as possible. This leads to a generalization of 
the standard affine scalar product. 

Section II contains most of the basic concepts and for
mulas used. Two important concepts are introduced in Sec. 
III, extended subweights and the generalized affine scalar 
product. A simple criterion for the Weyl orbits (each char
acterized by its dominant weight) in a highest weight irrep is 
given in Sec. IV. Section V is concerned with the construc
tion of Weyl orbits and the determination of the orbit of an 
arbitrary weight. The generalized scalar product is useful for 
these constructions. Section VI summarizes the procedure 
given for answering the key question mentioned earlier. 

II. BASIC FORMALISM 

A. Fundamental formulas for both finite and affine 
algebras 

The basic rules given in this section can be found in 
many references, for example Cahn4 and SJansky.s If there 
are n vertices in the Dynkin diagram for a simple finite or 
affine algebra, there are n simple roots, denoted by R i • A 
weight vector M may be characterized by n integral coeffi
cients mj (called here Dynkin coefficients), defined by the 
scalar product equation, 

mj = (M,R) (2IRj). (2.1) 

A weight M is dominant iff all mj are non-negative. 
Some weights may be written as linear combinations of 

the simple roots. (In the case of finite algebras all weights 
may be written in this manner.) The root-basic components 
of such a weight Q are denoted by Qo i.e., 

(2.2) 

Substitution of Eq. (2.2) into Eq. (2.1) (with mj and M 
replaced by qj and Q) yields the relation 

" qj = L QiAij or q= QA, (2.3) 
;=1 

where q and Q in the last equation are row vectors, and A is 
the Cartan matrix, defined by Aij = (Ri,R) (2!R j). If the 
weight Q may be written as a linear combination of the sim
ple roots, and M is any weight vector, it follows from Eqs. 
(2.1) and (2.2) that 

(2.4) 

1853 J. Math. Phys. 31 (8), August 1990 0022-2488/90/081853-06$03.00 ® 1990 American Institute of Physics 1853 



                                                                                                                                    

We take as a set of basis vectors the coroots R ,.v associat
ed with the simple roots, defined by R / = R,. (2/ R ~). If the 
weight Q is a linear combination of the simple roots, the 
components Q,.v are defined by 

Q = I Q / R,.v. (2.5) 
,. 

Thus Q / = Q,.(R ~/2). It is seen from Eq. (2.4) that 
n 

(M,Q) = I m,.Qr (2.6) 
;=1 

The analog of Eq. (2.3) is q = Q v S, where S is the symmet
ric, metric matrix defined by Sij = (R / ,R / ). The matrix S 
is related to the Cartan matrix by the matrix equation 
S = 2(R 2) - lA, where R 2 is the diagonal positive-definite 
matrix with elements (R 2) ij = 8ijR 7. 

If S - I exists, we define G = S - I. The coroot-basis 
components and Dynkin components are then related by 

M/ = ImjGij. 
j 

(2.7) 

The fundamental weight OJ,. is the weight with Dynkin com
ponents (OJ,.)j = 8ij' It is seen from Eq. (2.6) that the cor
oots R / and fundamental weights OJ,. are dual sets of basis 
vectors. 

The scalar product (M,Q) may be written either in the 
form ofEq. (2.6) or in one of the forms, 

(M,Q) = Im,.qjGij = IM/Q/Sij' (2.8) 
ij ij 

The Weyl reflection Wa (M) of a weight M associated 
with a nonzero root a is defined by 

(2.9) 

If a is the simple root R j the reflection is denoted by Jfj and 
is called simple. It is seen from Eqs. (2.1) and (2.9) that the 
reflected weight is 

(2.10) 

The Weyl group consists of all sequences of zero or more 
Weyl reflections, and may be generated by the simple reflec
tions alone. All weights related to a weight M by sequences 
ofWeyl reflections comprise the Weyl orbit of M. 

B. Further properties of affine algebras 

For a simple affine algebra the Coxeter-Dynkin dia
gram is indecomposable and IA I, the determinant of the Car
tan matrix, is zero. I

,6 Four of these diagrams are shown in 
Fig. 1; diagrams for all the affine algebras are given in Kac7 

and in Ref. 2. Since the vertices are treated here on equal 
footing, they will be numbered 1 to n. 

Since IA I = 0, there is an eigenvector 8 that satisfies the 
matrix equation 8A = O. The root-basis components of this 
null vector are denoted by c,., i.e., 8 = l:,. ciRi, so that 
l:,.c,.Aij = O. It is seen from Eq. (2.3) that the Dynkin com
ponents of 8 are all zero. 

It is well known that the components Ci are either all 
positive or all negative, and that their ratios are rational. I 
make the conventional definition that these c,. (called 

1854 J. Math. Phys., Vol. 31, No.8, August 1990 

E~' 

(2) 

Au ( L ~ 2 ) 

~ 
12345642 

2 

~"'-A 

o--a;::o 
I 2 I 

FIG. I. Coxeter-Dynkin diagrams for some affine algebras. An arrow 
points to the smaller of two connecting roots, and the integer (is one less 
than the number of vertices. The twist index is the number in superscript 
parentheses. The numbers by the vertices are the marks. 

marks) are positive, and are as small as possible consistent 
with all being integers. 

The level L of a weight M is defined by the equation 

n 

L(M) = (M,8) = I mic/, (2.11 ) 
,.= I 

where the coefficients c/ are called comarks and are given by 
c,.v = ciR ~/2. It is desirable that the comarks be integers. 
The Cartan matrix specifies the ratios of the lengths of the 
simple roots, but not the overall normalization. I use the 
common convention that the roots are as short as possible, 
consistent with all the comarks being integers. This is equiv
alent to the convention of Ref. 1, although the wording is 
different. The twist index k may then be defined by the con
dition 

(2.12) 

where R( is the longest simple root. 
Since the Dynkin components of 8 are all zero it follows 

from Eq. (2.11) that the level of all simple roots is zero. 
There is a well-known algorithm for constructing a 

highest weight irrep by subtracting simple roots from the 
highest weight, employing the same rules used in the algo
rithm for finite algebras. 8 Since the simple roots are of level 
0, all weights in the irrep are of the same level. 

The weights M and M - 8 are different weights, yet they 
have the same Dynkin components. Consequently, one pa
rameter in addition to the Dynkin components is needed to 
specify a weight completely. A convenient parameter is the 
displacement Pk , defined to increase by 1 when the simple 
root Rk is subtracted from a weight to form another. One can 
use any simple root for this purpose. For simplicity, I take all 
P,. to be zero for the highest weight of an irrep. If Ck = 1, Pk is 
the null depth discussed in Ref. 2. 

If M is an affine weight, the quantity M (h) is called a 
subweight and refers to the corresponding weight of the ba
sic subalgebra Y h' The Dynkin components m (h) are ob
tained simply by ignoring the h component of M. Similarly, 
A (h) and S (h) are (n - 1 )-dimensional square matrices, ob
tained by deleting the h rows and columns of A and S. These 
matrices do have inverses. The root-basis and coroot-basis 
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components M (hl and M v (hl are defined by the matrix 
equations, 

M(hl = m(hlA (hl - 1, 

M V (hl = m(hlG (h>, 

where G(h) = S(hl -I. 

III. EXTENDED SUBWEIGHTS AND THE AFFINE 
SCALAR PRODUCT 

(2.13 ) 

(2.14 ) 

The vectorsM(hl andM V(hl each have (n - I) compo
nents. I define an n-component vector M(h l * by the equa
tions, 

M(hl*i =M(hli for i=/=h, (3.la) 

M(hl*h = O. (3.1b) 

An n-component vector M v (hl* is defined in the same way. 
These vectors are called extended subweights. In a similar 
fashion G (hl - 1* and A (hl - 1* are defined to be n X n matri
ces, with the h rows and columns consisting entirely of zeros, 
and the other elements equal to those of G (hl and A (hl - I. 

In the case of affine algebras, the Cartan matrix A and 
symmetrized matrix S do not have inverses. Therefore, one 
cannot define G = S - I and use Eq. (2.7) to find a basis dual 
to the coroots. Kac overcame this problem by introducing an 
additional basis vector and adding an (n + 1)th dimen
sion. I In Ref. 1, one of the simple roots for each affine alge
bra (always one with a comark of I) is given a special role. 
We generalize this procedure by allowing any of the simple 
roots R k to play the special role. If the new vector is denoted 
by R '(j (the numbering convention is different from that of 
Ref. 1), the (n + 1 )-dimensional, extended S matrix Sx is 
defined by 

Sx.oo = (R'(j,R'(j) =0, Sx,Ok =Ck/C~, (3.2) 

Sx,Oi = 0 for i=/=k, SX.ij = Sij' 

where i> 0 and j > O. This matrix reduces to that obtainable 
from Ref. 1 if the comark c~ = 1. The matrix Sx has an 
inverse, and also has a negative eigenvalue, so the metric is 
indefinite. If G x = S x- I, the elements of G x are 

Gx,oo=O, Gx,Oi=CiV/Ck, Gx,ij=G(kl*ij' (3.3) 

The Dynkin components of the (n + 1) component, ex
tended weight vector Mx are the integers, 

( - Pk,m l • oomn), (3.4) 

i.e., mo = - Pk • The components ofa weight vector in the 
extended coroot basis may be determined by letting the sub
scripts run from 0 to n in Eq. (2.7). The result is 

M'(j = L /Ck, (3.Sa) 

Mi = -Pk(cilck ) +MV(kl*i for i=/=O. (3.Sb) 

If one uses the extended dual form [the extended form 
ofEq. (2.6)] for the scalar product, itis seen from Eqs. (3.4) 
and (3.Sa) and (3.Sb) that 

(Mx,Qx) = - [Pk(M)L(Q) 

+Pk(Q)L(M)]C,;-1 + (M,Q)k' (3.6) 

In order to write Eq, (3.6) I have used the level equation for 
M, i.e., L(M) = ~7= I mici· (The quantity (M,Q) k is the 
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scalar product associated with the subalgebra Y k' i.e., 
(M(kl,Q(kl». 

The value of Pk is 0 for the zero roots, and so is - 1 for 
R k and 0 for the other simple roots. If Q is a weight oflevel 0, 
it is seen from Eq. (3.Sa) that Q'(j = O. Furthermore, it can 
be shown that in this case the Q i defined in Eq. (3.Sb) is 
equal to those taken from the coroot expansion 
Q = ~ i Q iV R i. Therefore, the scalar product is that of Eq. 
(2.6). 

IV. THE DOMINANT WEIGHTS IN A HIGHEST WEIGHT 
IRREP 

A. A useful formula 

In this section root-basis components are more useful 
than coroot-basis components; the Qi (i> 0) characterize a 
level-O weight completely. We ask the question: Given a set 
of Dynkin components ql ., 'qn that correspond to level 0, 
what vectors Q in the root basis lead to these Dynkin compo
nents, i.e., are solutions of Eq. (2.3)? One solution is the 
extended subweight Q (hl* ofEqs. (3.1a) and (3.1b), for any 
h<.n. This follows because Q (hl* was defined so that its ith 
Dynkin component is equal to that of Q, if i=/=h. Further
more, any vector of the form ofEq. (2.3) must be a level-O 
vector, so the h Dynkin component is also that of Q. It fol
lows that a general solution is 

(4.1 ) 

where,uh is any real number. This set of solutions is indepen
dent ofthe choice of h. The allowed weights correspond to an 
infinite set of rational values of,uh' 

B. Congruency 

In both finite algebras and affine algebras, weights in 
different congruency classes cannot be in the same irrep. It is 
known that the congruency label of an affine weight has two 
parts.2 The first part is the level number. The second part is 
the congruency class of the underlying subalgebra. The con
gruency class of a weight depends only on the Dynkin com
ponents. 

Since one of the goals of this paper is to treat the basic 
subalgebras in the same manner as much as possible, we 
must express the second part differently. Furthermore, in 
the cases of the twisted algebras, the identity of the underly
ing subalgebra is not obvious. I classify the basic subalgebra 
Y h as fundamental if and only if the mark Ch is equal to 
unity. One may use the congruency classes of any fundamen
tal subalgebra to describe a weight because of the following 
congruency equivalence principle: two weights that are con
gruent (in the same class) with respect to one fundamental 
subalgebra are congruent with respect to any other funda
mental subalgebra. The proof is given below. It should be 
noted from Fig. 1 that in the algebras A i2l and A i~l, the 
subalgebra given special treatment in Ref. 1, which corre
sponds to omitting the left-hand vertex, is not fundamental 
and cannot be used to determine congruency. 

In the case of a finite algebra, two weights A and Bare 
congruent if and only if the root-basis components of 
Q = A - B are all integers.9 I will show that for affine alge-
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bras the fundamental subalgebra criterion given above is 
equivalent to the following condition; if two sets of Dynkin 
components are aj and bj> and if qj = aJ - bj , A and Bare 
congruent if and only if a set of integral root-basis compo
nents Qi exist that satisfy Eq. (2.3). Since this latter criterion 
does not refer to any basic subalgebra, its proof will establish 
the congruency equivalence principle. 

The proof makes use of Eq. (4.1). Since the roots are of 
level zero, it is clear that the above condition requires that A 
and B be on the same level. Part of the demonstration is 
trivial. For any basic subalgebra.Y h (fundamental or not), 
if A and B are congruent with respect to .Y h then the compo
nents of Q (h)" are integers, so the IL h in Eq. (4.1) may be 
chosen to be any integer. The requirement that the subalge
bra be fundamental comes into play in the next part of the 
demonstration. If A and B are not congruent with respect to 
the subalgebra.Y h' then the components ofQ (h)O are not all 
integers. Since the h component is zero, the requirement that 
Qh be an integer limitslLh to integral values (if.Y h is funda
mental), so the components of Q cannot all be made integers. 

The subalgebra definition of congruency is useful in ap
plications, since the congruency relations for finite algebras 
are well known. \0 

For some of the twisted affine algebras, certain choices 
of the fundamental subalgebra appear to lead to more con
gruency classes than other choices. In these cases the extra 
congruency conditions are superfluous. I will illustrate this 
for the affine algebra D i3

) of Fig. 1. The fundamental subal
gebra .Y I is G2 , for which there is only one congruency 
class. On the other hand, the fundamental algebra.Y 3 isA 2 , 

for which there are three triality classes. However, the level 
equation for D ~3) is m l + 2m2 + 3m3 = L. The A2 triality 
may be written m l + 2m2, mod 3. This is L - 3m3, mod 3, 
so that all weights of the same level have the sameA 2 triality 
automatically. 

c. The containment criterion 

The following criterion is valid for affine algebras. If A is 
the highest weight in an irrep, and if the dominant set of 
Dynkin components m + + is congruent to A, then weights 
with the components m + + will appear in the irrep with an 
infinite series of displacements Ph (for any h) given by 

Ph = p~in + tCh, (4.2) 

where t'runs through all the non-negative integers, and the 
minimum displacement p~in may be computed from a sim
ple procedure, given below. This rule has a reciprocity prop
erty not possessed by the corresponding rule for finite alge
bras. The criterion follows from a generalization of a 
theorem known for finite algebras. 1I

•
12 The generalized 

theorem is: Let A be the highest weight in an irrep and 
M + + a dominant weight of the same level. Denote the dif
ference by Q = A - M + + . Then M + + is in the irrep A if 
and only if the root-basis components Qi are all non-negative 
integers. 

The containment criterion follows almost immediately. 
Let Q = A - M + + , where A and M + + are congruent, 
and assume that the displacement Pk of M + + is not known 
a priori. For simplicity we take .Y h to be a fundamental 
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subalgebra, although it is easy to generalize the procedure to 
include nonfundamental .Y h' The root-basis components of 
Q (h)O may be computed from the Dynkin components by 
using Eqs. (2.13), (3.1a), and (3.1b). These root-basis com
ponents are all integers, although some may be negative. One 
then chooses the ILh in Eq. (4.1) to be the smallest non
negative integer such that all the root-basis components Qi 
are non-negative. The resulting value of Qk is P'kin. 

I take as an example some level-2 weights of affine Es ' 

the algebra E ~ I) of Fig. 1. It is convenient to number the nine 
roots of the Coxeter-Dynkin diagram according to the 
scheme, 

7 

2 345 6 8 9 
(4.3) 

It is seen from Fig. 1 that the null vector 0 is given by 
0= {123 456 342}. (Consistently, I use curly brackets to 
denote root-basis components and ordinary parentheses to 
denote Dynkin components.) This affine algebra is simply 
laced, so the marks and comarks are the same. Therefore, the 
level of a weight Mis 

L = m l + 2m2 + 3m3 + 4m4 

+ 5ms + 6m6 + 3m7 + 4ms + 2m 9 • (4.4) 

The only mark that is unity is CI , so .Y I is the only funda
mental subalgebra. Since .Y I is Es , for which all weights are 
congruent, all weights of the same level of affine Es are con
gruent. 

One can look up the matrix G = A - I for finite Es in the 
literature. 13 The result is 

2 

3 

4 

G(1) = 5 
6 

3 

4 
2 

3 

6 

8 

10 

12 

6 

8 

4 

456 

8 10 12 

12 15 18 

15 20 24 

18 24 30 

9 12 15 

12 16 20 

6 8 10 

3 4 

6 8 
9 12 

12 16 

15 20 

8 10 

10 14 

5 7 

2 

4 

6 

8 
10' 

5 
7 
4 

( 4.5) 

where the rows and columns correspond to the roots 2 
through 9 in the scheme of Eq. (4.3). 

It is seen from Eq. (4.4) that there are three level-2 
dominant sets of Dynkin components. These are 

A = (200 000 000) 0, 

B = (010 000 000) 2, 

C = (000 000 001) 4. 

(4.6) 

The boldface number to the right is the Es subnorm NI of 
each weight, determined by setting Q = Min Eq. (2.8) and 
using the matrix G (I) of Eq. (4.5). Thus 

9 

NI = L mimjGij\). 
ij= 2 

(4.7) 

Let us consider the irrep with highest weight A and find 
the minimum displacement p'['in for the Dynkin compo
nents C. The extended subweights A (1)0 and C (1)0 may be 
determined from Eqs. (3.1 a) and (3.1 b ). [Of course, A (I) 0 
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is the zero weight and the last eight components of C (I)· are 
the coefficients of the row labeled 9 (the eighth row) of the 
matrix ofEq. (4.5).] IfQ=A - C, then 

Q(\). = (0 - 2 - 4 - 6 - 8 - 10 - 5 -7 - 4). (4.8) 

The minimum number of {j's that one needs to add to Q (I)· 
so that none of the resulting components is negative is 2. One 
finds 

Q (\). + 2{j = {222 222 1l0}. (4.9) 

Since the first component of this weight is 2, P'tn is 2 for the 
Dynkin components C. 

V. THE CONTENTS OF WEYL ORBITS 

We consider the problems of constructing Weyl orbits 
and identifying the orbit (represented by its dominant 
weight) of an arbitrary weight. If there is exactly one nega
tive Dynkin component mh for an affine weight M, then the 
subweightM(h) (defined attheend of Sec. II B) is dominant 
for the subalgebra .Y h; such a weight is called a subdomin
ant. If a subdominant weight of .Y h occurs in an affine irrep 
with a particular value of the displacement Ph' then the en
tire irrep of .Y h occurs with the same Ph so these weights are 
important. I will emphasize subdominant weights in this sec
tion, although most of the results apply to all nondominant 
weights. 

A positive (negative) simple Weyl reflection is one that 
leads to a more positive (negative) weight. It is seen from 
Eq. (2.10) that a simple reflection is positive if the Dynkin 
component of the original weight is negative, and vice versa. 
The standard method for finding the orbit of an arbitrary 
weight is to make a series of positive simple reflections until 
the dominant weight is obtained. 14 Similarly, one may con
struct the first layers (up to some finite limit) of an orbit 
from the dominant weight by making negative simple reflec
tions. 

However, if the rank of the affine algebra is not small, 
this process is too cumbersome to be practical. The general
ized affine scalar product of Sec. III is useful for constructing 
and picturing orbits. It follows from Eq. (2.9) that the scalar 
product is invariant to Weyl reflections, i.e., 

(Wa(M),Wa(Q» = (M,Q), (5.1) 

and hence is invariant to all Weyl transformations. We con
sider the norm of M, obtained by substituting M for Q in Eq. 
(3.6). The only quantities in this equation that may change 
in a Weyl transformation are the displacement Pk and the 
subnorm Nk = (M,M) k' It follows from the invariance of 
the norm that if M and M' are two weights in the same orbit, 

Pk(M) -Pk(M') = (ckl2L) [Nk(M) -NdM')]. 
(5.2) 

Equation (5.2) not only gives a simple formula for the 
displacement, but in many cases helps one identify the orbit 
of a particular weight. I illustrate with the algebra affine E8 . 
The generalized Dynkin diagram for this algebra is given in 
Fig. 1 and the root-numbering scheme and level formula are 
shown in Eqs. (4.3) and (4.4). As pointed out in Sec. IV C 
all weights of the same level are congruent. 
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Let us consider the weight M with Dynkin components 
( - 310 000 100); this weight is subdominant with respect to 
the E8 subalgebra.Y I' We want to find the dominant orbit 
weight m + + , as well as the PI dift"erence between M and 
M + + . It is seen from Eq. (4.4) that this weight is oflevel2. 
Consequently, M + + must be one of the three weights A, B, 
and C listed in Eq. (4.6). From Eqs. (4.7) and (4.5) the 
subnorm of Mis NI (M) = 16. Since L = 2 and CI = 1, it is 
seen that if M' is identified with M + + , the requirement that 
the right-hand side of Eq. (5.2) be an integer implies that 
NI (M) - NI (M + +) is divisible by 4. This rules out 
weight B. Since the Dynkin components of M are not all 
divisible by 2, A cannot be the dominant orbit weight, so 
M + + is the weight C. Furthermore, from Eq. (5.2), the 
difference in PI between M and Cis 3. 

One cannot always identify the orbit so easily, if the level 
is not small. A rapid algorithm for treating such cases is 
given in Ref. 12. 

VI. SUMMARY OF PROCEDURE 

This section summarizes the procedure developed for 
answering the question raised in Sec. I, namely: given an 
arbitrary irrep with highest weight A of a simple affine alge
bra and an arbitrary weight M, is M in the irrep A? Defini
tions and proofs will not be repeated. 

A weight of an affine algebra of n vertices may be char
acterized by n Dynkin components and a displacement pa
rameter Pk , where k labels any of the vertices. Congruency 
depends only on the Dynkin components. Two weights are 
congruent if and only if they are on the same level and are 
congruent with respect to any fundamental subalgebra. The 
weight M must be congruent to A to be in the irrep A. If they 
are congruent then an infinite set of weights with the Dynkin 
components of M are in A; these correspond to the values of 
displacement Pk = p;:in + tCk' where tis any non-negative 
integer. The minimum displacement may be written 

p;:in(M) = p;:in(M + +) + AP
k

• 

One may use the procedure of Sec. IV to find p;:in(M + +) 

and Eq. (5.2) to find APk • 
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A class of nontransitive imprimitivity systems and the corresponding projective unitary 
representations for the inhomogeneous Galilei group are worked out with the Mackey
Varadarajan method of group representations. 

I. INTRODUCTION 

In his "extended footnote" (p. 'S46, Ref. 1) to a paper of 
Newton and Wigner, Wightman 1 worked out a class of 
(projective unitary) representations of the Euclidean group 
and the corresponding representations for the inhomogen
eous Galilei group, which, he says, describe the most general 
localizable Galilei invariant particles. From the mathemat
ical point of view the paper of Wightman "merely writes out 
Mackey's theory (of imprimitivity representations) in detail 
for the Euclidean group" (p. 847, Ref. I), and applies the 
methods of Bargmann and Loomis to obtain the resulting 
representations for the Galilei group. In the same spirit the 
present paper is nothing but an appendix to Sec. IX.S of the 
monograph ofVaradarajan2 in which we study a wider class 
of (projective unitary) representations of the inhomogen
eous GaliIei group. We construct a nontransitive family of 
imprimitivity systems for the (extension of the covering 
group of the) homogeneous Galilei group that induces the 
representations for the (inhomogeneous) Galilei group. 
Since this Mackey-Varadarajan method is very powerful 
and elegant, we think it is worthwhile to work out this "Ap
pendix." 

II. THE PRELIMINARIES 

A. The group 

Consider the Newtonian space-time 9t3 X 9t, and let 
(x,t), x = (X p X2,x3), denote the coordinates of its points. 
The inhomogeneous Galilei group G consists of the space
time transformations 

(x,t)~(x',t') ='= (Rx + vt + a,t + b), (1) 

where ReSO(3) isa (proper) rotation of the space 9t3, ve9t3 

is a velocity boost, ae9t3 is a space translation, and be9t is a 
time translation. Denoting the generic element of G as 
g = (R,b,v,a) the group multiplication law has the form 

gg' = (R,b,v,a) (R ',b ',v',a') 

= (RR ',b + b ',v + Rv',a + Ra' + b'v). (2) 

The identity element e of G is (/,0,0,0) and the inverse g - 1 

ofagis(R -I,-b,-R -Iv,-R -I(a-bv». 
The group of space-time translations 

A = {(/,b,0,a):be9t,ae9t3
} is a normal, closed, Abelian sub

group of G. The group of space rotations and the velocity 
boosts Go = {(R,0,v,0):ReSO(3),ve9t3

} is another closed 
subgroup of G. Since 

aJ Permanent address: Department of Physical Sciences, UniversityofTur
ku, Turku, Finland. 

(/,b,O,a) (R,O,v,O) = (R,b,v,a) (3) 

and 

(R,O,v,O) (/,b,O,a) (R,O,v,a) -I = (/,b,O,Ra + bv), (4) 

G is a semidirect product of A and Go, i.e., G = A X 'Go 
(Ref. 2). The action of Go on A is explicitly given by (4). 

B. Its covering group 

The inhomogeneous Galilei group G is connected but 
not simply connected. Let G * denote its universal covering 
group, and letg = (h"b,v,a) withheSU(2) denote its generic 
element. If 0 is the covering homomorphism 
SU(2) -SO(3), then the group structure ofG* is given as 

(h,b,v,a) (h ',b ',v',a') 

= (hh ',b + b ',v + o(h)v',a + o(h)a' + b'v). (5) 

Again, G * is a semidirect product of A and G ~, 
G * = A X' G ~. The kernel of the covering homomorphism 
G*-G, (h,b,v,a)~(o(h),b,v,a) consists of the two ele
ments ( ± /,0,0,0). Thus the projective representations of G 
are in one-to-one correspondence to the projective represen
tations of G·. Since G • is a connected and simply connected 
Lie group its multipliers can be determined exactly by the 
Lie algebraic methods. 2-4 

C. The m., extensions 

Let T = {ceC: lei = 1} denote the torus group. For each 
real number M the mapping mM:G·XG·-T, with 

mM(g,g') = mM«h,b,v,a),(h ',b ',v',a'» 

=,=exp[iM(!b'vov+ v-o(h)a')], (6) 

is a multiplier for G·, and any of its multiplier is similar to 
one ofthis form. 2,5 

Let G t denote the m M extension of G *, so that for any 
(g;z),(g';z')eGt = G * XMT the multiplication is 

(g;z)(g';z') = (gg';mM(g,g')zz'). (7) 

Let V:G t - OJ.' (JY) be a unitary representation of G t act
ing on a complex separable Hilbert space JY such that 
V(e;z) =Z-I/ for each zeT. Then U:G*-OJ.'(K), with 
Ug ='= V(g; I) is a projective representation of G * with the mul
tiplier mM' i.e., 

(S) 

Conversely, if U:G * - OJ.' (K) is a projective representation 
of G * with a multiplier mM , V(g,Z) = z - 1 Ug defines a repre-
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sentation of G t, that has the property V(e.%) = Z - I] (Refs. 
2 and 4). 

The group G li is, again, a semidirect product of the 
subgroups AM and G ~ consisting of the elements of the form 
(l,b,O,a;z) and (h,O,v,O; 1), respectively. To simplify the no
tations we denote the generic elements of AM and G ~ as 
(b,a;z) and (h, v), respectively. Then the action of G ~ onA M 

has the form 

(h,v) [(b,a;z) 1:: (h,v) (b,a;z) (h,v) - I 

= (b,D(h)a + bv;z 

xexp [iM(!bv'v + v'8(h)a)] ). (9) 

D. Unitary representations of G:, 

Since G li is a semidirect product of AM and G ~, the 
unitary representations of G t, are in one-to-one correspon
dence ..... with the imprimitivity systems for G ~ based on the 
dual A M of A M' This will be described next briefty.2 

..... 
The elements of the dual group AM are the characters x 

of A M' They are given by 

x«b,a;z» = z" exp[ i(pob - p'a)], (10) 

where poem,pe!JP, and neZ. The action (b,a;Z)t--+ 
(h,v) [(b,a;z)] of G! on AM induces the dual action ~ 
(h,v)*[x1 ofG~ on AM defined via 

(h,v)* [x](b,a;z»::x«h,v) - I [(b,a;z)]). (11) 
A 

This makes A MaG ~ space. 
If Tis a unitary representation of G li acting in a (com

plex separable) Hilbert space K, its restrictions 
U:AM-~(K) an~ V:G~-~(K) are unitary represen
tations. Let P: fJlj (A M ) -dJJ (K) be the (unique) projec
tion-valued measure associated with U via the SNAG 
theorem. Then (V,P) is a system of imprimitivity for G ~ 

A 

based on AM' acting on K. Conversely, let (Y,P) be an im-
A 

primitivity system for G ~ based of AM' acting on a (complex 
separable) Hilbert space K. By the SNA<!,. theorem, the 
projection operator-valued measure P:fJlj (AM)"" f}J (K) 
determines a unique unitary representation 
U:AM-~(K), and the composition T= UVis a unitary 
representation of G t, = AM X I G ~ acting in K. Moreover, 
the commuting rings of T and ( V,P) are the same. 

E. Transitive Imprlmltlvlty systems 
A 

Among the imprimitivity systems for G ~ based on AM 
there are the transitive ones. They are those ( V,P) for which 

A 

the measure class of P lives on an orbit for G ~ on AM' Ac-
cording to the imprimitivity theorem all transitive imprimi
tivity systems are induced, and they all can be described ex
plicitly.2 

Let Xo eAM , and let 0 = {(h,v)* [xo] :(h,v)eG~} be the 
orbit of Xo' Let I' be a G c!-invariant measure on O. Let 
H = {(h,v)eGc!:(h,v)*[xo] = [xo]) be the stabilizer of 
Xo' Fix a (complex separable) Hilbert space %, and choose 
a unitary representation L of H acting in %. Let tp L be a 
(G~,O) cocycle taking values in ~ (%). Denote 

A 

K = L 2(AM ,% ,p.). The pair (Y,P), defined via 
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P(E)/= XEnof. (12) 

and 

(V(h.~)j)(X) = tpL«h,v),(h,v) -1-[x1V«h,v) -I-[X]), 
(13) 

A 

for .fe2 ,~EefJlj (A M ), is an imprimitivity system for G ~ 
based onA M acting on K. Here, X E denotes the characteris
tic function of the set E. By the recipe of Sec. II D the corre
sponding unitary representation T of G li is then given by 

(T(h.b •••• ;z)j) (x) 

= x«b,a);z»tp L«h,v),(h,v) - I- [x]) 

X/«h,v) -I-[X]). (14) 

Due to (10), the condition T(~%) = z - I] can be fullfilled 
only if n = - 1, which then is the only case that gives rise to 
projective representations of G * . 

In particular, all irreducible unitary representations of 
G li come from transitive imprimitivity systems. This fact 
leads to the well-known classification of irreducible projec
tive unitary representations of the inhomogeneous Galilei 
group.2.5-7 

In the next section we shall work out a more general 
class of projective unitary representations of G *. According 
to Wightman, I this class exhausts the localizable Galilean 
objects. 

III. A CLASS OF NONTRANSITIVE IMPRIMITIVITY 
SYSTEMS 

A. Some Invariant subspaces and measures 
A 

Consider, again, the dual group AM' By (10), its ele-
ments x can be labeled as triples (p"R. ,p;n), with Po em, pem3

, 

and neZ. The dual action of G 3 onA M takes then the explicit 
form 

(h,v)* [(po,p;n)] = (Po + !Mnv'v + v'8(h)p,nMv 

+ D(h)p;n). (15) 

For fixed neZ, consider the set 0 n 

= {(po,p;n)eAM :POem,pem3
}, so that AM = UnezOn. The 

action of G 3 on 0 n is given by (15). From that one may 
verify that for each (Po ,p;n lEO n the quantity 
K = Po - (2nM) -Ip ' p (with n=l=O=l=M) remains un
changed under the action of G ~. Hence the points of 0 n can 
be parametrized as (K,p), with Kem and pem3. With this 
parametrization the action of G ~ on 0 n obtains the follow
ingform: 

(h,v)*[ (K,p)] = (K,nMv + 8(h)p). (16) 

Thus, G ~ has no affect on K, and its action on p is Euclidean. 
Thus, if dp is any measure on m and if d 3p is the Lebesgue 
measure in m3

, 

dp(K)d 3p, (17) 

is an invariant measure on on. 
As in Sec. II E, the only systems ofimprimitivity for G ~ 

living on 0 n that lead to projective representations of G * 
(with multipliers m M) are those living on 0 - I. Hence, we 
consider here only the case n = - 1. [Note that the case 
M = 0 leads to nonprojective representations of the Galilei 
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group, and they are considered to be nonphysical. I
•
2 The 

pairs (M, - M) lead to pairs of physically equivalent repre
sentations.2 

] 

B.Cocycles 

The orbits 0 K 1= {(Po,P; - 1 ):Po + p2/2M = K}, 
KEm, of G~ on AM are all contained in 0 - \ 
o - I = U Ke9l 0 K I. Moreover, G ~ leaves the coordinate K 
of a point of 0 - I unchanged (since G ~ acts transitively on 
each 0 K I). Hence any (G ~ ,0 K I) cocycle qJ that takes val
ues in 91 (%), 

qJ:G~XO K 1-+ 91 (%), 

defines a cocycle 

f{J':G~XO -1-+91(%), 

via the relation 

f{J '«h,v),(K,p» = qJ«h,v),p», 

(h,V)EG~, (K,p)EO -I. 

(18) 

(19) 

(20) 

Let L:SU(2) -+ 91 (%) be a unitary representation. Since 
G ~ is also a semidirect product ofthe (normal, closed, Abe
lian) subgroup of the velocity boosts and SU (2), the map
ping 

f{JL:G~XOKI-9t(%), «h,v),p~L(h), (21) 

is a cocycle for G ~ on the orbit 0 K I acting in 91 (%). 
Hence, the mapping 

«h,v),p~L(h), (22) 

defines a cocycle G ~ X 0 - 1-+ 91 (%). 

Any such a cocycle and any invariant measure dp d 3p 
allows one to construct a system of imprimitivity for G~, 
based on AM' and living on 0 -I. Such imprimitivity sys
tems are clearly nontransitive, since 0 - 1 is not an orbit of 
G ~. The corresponding unitary representations of G ft are 
thus also more general than those considered in II E. We 
shall now work out a class of them. 

C. Representations 

We define the pair ( U,P) via 

P(E)j= XEno-,j (23) 

(U(h.v)f) (K,p) = L(h)j{(h,v) - 1* [(K,p)]) 

=L(h)j{K,t5(h)-I(p-Mv», (24) 
A-

forfe£' =L 2(mXm3,dp(K)d3p,%),~~ (AM)' Thisisa 
system ofimprimitivity for G ~ based onAM , and that acts on 
JY'. In defining JY' we have used the fact that the set 0 - I 

can, in fact, be identified with m4. The unitary representation 
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of G ft, which corresponds to this nontransitive system of 
imprimitivity, is given by 

(U(h,b,v,a;z)f) (K,p) 

=Z-I exp[ib(K + (b/2M)p'p - p'a)] 

XL(h)j(K,t5(h) -I(p - Mv», (25) 

for any (h,b,v,a;Z)EGt- and for allfe£'. 
The projective representation of G * (with the multiplier 

m M ) corresponding to the representation (25) of G ft is now 
obtained putting z = 1 in this equation. The representation 
U:G*-9t(JY'), with JY'=L 2 (mXm3,dp(K)d 3p,%), 
takes then the explicit form: 

(U(h,b,v,8)f) (K,p) 

= exp[i(bK + (b 12M)p'p - p'a)] 

XL(h)j(K,t5(h) -1(p - Mv». (26) 

The above family of projective representations for G * 
can also be obtained as follows. Consider, for each KEm, the 
representation 

(Ufh,b,v,a)f) (p) 

= exp[i(bK + (bI2M)p'p - a·p)] 

XL(h)j(t5(h) -1(p - Mv», (27) 

which acts (for each fixed K) in the Hilbert space 
L 2(m\d 3p,%). Choose any measure dp on m, and define 

U = L$ U(K) dp(K). (28) 

Since L$ L 2(m3,d 3p,%)dp(K) can be identified with 

L 2 (mXm3,dp(K)d 3p,%), (27) and (28) constitute, in 
fact, the same (i.e., equivalent) representation than (26). 

Usually in the physical applications of the group repre
sentations one considers only those coming from transitive 
imprimitivity systems. Here we have exhibited a class of rep
resentations that corresponds to non transitive imprimitivity 
systems. Nevertheless, they seem to be of physical interest. 
Indeed, in his classic paper Wightman I studied representa
tions of the form (28) as the most general localizable Galilei 
objects. 

1 A. S. Wightman, Rev. Mod. Phys. 34, 845 (1962). 
2V. S. Varadarajan, GeometryoJQuantum Theory, 2nd ed. (Springer, New 

York, 1985). 
lV. Bargmann, Ann. Math. 59,1 (1954). 
4K. R. Parthasarathy, Lecture Notes in Mathematics, No. 93 (Springer, 

Berlin, 1969). 
s 1.-M. Uvy-Leblond, Group Theory and its Applications, II, Edited by E. 
M. Loeble (Academic, New York, 1971), pp. 221-299. 

61._M. Levy-Leblond, 1. Math. Phys. 4, 776 (1963). 
71. Voisin, 1. Math. Phys. 6, 1519 (1965). 
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Indecomposable representations of the Poincare group associated to infrared singular field 
theory models are discussed in the framework of the general theory of the Gupta-Bleuler 
triplet formulated by Araki. It is shown that the definition of maximal Hilbert space 
structures, related to the infrared properties of the states of the models, can be exploited to 
construct representation spaces for the Gupta-Bleuler triplet. The examples of the two
dimensional massless scalar field and of the electromagnetic field in the Landau gauge are 
discussed. In particular, in the first example, the relation between the Gupta-Bleuler triplet 
and the algebraic treatment of the massless scalar field is investigated. In the case of 
electromagnetism, the structure of the representation of the Poincare group in the Landau 
gauge is clarified. The explicit form of the corresponding Gupta-Bleuler triplet for the one
particle space of the electromagnetic field is exhibited. 

I. INTRODUCTION 

Indefinite metric structures of degenerate systems 1 have 
been widely investigated in recent years, both in the frame
work oflocal and covariant Wightman formulation,2.3 and 
in a C *-algebraic context. 4-6 At the same time, the study of 
mass zero representations of the Poincare group7-9 stimulat
ed the investigation of indecomposable representations 11' of 
a Lie group, on a space JY' with an invariant indefinite inner 
product, taking the following form: 

(1.1 ) 

where JY'j is a 11' invariant subspace of JY'j + 1 without any 11' 

invariant complement and 11'j is constructed on the quotient 
space JY'/ JY'j _ 1 • 

As a result, a general theory of the Gupta-Bleuler triplet 
was formulated by Araki,1O who also gave a necessary and 
sufficient condition for ( 1.1) to have invariant nondegener
ate inner product in terms of cohomologies related to 11'j" 

However, the realization of a Gupta-Bleuler triplet in 
the framework of specific field theoretical models is faced by 
a mathematical obstruction connected to the following 
structural problem. The representation space JY' of Ref. lOis 
an indefinite inner product space" provided with a locally 
convex topology generated by the family of seminorms 

( 1.2) 

where t/J,l/J E£", and ( , ) denotes the inner product. The 
notions of closed subspace and irreducible or indecompos
able representation are defined by Araki in terms of the 
above topology (see Ref. 10, remark 2.2 and definition 2.3). 
However, in the case of indefinite metric field theory models, 
the Wightman functions define a vector space fj) 0' an inner 
product ( , ) on fj) 0' and a locally convex topology by the 
family of seminorms (1.2) (with t/J,l/J Efj) 0) with respect to 
which fj) 0 is, in general, not complete. Moreover, one cannot 
uniquely extend the inner product to the closure of fj) 0 in the 
above topology, since the form ( , ) is not jointly continuous. 

A possible strategy for the construction of a (complete) 
space of states is to look for a topology induced by a maximal 

Hilbert structure or Krein structure12 defined by a positive 
scalar product that bounds the indefinite inner product, and 
to consider the Hilbert space closure of fj) 0' where the form 
( , ) can be extended by joint continuity. It can be shownl2 

that in a maximal Hilbert space one can always define the 
positive scalar product ( , ) in such a way that the metric 
operator 1] defined by the relation (, ) = ( , 1]), satisfies 
1]2 = 1. The resulting Hilbert space is a particular type of 
indefinite inner product space called Krein space. II 

It is worthwhile to stress that the maximal Hilbert struc
ture associated to a given set of Wightman functions, is not, 
in general, uniquely determined. This arbitrariness in some 
sense parametrizes different representations of the field alge
bra corresponding to different infrared properties of the 
states. 12, \3 

The nice property of Krein spaces is that the topology 
defined by the seminorms (1.2) is equivalent to the weak 
Hilbert topology, so that the notions of closed subspace and 
irreducible representation of Ref. 10 are reduced to the usual 
Hilbert space definitions. 

In the present work, the above strategy is applied to 
define the Gupta-Bleuler triplet for the representations of 
the Poincare group in the one-particle space of the two-di
mensional massless scalar field and Landau gauge electro
magnetism. 

In Sec. II, after a short review of the basic definitions 
and results of Ref. 10, we describe the Krein space quantiza
tion of the two-dimensional massless scalar field and the re
lated representation of the Poincare group. The discussion of 
the corresponding Gupta-Bleuler triplet is simplified by 
choosing a suitable orthogonal decomposition (with respect 
to the positive scalar product) of the Krein space. From the 
resulting structure, one easily recovers the HZ cohomology of 
the Poincare group (in two dimensions) generated by the 
soliton solutions of the wave equation.)4-)6 

In the subsequent sections, the Gupta-Bleuler triplet in 
electromagnetism is investigated. The free electromagnetic 
potential in the Gupta-Bleuler gauge) provides a well
known example of Krein space quantization. The one-parti
cle space is defined by 
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K= {tPl'(P), tPI'EL2(d
3p

, c+). Jt=0,1,2,3} 
Po (1.3) 

(C + is the forward light cone) with the positive scalar prod
uct 

3 f d 3
p -(t/J,tP) = L - t/JI' (p)tPl' (p). 

1'=0 Po 
(1.4) 

The metric operator is defined by 

(7JtP) I' = - tP 1', ( 1.5) 

so that one obtains the usual Lorentz invariant inner product 

( 1.6) 

We stress that the construction of Krein space structures 
associated to infrared singular field theory models (like e.g., 
the two-dimensional massless scalar field 12.17 and the 
Schwinger model 18 is, in general, more elaborated than the 
simple structure (1.3 )-( 1.6). However, one can show that 
the Landau gauge electromagnetic potential (characterized 
by a propagator which is infrared singular as p I'P vi p4) can 
be defined as an operator-valued distribution acting in the 
same Fock space as the Gupta-Bleuler gauge potential and 
with the same Hilbert structure. 19 

As a result, one can define a Landau gauge representa
tion of the Poincare group in the one-particle space K de
fined by (1.3 )-( 1.6) (see Sec. III). This representation can 
be investigated from the point of view of the general theory 
given by Araki and related to the corresponding representa
tion in the Gupta-Bleuler gauge. In particular, by suitably 
choosing an orthogonal decomposition of the space K, it is 
shown (Sec. IV) that the Landau gauge representation de
fine a new triplet which, by the group property, differs by a 
cocycle from the triplet in the Gupta-Bleuler gauge. In the 
last section (Sec. V) the properties ofthis cocycle and the 
nontriviality of its cohomology class are discussed. 

II. THE GUPTA-BLEULER TRIPLET FOR THE TWO
DIMENSIONAL MASSLESS SCALAR FIELD 

We start by recalling some definitions and results of Ref. 
10. A representation 7f'* of a Lie group G on a space K* is 
called conjugate to a representation 7f' of G on K if there is a 
sesquilinear form (S, ; ), SeK*, ;eK, such that ( 1 ) K and 
K* separate each other, i.e., (S, ; ) = 0 for any ;E K im
pliesS = o and (S,;) = o for any SE K* implies; = O. (2) 
For any gEG, 

The following is the main result of Ref. 10. Let 7f'1 be an 
irreducible subrepresentation of an indecomposable repre
sentation 7f' of G on a space K with a G-invariant (indefin
ite) inner product. Then (I) 7f' is of the form (1.1) with 
n = 2 or 3 such that 7f'n = (7f'lw) mod K n _ 1 on Knl 
Kn _ I is conjugate to 7f'1 on K I; (2) KI is a null space; (3) 
the induced inner product on K21 KI is nondegenerate and 
invariant for the representation 7f'2' 

Let us suppose that K j has a closed complement 
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~j+ I in Kj+ I' Then 7f'(g) can be written on 
K = KI + ~ 2 + '" + ~ n in the matrix form 

(

7f'1 (g) CI2 (g) Cln (g») 

o 7f'2(g) C2n (g) 
7f'(g) = : : . . .. 

o 0 7f'n (g) 

A Gupta-Bleuler triplet in the standard form is defined 
by 

(2.1) 

on the space 

K=~I +~2+~3' 

with ~ I = K I, ~ 3 = K'f, ~ 2 = ~r, and the inner prod
uct 

(SI + S2 + S3' ;1 + ;2 + ;3) 

= (SI';3) + (S3,;I) + (S2';2)' (Sj';jE~j)' (2.2) 

The off-diagonal elements of the matrix (2.1) 

cij(g): ~r"~j, 

are cochains for the representations 1T'f', 1rJ'. The group prop
erty of the representation (2.1 ) is expressed by the condition 

I-I 
L ckjcjI' I #k + 1, &kk+ I = 0, 

j=k+1 

where () is the coboundary operation defined by 
&kl (gl,g2) = 7f'k (gl )Ckl (g2) - Ckl (glg2) 

(2.3) 

+ Ckl (gl)7f'1 (g2)' gl,g2EG. (2.4) 

The cochain C ij is said to be bounded if there exists a 
cochain 

ct: ~r .... ~j, 
such that 

(S,cij(g);) = (ct(g-I)S,;), (2.5) 

for all ;E~j' SE~r. If cij = ct, we have a self-adjoint co
chain. 

By defining in the usual way cocycles, coboundaries, 
and cohomologies H( 7f'j,7f'j), the existence of a Gupta
Bleuler triplet in the standard form is equivalent to the con
dition that there are nonzero bounded elements 
c12EH(7f'2,7f'I) and c23=cT2EH(tr1',7f'2) (see Ref. 10, 
Theorem 2). 

As discussed in the previous section, it may be interest
ing to discuss the realization of the above general structures 
in the framework of infrared singular local field theory mod
els. The simplest example is provided by the massless scalar 
field in two space-time dimensions. 12,17 The two-point func
tion of the model defines an indefinite inner product on the 
test function space Y(R2) by 

if, g) = f d 2p W(p )l(p )g(p), 

where 
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(2.7) 

and 

(J..) + =~ (O(p) log (p)). 
p dp 

We recall that the distribution (2.7) is a regularization of 
l/IPI and it is positive on the test function space Yo 
= {feY,J( 0) = O}. According to the discussion in the pre

vious section, we want to define a positive scalar product on 
Y that bounds the indefinite inner product (2.6) and so that 
the norm closure Y provides a maximal set of states. 

In this case, the problem has a unique solution, in the 
sense that the maximal Hilbert closure Y is uniquely deter
mined. The Hilbert scalar product can be given in the form 12 

(j,g)K = (j<>'~) + (j,X)(X,g) +f(O)g(O), (2.8) 

where we have decomposed the generic /EY as 

/(p) =f(O)X(p) +r(p), rEYo 

and the function X(p) satisfies X(O) = 1, (X, X) = O. 
The closure of Y in the norm defined by the above sca

lar product is a Krein space Y = K, with a metric operator 
7] satisfying 7]2 = 1. We denote by $ the orthogonal sum 
(with respect to the positive scalar product) in K. It can be 
shown 12 that the space K has the following orthogonal de
composition: 

K = !!It I $ !!It 2 $ !!It 3' (2.9) 

where !!It I and !!It 3 are one-dimensional subspaces given by 

!!It I = {avo, aEC, Vo = 7]X}, 

!!It 3 =WX,/3EC}, (2.10) 

while 

!!It ~L 2(~ R) 
2 IPI I' , (2.11 ) 

with 7]L~, = 1. 

From (2.9)-(2.11) it follows that the eigenspace corre
sponding to the negative eigenvalue of 7] is the one-dimen

sional subspace generated by the vector v _ = (l/,j2) 
X (X - vo)·When the metric operator (in a Krein space) 
has a finite-dimensional eigenspace corresponding to the 
negative eigenvalue, the indefinite inner space is called a 
Pontrjagin space. I 1 

The representation of the Poincare group (a,A) is de
fined on the dense set Y in the usual way: 

U(a,A)/(p) =/a.A (p) = eiP'1(A - Ip ). (2.12) 

From the Poincare invariance of the two-point function 
(2.7), it follows that U(a,A) is an isometric operator, i.e., 

(U(a,A)j, U(a,A)g) = if, g), j, g ES. (2.13 ) 

We can now extend the representation (2.12) to all K by the 
following result. I I 

Let an isometric operator U be defined on a dense do
main of a Pontrjagin space and suppose that the indefinite 
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inner product is nondegenerate on the closures of the do
main and range of U. Then U is continuous with its inverse. 

In our case, the closures of the domain and range of 
U(a,A) are equal to the space K and therefore the above 
theorem can be applied to extend the representation to the 
bounded operators on K. We still denote by U(a,A) this 
extension. It is worthwhile to stress that the so-obtained rep
resentation is 7] unitary, that is 

U(a,A)t = U(a,A) - I, 

where t denotes the adjoint operation with respect to the 
indefinite inner product ( , ). 

An interesting feature of the Krein space quantization is 
the existence of translationally invariant states. It can be 
shown that the vector Vo = 7]XEK, satisfies the relation 

U(a,A)vo = Vo (2.14 ) 

and it is the unique vector in K with this property. Moreover, 
the vector Vo has zero norm: 

(2.15 ) 

Hence, the one-dimensional subspace !!It I is a Poincare in
variant null subspace of K. Furthermore, it can be easily seen 
that the subspace 

JoY'2 = !!It I $ !!It 2 = Yo 
is Poincare invariant. 

Then, we have the following proposition. 
Proposition 2.1: The representation of the Poincare 

group in the one-particle Krein space ofthe two-dimensional 
massless scalar field defines a Gupta-Bleuler triplet in the 
standard form 

1T(g) = 1T'f(g) ...... 1T2(g) ...... 1TI (g) 

on the space 

JoY' = C$L 2( dpI R) $C 
IpII' , 

(2.16) 

with the nonzero elements of the matrix (2.1) given by 

1TI (a,A) = 1T'f(a,A) = 1, 

1T2(a,A)tP = tPa.A' tP E L 2( ~I 'R). 
c J2 (a,A)tP = (X, tPa.A - tP), 

c23 (a,A)a = a(Xa.A - X), a E C, 

c J3 (a,A)a = a(x, Xa.A - X) = a(x, Xa.A), 

where tPa.A' Xa.A are defined as in (2.12). 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21 ) 

The matrix elements CJ2 and C23 are cocycles whose co
homology classes do not depend on the shape of the function 
X, satisfying X (0) = 1 and (X,X) = 0, which is chosen in the 
definition (2.8) of the Krein norm. 

Proof By (2.9) and (2.10), we can decompose any 
/EY CK in the following way: 

(2.22) 

where,/; is the projection of/on the subspace !!It2' 
By definition (2.8) and the relations Vo = 7] X,7]2 = 1, 

we can also write 
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/= <X,/)VofBJ; fB/(O)X· 

Then, by using <X,X) = 0, we get 

J; = r - <X,r)vo, 

with 

r=/-/(O)X, reYo' 

Thus, the Krein norm (2.8) ofJ; is given by 

(h,J;)K = f ~I tr(p)1
2

, 

(2.23) 

(2.24) 

(2.25) 

and we can identify J; with the functionre L 2 (dp/lPti ,R). 
By (2.12), (2.14), and the identity (2.24), the action of 

the Poincare group on the components of the decomposition 
(2.22) can be written 

(2.26) 

U(a,A)J; =/?',A - <X,r)vo 

= <X'/!!.A - r)vo fB {/?'.A - <X'/!!.A )vo} 

= <X'/!!.A - r)VofB (J?.A h. 
U(a,A)x = Xa.A 

= <X, Xa,A - X)vo fB {(Xa.A - X) 

- (X, Xa.A - X)vo} fB X 

= (X,Xa,A)VofB (Xa.A - XhfBX· 

(2.27) 

(2.28) 

Now, the relations (2.17)-(2.21) follow from (2.26)
(2.28) and by the remark that the vectors {J;} span a dense 
subspace in f!l? 2~L 2(dp/lpd,R). 

The cocycle condition &12 = &23 = 0 and the relation 
&13 = C l2C23 can be easily verified. 

Finally, let us consider a different function x'eY, with 
X' (0) = X(O), in the definition of the Krein structure (2.8). 
Then, one gets the cocycles 

Ci2 (a,A)1/! = (X', 1/!a.A -1/!), 

C~3 (a,A) = X~.A - X', 

which differ from CI2' C23 by a coboundary, since 

(2.29) 

(2.30) 

(X~.A - X') - (Xa.A - X) = (X' - X)a,A - (X' - X), 

and (X' - x)eYo' 0 

Remark I: It is possible to prove that a change in the 
shape of the test function X as in the above proposition corre
sponds to the transformation 

1T(a,A) -+ W1T(a,A) W - t, 
where W is an operator (in a triangular matrix form) pre
serving the indefinite inner product. 10 

The effect of the above transformation is to change C 12 

and C23 by a coboundary and to transform the cochain C I3 in 
such a way to preserve the group property & 13 = C 12 X C23• 0 

The above discussion can be extended to the case of the 
scalar and pseudoscalar fields, lp, 1p, related by 
aJ-LlP = EJ-Lvavlp with EJ-Lv antisymmetric and EOI = 1. It can 
be shownl2,17.20 that, in this case, the one-particle Krein 
space must be enlarged with one more dimension, allowing 
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the definition ofthe vector 1p(X)\IIo=X out of the vacuum 

\110' 
In the enlarged Krein space K, the vector X is normal

ized, orthogonal to X and is represented by the discontinuous 
function X(P) = E(PI)X(p), where E(PI) = 1 for PI >0, 
E(PI) = - 1 for PI <0. 

The new space K contains another translationally invar
iant vector Vo = nx. Moreover, it is possible to define on K an 
indecomposable representation of the Poincare group, 
which preserves the indefinite inner product. 12,17 

The resulting triplet is a generalization of the structure 
(2.16)-(2.21) on the space 

(2.31) 

In particular, one obtains from the above construction 
the cocycle 

c23(a,A){a,p} = a(Xa.A - X) + {3(Xa,A - X), a,{3eC. 
(2.32) 

It is worthwhile to discuss the relation between the above 
construction and the known algebraic treatment of the two
dimensional massless scalar field. 14,15 

As it is known, the space L 2(dp/IPII,R) is isomorphic 
to the completion Jt of the space vii defined in the following 
way: The elements of vii are the real solutions 5(Xo,x I) of the 
wave equation with localized Cauchy data 5(0,XI ), 

aoS(o,xt), where f dX1 aoSt (O,xl) = O. The space vii is fur
nished with the Poincare invariant (positive) scalar product 

(51,52) = f dp 1/!t(P)1/!2(P), 

where 

1/!(p) = IPlt/2~(p) - ilPl- 1/2~ 

and 

~(p) =-I-fdX1 e-1PJC'aoS(0,x l )· 
21T . 

(2.33) 

Finally, the completion Jt is endowed with a complex 
structureJ [making the scalar product (2.33) sesquilinearJ 
by 

From the above definition, one easily checks that J maps vii 
to vii and J2 = - 1. The space vii is the basic test function 
space in the algebraic description ofthe mass zero field. 14

,ls 

Let us consider the two vectors X, X which define the 
cocycle (2.32). We can associate to these vectors the follow
ing solutions of the wave equation: 

(J(X) = f d 2p W(p)e-;PX X(p), 

¢(x) = f d 2pE(Pt)W(p)e-;PXx(p), (2.34) 

A 

with W(p) defined by (2.7). 
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The solutions (2.34) can be seen as elements of the alge
braic dual of ....II, defining the cocycle (2.32) on the closure 
1. 

Let us now consider the real functions t/JI = 1m t/J and 
t/J2 = 1m ~. By choosing a real and symmetric function x(p) 
in (2.34), we get two real solutions of the wave equation 
t/JI' t/J2, with Cauchy data satisfying the relations 

t/JI(O,XI) = 0, 

aot/JI(O,x, ) =X(x1 ) =-l-fdPeiPX'X(IPI,P); 
jj;i 

t/J2(O,X1 ) =-l-fdYE(X, -Y)X(y), 
2jj;i 

aot/J2(O,X I) = 0. 

Hence, the real cohomology of the Poincare group can 
be described by the soliton solutions of the wave equation 

t/Jq,q, (x) = qt/JI(x) + qSt/J2(X) , 

where the real parameters 

q = ~ f dx , aot/Jq,q, (O,xl)' 

qs=-l-fdx,a,t/Jq,q (O,x,), 
-ffi ' 

are the "cohomological" charge and axial charge defined in 
the algebraic treatment. IS 

By taking the real parts of the solutions (2.34), one gets 
another pair of real solutions t/J3 = Re t/J and t/J4 = Re ~ cor
responding to the initial conditions 

t/J3(O,X I) = f dy(loglxl-yl- r'(l»X(y), 

aOt/J3(O,x,) = 0; 

t/J4(O,X I) =0, aOt/J4(O,X I) =fdY f!lJ(_l_)X(Y)' 
xl-y 

where r' is the derivative of the Euler function and the distri
bution f!lJ (l/x) is the Cauchy principal part of the integral. 
It can be shown that, as elements of the algebraic dual of ....II, 
these two vectors are given by 

(t/J3' t) = (t/JI,Jt); (t/J4' t) = (t/J2,Jt), 

for any te ....II. Thus, the two pairs of solutions {t/J I' t/J2} and 
{t/J3' t/J4} are related by the induced complex structure on the 
algebraic dual of ....II. 

III. THE REPRESENTATION OF THE POINCARE GROUP 
IN THE LANDAU GAUGE 

The present section describes the main features of the 
Krein space realization of the Landau gauge given in Ref. 19. 
(For a C *-algebraic treatment, see Refs. 5 and 21.) The ex
plicit expression of the Landau gauge representation of the 
Poincare group on the space (1.3) is then deduced from the 
definition of the electromagnetic potential and the covari
ance requirement. 

The Landau gauge electromagnetic potential is defined, 
in the Fock space over the indefinite inner product space $", 
by the following expression: 
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A ;(1") = (l/~){all«ri)ll) + at{(ri)Il)}, 

jI'eY(R4
), (3.1) 

where a,at are the annihilation and creation operators and 
the projection r is defined by 

-I p"!v (p) ]} 1 . 
2po c+ 

From the above definition, we get 

Plli(p)e Ker r 

(3.2) 

for any ieY(R4
), so that the transversality condition 

all A :; = ° holds as an operator equation. 
Moreover, one can show that the set 

(3.3 ) 

is dense in $", so that the F ock vacuum '110 is a cyclic vector 
in the state space. 

By the covariance requirement and the Poincare invar
iance of the vacuum '110 , we find that the Landau gauge rep
resentation of the Poincare group U L(a,A) is defined on the 
dense domain (3.3) by 

(3.4) 

where (ja,A)1l (x) = All "Iv (A -I(X - a». 
Let us first consider the subgroup of pure space-time 

translations (A = 1). By the expression (3.2) and the iden
tity 

pIlr(j)lllc+ = pIlilllc+, 

the operator U L (a, 1) can be extended to the following 
closed operator in $": 

U L(a, 1 )t/lll (p) = eipa(ifJll (p) 

- iao(PIl /2po) pvt/lv (p», (3.5) 
where 

ifJlle g a =.{t/lile $",pIlifJlleL 2(d 3p/po, C + )}. 

As can be seen from the expression (3.5), the operator 
U L(a, 1) is not bounded for ao#O (i.e., for temporal transla
tions). However, for any aeR\ it is 7J-unitary, i.e., 
U L (a,l)t = U L (a,l) -I, where U t is the adjoint of Uwith 
respect to the indefinite inner product (1.6). 

To find the explicit expression of the Lorentz transfor
mations U(O,A), some elaboration is necessary. From defi
nitions (3.2), (3.4) we get 

(U(O,A)rf)1l (p) 

= (riA)1l (p) 

= AIl'1v (A -Ip ) - (PIl12po) [ao(pj) (A - Ip) 

- (1/2po)(pj) (A - Ip)] Ic , (3.6) 
+ 

where pi denotes the Lorentz scalar product pIlill . Let us 
consider the following identity: 
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(~fA)P.(P) =Ap.V(~j)v(A-lp) + (pp./2np) 

X [nVav (pj) (A - Ip) 

- (1!2np)(pj) (A -Ip )] Ie 
+ 

- (pp./2po) [ao(pj) (A -Ip ) 

- (l12Po)(pj) (A - Ip)] Ie , 
+ 

where we have defined 

nP. = (A -I)op.. 

(3.7) 

(3.8) 

The operator np.ap. restricted to the light cone satisfies 
the following relation [for any feY (R4) ] : 

(3.9) 

By defining t/lp. = (~j)p. and by using (3.9) in (3.7) we find 

(U(O,A)t/I)p. (p) = Ap. vt/lv (A - Ip) 

+~n;a;(Pt/l)(A -Ip ) 
2(np) 

_!!.L (_1 __ ~)(Pt/l)(A - Ip ). 
4 (np)2 p~ 

(3.10) 

Finally, by (3.8) we obtain the expression 

(U(O,A)t/I)p. (p) = Ap. vt/lv (A -Ip ) 

+ Pp. (A-I) ;a.(p.I.)(A-lp) 
2(A- lp)0 0 I 'I' 

+!!.L(} _ 1 )(Pt/l)(A-lp). 
4 \p~ (A - Ip)~ 

(3.11) 

It is not difficult to see that the above operator is well 
defined on the dense domain: 

~ A = {t/lp.EJf',pI-'a;t/lp.EL 2( ~:, C+ ). i= 1,2,3}. 

If the transformation contains Lorentz boosts 
«A - I )Oi#O), the operator (3.11) is unbounded. It can be 
checked by explicit calculation that the operator U(O,A) is 
7J-unitary in K for any Lorentz transformation A. 

IV. THE GUPTA-BLEULER TRIPLET IN THE LANDAU 
GAUGE 

We begin this section with the discussion of the Gupta
Bleuler triplet for electromagnetism in the Gupta-Bleuler 
gauge. By the results of the previous section, the structure of 
the triplet in this gauge will provide a suitable framework for 
the analogous discussion in the Landau gauge. 

The space KI of definition (1.1) is the space oflongitu
dinal photons; 
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(4.1 ) 

The space K2 is the space defined by the subsidiary condi
tion 

K2 = {t/lp.E K,pI-'t/lp. (p) = ° for almost all p E C + }. 

(4.2) 

We choose as closed complement f/t 2 of KI in K2 the or
thogonal complement (with respect to the positive scalar 
product) K 29KI • Then 

f/t2= {t/I~2)EK2' p.t/p.t/I~2)(p) =0 

for almost all p E C + }. (4.3) 

The space f/t 2 is the space of the physical photons. In fact, by 
( 4.2), we have the equivalent definition 

f/t 2 = {t/I~2)E K, t/I~2) = 0, 

;tl p;t/I?)(p) = ° for almost all p E C + }. 

Similarly, the subspace f/t 3 is defined by 

f/t3=K9K2, 

i.e., 

It can be shown 19 that the above definition is equivalent to 
the following one: 

f/t 3 = {t/I~3)EK, t/I~3)(p) = (~:p. t/I(p) , VtEL' ~: ,C + )}, 

(4.5) 

where (lp)o = Po, (lp); = - Pi' i = 1,2,3. 

In the following, we will still denote by t/I(I), t/I(2) ,t/I< 3 >, 
the vectors belonging to f/t I' f/t 2' f/t 3' respectively. 

With the above choice for f/t 2 and f/t 3' we investigate the 
structure of the matrix (2.1 ) in the case of the representation 
of the Poincare group in the Gupta-Bleuler gauge: 

(1TGB (a,A)t/I)p. (p) = e;pa Ap. "t/lv (A - Ip ), 'tIt/I E K. 
(4.6) 

Proposition 4.1: The matrix elements of the Gupta
Bleuler triplet defined by the representation (4.6) and the 
decomposition (4.1 )-( 4.5), can be written in the following 
form: 

(1T?B(a,A)t/I(I» (p) = Pp. e;pa Po t/I(A -Ip ), (4.7) 
p. Po (A - Ip)O 

(1TrB (a,A)t/I<2»p. (p) 

{
o if Il = 0, 

= iP"{A/ - (p;IPo)Ao')t/I]2) (A - p), if Il = i = 1,2,3. 
(4.8) 
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(c?2B(a,A)ttP»1' (p) = !!.!!- eipa AOit/J~2) (A - Ip), 
Po 

(4.10) 

(c~B(a,A)t/J(3»1' (p) 

if It = 0, 
eipa«A -1)Oi + (p;lp~)(A - I )<ipj)t/J(A -Ip), 

if It = i = 1,2,3. 
{

O' 
= 2 

(4.11 ) 

(c~B(a,A)t/J(3»1' (p) 

=!!.!!- eipa(2Ao 0 _ Po _ (A - Ip)O)t/J(A - Ip). 
Po (A -lp)O Po 

(4.12) 

Proof Equation (4.7) follows immediately from (4.1) 
and (4.6). Furthermore, from (4.2), (4.3), and (4.6) it fol
lows that 

(1T~B(a,A)t/J(2»1' (p) = eipaAI' vt/J~2)(A - Ip) 

- (c~B(a,A)t/J(2»1' (p), (4.13) 

for any t/J(2)Eflt 2' where we have defined 

(c~B(a,A)t/J(2»1' (p) = 2Pl'2 eipa ± PvAvPt/J~2)(A -Ip). 
Po v=o 

Thus, recalling the relations t/J&2) = ° and pV AvPt/J~2) 
X (A - Ip) = 0, the above expression can be written in the 
form (4.10). Now, by inserting (4.10) in (4.13), we easily 
find the expression (4.8). 

Similarly, the action of the Poincare group on the ele
ments of the subspace flt 3 can be decomposed in the follow
ingway: 

(AlA-I) 
(1TGB(a,A)t/J(3» (p) = P I' eipat/J(A -Ip) 

I' (A - Ip)O 

(L ) V(AlA - I ) =...J!.....J:.. eipa p p v t/J(A - Ip) 
2p~ (A -lp)O 

+ P I' eipat/J(A - Ip) 
[

(AlA-I) 

(A -lp)O 

(lp)1' ipa 
---e 

2p~ 

x P P v t/J(A -Ip) ,(4.14) 
V(AlA -I ) ] 

(A -lp)O 

where the first term in the above decomposition belongs to 
flt 3 and the last term is in JY'2 = flt I ED flt 2' 

By means of the identity 

3 

pV(AlA -Ip)v = I (A - Ip)v (A - Ip)v = 2(A - Ip)~, 
v=o 

we can rewrite Eq. (4.14) as 
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The first term on the right-hand side of the above relation 
gives representation (4.9). The last term can be further de
composed in the orthogonal sum of vectors belonging to flt I 
and flt 2• 

Thus, we obtain 

(c~3B(a,A)t/J(3»1' (p) 

_[(AlA-Ip)1' ipa.I'(A- I ) (lP)l'iPa - e If' p ---e 
(A -lp)O Po 

X (A -lp)O t/J(A -Ip)] _ (c~B(a,A)t/J(3»1' (p), (4.16) 
Po 

where 

(c?:(a,A)t/J(3»1' (p) 

(L )V(AlA - I ) =!!.!!- eipa P P v t/J(A - Ip). 
2p~ (A -lp)O 

By using the identities 

(lp)1' = - PI' + 28/po; 

(AlA -lp)1' = _ PI' + 2 AI' o(A - Ip)O' 

we readily obtain 

(4.17) 

(4.18 ) 

By using the above identity in the definition (4.17), we get 
the relation (4.12). 

Finally, we obtain the cocycle (4.11) by inserting 
(4.12) and (4.18) in the relation (4.16). 0 

Remark I: It is not difficult to check that the expressions 
(4.7)-(4.12) satisfy the relations 

1T~B(a,A) = 1T'I'GB(a,A), 1T~B(a,A) = 1T!GB(a,A), 

c~B(a,A) = Cr2 GB(a,A), c13
GB (a,A) = Cr3 GB(a,A). 

o 
Given the explicit expression ofthe elements of the ma

trix (2.1) for the Gupta-Bleuler gauge representation in the 
one-particle space JY' = flt I ED flt 2 ED flt 3' we can now investi
gate the structure of this matrix for the Landau gauge repre
sentation in the same one-particle space (and with the same 
orthogonal decomposition). 

By (3.5) and (3.11), the Landau gauge representation 
of the Poincare group can be written in the form 

(UL(a,A)t/J)1' (p) = (UGB(a,A)t/J)(p) 

_ iao(pl' 12po) eipa(pt/J) (A - Ip) 
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where pt/J=pI" t/J,... 
From Eq. (4.19) we see that, for any (a,A), the range of 

the operator UL(a,A) - UGB(a,A) is contained in Jf"1' 
Furthermore, by recalling that pl"t/J~2) = 0 for any t/J(2)eJf"2' 
we have 

UL(a,A) 1)1".(2) = UGB(a,A) 1",(2)' 

Therefore, in the chosen basis, the following relations hold: 

tif(a,A) = 1T7B(a,A), j= 1,2,3, 

Ct2 (a,A) = C?2B(a,A) , Cf3 (a,A) = c~B(a,A), (4.20) 

i.e., the only matrix elements that are different in the two 
representations are the cochains Ct3 (a,A) and c~B(a,A). 

Let us now investigate the explicit expression of the op
erators cT3 (a,A). From (4.5), (4.12), and (4.19) we find 
after some calculations 

(Ct3 (a,A)t/J(3»,.. (p) 

= (p,../po)e;pa[po(A -I)o;a;t/J(A -Ip ) 

- iao(A - Ip)ot/J(A - Ip)] + ~(c~B(a,A)t/J(3»,.. (p). 
(4.21 ) 

We can write the above expression in the following com
pact form: 

where the operators L(a,A) are defined by 

L(a,A): fhi 3-fhi l , 

(L(a,A)t/J(3»,.. (p) 

= (p,../po)e;pa[po(A -I)o;a;t/J(A -Ip ) 

- i ao(A - Ip)ot/J(A - Ip )]. 

(4.22) 

(4.23) 

Remark II: From the above expressions, we see that the 
operators L (a,A) are unbounded operators, densely defined 
on the domain § f C fhi3 given by 

§f={ t/J~3) = [(/p),../Po] t/J(p) , 

t/J,a;t/JEL 2 (pod 3p,C+), i= 1,2,3}. (4.24) 

It is not difficult to see that L (a,A) are bounded, everywhere 
defined operators on the Sobolev space 

H={ t/J~3) = [(/p),../Po] t/J(p) , 1It/JIIH < oo}, 
with the norm 

1It/JIIH = [f d 3pPo(It/J(PW+ ;tl la;t/J(p)1
2)f/2

. 

Then, the operators Ct3 (a,A) defined by ( 4.21) are bounded 
and everywhere defined on the space 

fhif = fhi 3nH, 
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endowed with the norm defined by the sum of the norms of 
fhi 3 andK D 

Remark III: From definition (4.23) one can easily 
check the relation L(a,A) = L *(a,A), which implies 
cT3 (a,A) = c1'3 L(a,A), as it is required by the invariance of 
the inner product (1.6) under the representation. D 

From the explicit expressions (4.20)-(4.22) of the ma
trix elements 17f, c~, it is possible to check the validity of the 
group property (2.3) for the above defined Landau gauge 
representation. 

Proposition 4.2: The Landau gauge representation ofthe 
Poincare group defined by (4.20 )-( 4.22) satisfies the group 
property, i.e., 

(4.25 ) 

Proof By ( 4.20) and the group property of the represen
tation in the Gupta-Bleuler gauge we find 

Ct2 XCf3 = C~BXC~B = 8c~B. 

Therefore, the relation (4.25) is equivalent to 

8ct3 = 8c~B. 

By (4.22), the above equation can also be written 

. 8L = ~8c~B. (4.26) 

Now, the identity (4.26) can be checked by direct calcula
tion from (4.12), (4.23), and the definition (2.4). D 

Corollary 4.3: The two cochains C~B and Ct3 differ by a 
cocycle. 

Remark IV: By the identity (4.26), one can obtain a 
one-parameter family of representations by defining 

elf3 = (1 - f3 /2)C~B + f3L, f3ER 

with the other matrix elements unchanged as in (4.20). 
The values f3 = 0 and f3 = 1 in the above definition cor

respond to the Gupta-Bleuler gauge and Landau gauge rep
resentations, respectively. D 

v. CONCLUDING REMARKS 

In the previous sections, we discussed the explicit con
struction of the triplet (2.1) in some simple models of inde
finite metric quantum field theory. In particular, we showed 
that the Gupta-Bleuler triplet for the one-particle space of 
these models can be defined provided a Hilbert space struc
ture is associated to the corresponding two-point functions. 

Therefore, the structure of the matrix (2.1) depends on 
the explicit definition of the Hilbert scalar product in the one 
particle space. As we remarked in the Introduction, this de
finition is not, in general, unique, allowing different repre
sentations of the field algebra that transform covariantly un
der different representations of the Poincare group. 

An elementary example is provided by the two-dimen
sional massless scalar field discussed in Sec. II. In that case, 
the representation space for the Gupta-Bleuler triplet (2.1) 
is uniquely determined, as there is a unique maximal Hilbert 
topology on the test function space. Nevertheless, the coho
mology class of the cocycles C 12' C23' is determined by the 
infrared behavior of the test function X in the explicit defini
tion (2.8) ofthe Krein norm on the space Y. 

The representations of the Poincare group in the 
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Gupta-Bleuler gauge and Landau gauge discussed in Sec. IV 
are examples of representations related by a gauge transfor
mation according to the definition given in Ref. 1. The re
markable fact is that both these representations can be de
fined in the same (maximal) Hilbert space, the one-particle 
space of the free electromagnetic field in the Gupta-Bleuler 
formalism. 

Moreover, by a suitable choice of the subspaces fYl 1, fYl2, 
fYI in the decomposition of the single-particle space, we ex
hibited the "gauge transformation" of the resulting triplets 
in the form (4.20), (4.21). Therefore, recalling (4.26), we 
see that the triplets in the two gauges differ by the cocycle 

d(a,A) =Ct3 (a,A) - c~B(a,A) = L(a,A) - ic~B(a,A). 
(5.1 ) 

We now discuss the cohomology of d (a,A). We start by 
considering the subgroup of space-time translations (a, 1 ). 

Proposition 5.1: The cocycle dCa, 1) defined by (5.1) has 
nontrivial cohomology. 

Proof: Suppose that d (a, 1 ) is a coboundary. Then, there 
exists an operator RI3: fYl 3 .... fYl 1' such that 

d(a,l) = 8R 13 (a,1). (5.2) 

Let us consider the subgroup (a, 1 ) of pure spatial tr~ns
lation. By (5.l) we have d(a,l) = ° and therefore the opera
tor R must satisfy 8R 13 (a, 1) = ° for any aeR3. It follows 
that the operator R 13 commutes with any multiplication op
erator by a function of p. 

In particular, we get 8R 13 (ao,l) = ° for any element 
(ao,l) of the subgroup of time translations. Hence, the rela
tion (5.2) cannot hold, since d(ao,l) #0. 0 

It is worthwhile to remark that the relation (5.2) holds 
when we consider the representations 1TGB (ao), r-(ao) of 
the one-parameter subgroup of time translations. 

Proposition 5.2: The cocycle d(ao, 1) is a coboundary for 
the representation of the pure time translations in the 
Gupta-Bleuler gauge, and there exists an 7J-unitary operator 
Wo in jy satisfying 

r-(ao,l) = Wo1TGB (ao,l) WO-I. (5.3) 

Proof: From (5.1) and (4.23) we have 

(d(ao,l)¢P»J1 (p) = - iaoPl'eiPnan t/J(p). (5.4) 

Let us define the operator 

RI3: fYlf .... fYl 1, 

(R 13t/J(3»I'(p) = (pl'/Po)(l +iai)t/J(p)· 

From the above definition we obtain 

(8R 13 (ao, 1)t/J(3»1' (p) 

(5.5) 

= (Pl'/Po) [eip"an(1 +iai ) - (1 +iai)eiPnan]t/J(p) 

= - iaOPl'eip,,on t/J(p), (5.6) 

so that the cocycle (5.4) is a coboundary. 
Furthermore, the operator (5.5) satisfies the relation 

(

1 ° 
Wo= ° 1 

° ° 
satisfies (5.3) and wt = W - I, i.e., the representations 
r-(ao,l) and 1TGB (ao,l) are 7J-unitary equivalent. 0 

We finally discuss the subgroup of pure Lorentz trans
formations. In this case, the cochain transformation 

c~B(O,A) .... Ct3 (O,A) = c~B(O,A) + d(O,A), (5.8) 

can be characterized in the following way 
Proposition 5.3: The cocycle d(O,A) in the transforma

tion (5.8) can be written in the form 

d(O,A) = - {c~B(O,A)R f2 + RI2C~B(0,A)} 
+ i 8R I3 (0,A), (5.9) 

where R 13 is given by (5.5) and the operator R 12 is defined 
( on a dense domain in fY( 2 ) by 

(R 12t/J(2»I'(p) = -!Pl' a i'll12) (p). (5.10) 

Proof By definition (5.10) and the relation 

(t/J(3), R 12t/J(2» = (R f2 t/J(3), t/J(2», 

we obtain the expression 

(R f2 t/J(3» i (p) = Hpo ait/J(p) + (pJpo)pi ajt/J(p) ], 
(5.11 ) 

with i = 1,2,3. 
Then, the result follows by direct calculation from 

(4.10), (4.11) and the above expressions for R 12, R f2' and 
R 13• o 

Remark I: By considering the subgroup of pure Lorentz 
transformations, it follows from the above proposition that 
the cohomology of d (O,A) is not trivial. 

In fact, ifthe term d(O,A) is a coboundary, we get from 
(5.9) 

cI2 (0,A)R f2 + RI2 C23(0,A) = 8S13 (0,A), 
where 

8S13 (0,A) =1T1 (O,A)SI3 - SI31T3 (O,A) 

for some operator S 13: fYl3 .... fYl 1• 

( 5.12) 

Hence, the left-hand side of (5.12) must be invariant 
under the coordinate transformation: 10 

1Tj .... 1Tj , j= 1,2,3, 

C12 .... CI2 + 8W12, C23 .... C23 + 8W23, 

with W 12: fYl2 .... fYl l and W23: fYl3 .... fYl2 arbitrarily chosen 
operators. 

By choosing ~12 = R 12! W23 = R f2' we get the condi
tion 

8( RI2R f2 ) (O,A) = 0, (5.13) 

which is not satisfied by (5.10) and (5.11). 0 
Remark II: It is possible to relate the transformation 

(5.9) to a coordinate change of the form 

Rf3 = -RI3. (5.7) 1T(a,A) .... W1T(a,A) W - I, 

By (5.6) and (5.7), the matrix where W is the matrix defined by 
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1 

° 

- RI2R f2/2 - R\3/2) 
Rf2 , 

I 
(5.14) 

The above operator preserves the indefinite inner product 
and implements the transformation: 10 

C\2 .... C\2 + 6R\2' C23 .... C23 + 6R f2' 
C\3 .... C\3 - {(6R\2)R f2 - Rd6R fz )}/2 

- CI2R f2 - R 12c23 + 6R\3/2. 

Then, by using (5.9), it is not difficult to check that the 
gauge transformation 

1TGB (O,A) .... ~(O,A), 

can be represented in terms of the matrix (5.14) in the form 

~(O,A) = W1TGB (O,A) W -I + 6W(O,A) W -I, 

where 

o 
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All SL(3,R) ladder representations 
OJ. Sija~ki 
Institute 0/ Physics, P.O. Box 57, Belgrade, Yugoslavia 
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All unitary and nonunitary ladder (multiplicity free with respect to the SO (3) maximal 
compact subgroup) representations ofthe double covering group SL(3,R) of the SL(3,R) 
group are cataloged and presented explicitly. The list of non unitary representations is 
corrected and completed, and a new insight concerning the /1j = 2 ladder representation 
starting with} = ~ is obtained. 

I. INTRODUCTION 

The interest in the SL(3,R) group, i.e., its unitary irre
ducible representations (unirreps), was initiated in the 
physics literature by Dothan, Gell-Mann, and Ne'eman. 1 

They suggested an assignment of the particles laying on a 
single Regge trajectory to the SL(3,R) /1j = 2 ladder 
[SO(3) subgroup multiplicity-free] unirreps. At that time 
only the ladder unirreps starting with} = 0 and} = 1 were 
known, and allowed for an assignment of the 1T and p Regge 
trajectory recurrences. It turned our that the relativistic ex
tension of this model is given by the SL( 4,R) symmetry,2 

and that its affine extension and the quantum field theory 
framework provide for a classification of all known hadron 
resonances.3 

Biedenharn and Weaver4 promoted the application of 
the SL(3,R) symmetry and its unirreps in the field of nu
clear physics leading subsequently to various generaliza
tions. 

Rehl and collaborators formulated an affine generaliza
tion5-9 of the Poincare gauge theory of gravity based on the 
GA(4,R) gauge symmetry. The fermionic matter fields of 
this theory are determined by the SL(3,R) stability sub
group spinorial unirreps. 

The non unitary SL (3,R) representations are essential 
for the three-dimensional relativistic quantum field theory 
(RQFT) as well as for the extended object theory develop
ment: (a) these representations determine the form of the 3-
D quantum fields, and are of inevitable importance when the 
fields are defined in a curved space-time, (b) they define 
both the tensorial (bosonic) and spinorial (fermionic) fields 
of a 3-D affine gauge theory of gravity, and finally (c) the 
nonunitary SL(3,R) representations play an important role 
in the membrane and supermembrane lO theories, in the pro
gram of formulating a spinning membrane theory, II as well 
as in the theory of 3-D world spinors and realizations of 
Diff(3,R) transformations. 12.13 

The SL (3,R) ladder unirreps, both tensorial and spinor
ial, were a subject of numerous papers and various ap
proaches. There were two questions of special interest: the 
construction of all ladder unirreps, and the existence, i.e., the 
reason of nonexistence, of a ladder unirrep starting with the 
rotational subgroup label} =~. The first question has been 
settled quite some time ago (though reappeared and reset
tled again), while the second question kept the attention of 
the workers in the field. 

The study of the SL( 3,R) unirreps included the follow
ing approaches: (a) in simultaneous eigenvalues problem 
solution for the Casimir operators and a certain paritylike 
operator,14 (b) an explicit solution of the algebraic equa
tions for the noncompact operators matrix elements that are 
obtained from the commutation relations!5-17 (c) an ana
lytic continuation of the SU (3) representation labels to the 
labels of the corresponding noncom pact SL (3,R) group un
irreps!8 (d) a (rather remarkable) noncompact operator 
construction in terms of the forth order "spin r boson oper
ators,19 (e) a general method based on the Rarish-Chandra 
-Kihlbergwork,20.21 (f) anO(3) shift operator technique, 22 
(g) an enveloping algebra method,23.24 (h) a decontraction 
ofthe T5XSO(3) noncompact operators into the SL(3,R) 
ones,25 (i) a geometric quantization method,26.27 (j) a de
termination of the unitary dual,28.29 and (k) a so-called 
"constructive" method (with numerous incorrect and con
fusing results). 30.31 

The nonunitary SL (3,R) ladder representations were 
treated by the enveloping algebra method,23 and by the con
structive method. 31 In Ref. 23 the /1} = 2 nonunitary ladder 
representations were studied, and thus only partial results 
were obtained, while the results of Ref. 31 are mostly incor
rect. 

II. PRELIMINARIES 

The SL( 3,R) group is a group of R 3 space volume-pre
serving transformations. Its maximal compact subgroup is 
the SO (3) group. Let us denote the SL (3,R) group genera
tors, in the so-called spherical basis, by Jo, J ±; TI' 
(/l = 0, ± 1, ± 2), where the three J operators form an 
SO (3) vector-operator (j = 1), while the remaining five 
noncompact T operators form an SO (3) quadrupole opera
tor (j = 2). The minimal set of the SL(3,R) commutation 
relations is given as follows: 

[ Jo,J ± 1 = ± J ±' [J +,J _] = 2Jo, 

[Jo,TI'1 =/lTI" [J±,TI'1 =.j6-/l(/l± 1) TI'±I' 

[T+ 2,T_ 2 ] = -4Jo· 

Let us denote by SL (3,R) the double-covering (universal
covering) group of the SL(3,R) group. The SU(2) is the 
maximal compact subgroup of the SL (3,R) group. One has 
the following minimal sequence of relevant groups: 
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1 -Z2--+ SL(3,R)--+SL(3,R) --+ 1 

U U 
l-Z2--+ SU(2) --+SO(3)--+I, 

where Z2 is the center of the SL(3,R) group. It is well 
known that there are no finite-dimensional spinorial repre
sentations (representations reducing to the half-integer la
beled SO (3) representations) of the SL (3,R) group, as well 

as that the SL (3,R) group is a group of infinite-dimensional 
complex matrices. Both single-valued (tensorial) and dou
ble-valued (spinorial) SL(3,R) representations are ob-

tained as single-valued representations of the SL(3,R) 
group. 

In general we make use of the Hilbert space defined as a 
symmetric homogeneous space over the maximal compact 
subgroup, i.e., over the SU(2)L XSU(2h ::JU(1h 
xU ( 1 ) R group (L,R refer to the left, right group action, 
respectively).21 The basis elements are Ikim)' wherej=jL 
=jR is the SU(2) label, while k, m are the U(1h, U(1)R 
labels, respectively. When the multiplicity is known a priori 
to be trivial, one starts with a homogeneous'space over the 
SU (2) ::J U ( 1) group with the usual basis vectors I~). 

III. REPRESENTATION INVARIANT SPACES 

There are, as it was shown in the general analysis,2. two 

principal types of the SL (3,R) representation invariant 
spaces. They are distinguished according to the multiplicity 
of their SU (2) subgroup invariant subspaces: (a) the a priori 

ladder-type SL (3,R) invariant spaces [each SU (2) invar
iant subspace appears at most once], and (b) the a priori 

generic-type SL (3,R) invariant spaces [the SU (2) invar
iant subspaces could appear in the reduction more than 
once]. We consider these two cases separately. 

A. Ladder-type invariant spaces 

The noncompact operator matrix elements in the I~) 
basis are given by the following expression:21 

II IT Ij ) = (- )l-m'[ I 2 j ](i'IITIV), (1) 
\m' I-' m -m' f..t m 

where 

(j'IITIV) = -i( - )JJf~(2I + 1)(2j+ 1) 

X{CT1 + iCT2 - ~U'U + 1) - jU + 1)]} 

[12 j ]. 
X 000 

In this expressionj is an integer and CT., CT2 are two real SL 
(3,R) representation parameters. One can replace the 3-j 
symbol in Eq. (1) by its explicit analytic expression and then 
allow j to be half-integer as well. In this manner one can treat 
simultaneously both tensorial and spinorial representations. 
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The noncompact operators matrix elements read now as fol
lows: 

f~,1 TI-' I~) = (- )J-m'[ _:, ~ ~](j'IITIV), (2) 

where 

(j - 2I1TIV) = - i( - )2i (CT. + iCT2 

+ 2; _ 1) [jU - 1) ] 1/2 
:I (2j _ 1) , 

(jIITI';) = + i( _ )2i(CT + iCT )[ 2jU + 1)(2j + 1) ]112 
LI t 2 3(2j + 3)(~ - 1) , 

(j + 2I1TIV) = - i(CTt + iCT2 - 2j - 3) 

X [ U + l)(j + 2) ]112. 
(2j + 3) 

The SL (3,R) invariant spaces of the ladder type are 
now defined as the subspaces of the space H = l: <9 H( j) 

which are invariant with respect to the action of the SL 
(3,R) operators, where HU) = {I~); Iml <j} are SU(2) 
invariant spaces determined by the labelj, i.e.,J 2 --+jU + 1). 

In order to construct explicitly an SL (3,R) invariant space 
one collects together all H( j) subspaces that are connected 
mutually by the TI-' operator action, verifies the validity of 
the SL (3,R) commutation relations, and determines the 

spaces HUmin ) and HUmax ), as well as the SL(3,R) group 
labels CT. and CT2' in such a way that TI-' cannot connect 
HUmin ), HUmax) to HU <jmin), HU> jmax)' respective
ly. 

It is obvious from (1), (2) that the TI-' operators con
necttheHU) spaces that differinjby 0, ± 2, and it is rather 

straightforward to check that the SL (3,R) commutation 
relations are satisfied. The jmin values are obtained from (2) 
when the requirement that Umin - 211 T IVmin) = 0 is satis
fied, i.e., when 

( + . + 2' , - 1) }min }min - = 0 
[

. (. 1) ].12 
CT. lCT2 'Jmm. . 

2}min - 1 

The allowedjmin values are now as follows: 

jmin = 0,1, 

jmin =~, 
jmin = ~,2,~,3, ... , 

for any CT. and CT2, 

for CT. = CT2 = 0, 

for CT. = 1 - 2jmin ,CT2 = o. 
(3) 

The jmax values are obtained either from (2) provided 
< jmax + 211 T IVmax) = 0, i.e., when 

( . _ .,; _ 3) }max + }max + = 0 
[ 

( . 2) ( . 1)] 112 
CT. + lCT2 ":fmax . ' 

2}max + 3 

or from the requirement that j increases indefinitely. The 
allowedjmax values are now as follows: 

jmax = o,~, 1,~, ... , for CTt = 2jmax + 3, CT2 = 0, 

jmax is unlimited for CT2¢0. (4) 

Finally, one determines the SL(3,R) invariant spaced by 
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selecting compatible values for 0'1' 0'2,jmin, andjmax from (3 ) 
and (4). 

B. Generic type Invariant spaces 

The noncompact operator matrix elements in the I k j m) 
basis are given by the following expression:21 

f~,1 TI~) = -;( - )/-k'./(2l + 1)(2j+ 1) 

(5) 

where 

{(( 
2 )1/2 1 ) [ 1 2 j ] 

X "3 (0'1+;0'2)- .j6U'U'+I)-jU+l)] -k'Ok 

2 
2 

~ ] - (81 + ;82 - k + 1) [ _ ~, 2 j]} 
-2 k . 

In this expression, obtained from a general analysis, j is ei

ther integer or half-integer, and 0'1,0'2,81, and 82 are real SL 
(3,R) representation labels (two of them suffice). 

The SL (3,R) invariant spaces of the generic type are 
defined as the subspaces of the space H = 1: ED H(j,k) that 

are invariant with respect to the action of the SL( 3,R) oper
ators, where 

H(j,k) = {I k j m); Iml <j,j> Ik I} 
are SU(2) invariant spaces. In general, there is a nontrivial 
multiplicity of the H (j, k) subspaces in H that is determined 
by, and increases with the label k. In order to obtain explicit-

ly an SL (3,R) invariant space, one collects together all 
H(j,k) subspaces that are connected mutually by the T" 
operator action, verifies the validity of the SL(3,R) com

mutation relations, and determines the spaces H(jmin ,k) 
and H(jmax ,k). 

It is obvious from (5) that the T" operators connect the 
H(j,k) spaces that differ in k by 0, ± 2, and injby 0, ± 1, 

± 2, while the SL (3,R) commutation relations are satisfied 
by construction [Eq. (5) is defined for both integer and half
integer j-there is no need for a continuation in j]. More
over, it is clear from Eq. (5) that the requirement 

• 
• 
• 

• 
• 
• 
• 
• 

• 7. 
• 6. 
• 5. 
• 4. 
• 3. 
• 2. 
• 1. 

-5 -3 -1 

• 
• 
• 
• 
• 

3 

• 
• 
• 

5 k 

FIG. 1. The k = ± lsubspaceofthe SL(3,R) generic typejm;n = 1 invar
iant space. 
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i 
(k~211TIIO =0, k>O implies that Ck!211TII-k j

) =0, 
k> 0 as well. The only possibility now to obtain a ladderlike 
invariant subspace within a class of the generic-type invar
iant spaces [of a new kind, not contained in the ladder-type 
case (k = 0)] is achieved when k = 1. One finds, by de
manding that ({ II T II~ ) = 0, i.e. [cf. Eq. (5)], that 

(8, + ;82 + 2) = O. 

This implies that 8 1 = - 2, 82 = 0, and that ('''- 3 II T IV-I ) 
= 0 as well. The T" operators acts within a subspace defined 

by k = ± 1, whilej = 1, 2, 3, ... , see Fig. 1. At first sight each 
H(j) appears twice, i.e., as H(j, + 1) and as H(j, - 1) . 
However, the space H = 1: ED (H (j, + 1) (fJ H(j, - 1» is not 
irreducible. It can be slit into two irreducible spaces21 

H(j, + ) and H(j, - ) with the bases vectors given as fol
lows: 

H(j, +): I~] = (2)-1/2[11 j m) + (- )jl_: m)]' 

H(j, -): I~] = (2)-1/2[11 j m) - (- )jl_: m)]' 
Obviously, each H( j) subspace,j = 1,2,3, ... , appear in both 
H(j, +) and H(j, -) spaces only once. A natural 

H(jmin) subspace is found forjmin = 1 when the SL(3,R) 
commutation relations are satisfied without any restrictions 
on 0'1 and 0'2' Nontrivialjmin values are obtained by imposing 
the following conditions: 

which are satisfied provided 0'1 = - 2jmin, 0'2 = O. Thus the 
possiblejmin values read 

jmin = 1, O'leR, 0'2eR, 8 1 =- 2, 82 = O. 

jmin = 2,3,4, ... , 0'1 = - 2jmin, 0'2 = 0, 81 = - 2, 

(6) 

On the other hand, the jmax value is unlimited unless we 
impose the following conditions: 

n = 1, 2, which are satisfied if 0', = 2jmax + 2, 0'2 = O. Thus 
one has 
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jmax = 2,3,4, ... , for 0'1 = 2jmax + 2, 0'2 = 0, 

. . .. {O'IER, 0'2ER \ {O}, 
Jmax IS unhmlted for O'IER \ { ± (2j + 3)}, 0'2ER. (7) 

Finally, one determines the SL(3,R) invariant spaces 
by selecting compatible values for 0'1' 0'2,jmin, andjmax from 
(6) and (7). 

IV. CONTRAGRADIENCE AND UNITARITY 

Let D(g) be an SL(3,R) representation. The corre
sponding contragradient representation D(g) is given by 
D(g) = Dt (g-I), implying that the D(g) noncompact gen
erators 1'1' are given in terms of the corresponding D(g) 
generators TIJ. by 1'1' = - (T -I' ) t. 

It is rather straightforward to find from Eq. (5) that 

(k/ m' 11'1' [0'1,0'2,81,82] I k j m) 
= (k/ m,1 TIJ. [ - 0'1' - 0'2' - 8 1, - 82 ] Ik j m)' 

i.e., that the contragradient representation of some 
SL (3,R) representation is given by the same analytic 

expression with the representation parameters substituted 
by their negative values, 

(8) 

The unitarity of the SL(3,R) representations, i.e., the 
Hermiticity of the corresponding generator representations 
is a condition that in general requires a rather complex type 
of the representation Hilbert space scalar product.21 The 
representation space scalar product takes, in the case oflad
der representations, the usual form-there is no need for a 
nontrivial scalar product kernel. 

The noncompact operators Hermiticity condition, 

TIJ.+ = (- )IJ.T_IJ.' 

for the matrix elements ofEqs. (2) and (5) implies the fol
lowing possibilities:21 

A. Ladder unlrreps Eq. (2) 

{
ER, jmin = 0,1 

(a) 0'1 = 0, 0'2 = 0 '. = 1 
, Jmm 2' 

B. Nontrivial-multiplicity unirreps Eq. (5) 

(b) 0'. = 0, 0'2ER, 8. = 0, 82ER, (9) 

{
!, jmin =~, 

(c) 0'. = 0, 0'2ER , 18.1 < 1 '. = 0182 = O. 
,lmm " 

V. UNITARY AND NONUNITARY LADDER 
REPRESENTATIONS SUMMARY 

The list of all ladder unitary and non unitary SL (3,R) 
irreducible representations can now be obtained easily by 
combining the results of (3) and (4), and of (6) and (7) 
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with the contragradience (8) and unitarity (9) reiattons. 
The list of all unitary (infinite-dimensional) and non unitary 
(finite- and infinite-dimensional) SL (3,R) representations 
is given in the following. Representations are characterized 
by the minimal set of labels, when necessary by the minimal 

and maximal SO (3) label valuesjmin andjmax, respectively, 
and thej content (reduction to the SO (3) subrepresenta
tions) is given as well. 

A. Unitary Irreducible representations 

UI. Scalar representation; 

{j} = {O}. 

U2. D[O'I = 0, 0'2 = 0], jmin = 112; 

{j} = {!,~, ~, ... }. 
U3. D[O'I = 0, 0'2ER], jmin = 0; 

{j} = {0,2,4, ... }. 

U4. D[O'. = 0, 0'2ER], jmin = 1; 

{j} = {I,3,5, ... }. 

B. Nonunltary flnlte-dlmenslonallrreduclble 
representations 

FI. D[O'I = ± (2jmax + 3), 0'2 = 0], jmin = 0, 
jmax = 2,4,6, ... ; 

{j} = {0,2,4, ... Jmax}. 

F2. D[O'. = ± (2jmax + 3),0'2 = 0], jmin = 1, 
jmax = 1,3,5, ... ; 

{j} = {1,3,5,···Jmax}· 

F3. D[O'I = ± 2(jmax + 1),0'2 = 0,81 = - 2, 82 = 0], 
jmin = l,jmax = 2,3,4, ... ; 

{j} = {1,2,3,···Jmax}. 

C. Nonunltary Inflnlte-dlmenslonallrreduclble 
representations 

NI. D[O'. = ± 11 - 2jmin I, 0'2 = 0], jmin = ~,2,~, ... ; 

{j} = {jminJmin + 2Jmin + 4, ... }. 

~2. D[O'IER, 0'2ER \ {O}, 81 = - 2, 82 = 0]; 

{j} = {1,2,3, ... }. 

••• 
o v 
Jmax 

I I I I I ••• ••• 
I 

• v 

Jmax 

FIG. 2. Young tableaux of the DIu, = ± (2jmax + 3), U 2 = 0) SL(3,R) 
~j = 2 ladder representations. 
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D ••• 

~------~.Y~---------

Jmax 

I I I ••• • •• 
--------~.v,--------~ 

Jmax 

FIG. 3. Young tableaux of the D[ 0", = ± 2(jma. + 1), 0", = 0, <5, = - 2, 
<5, = 0] SL(3,R) t::.j = 1 ladder representations. 

N3. D[u1eR '\ { ± 2(n + 1); n = 2,3, ... }, 
u2eR,81 = - 2, 82 = 0]: 

{j} = {1,2,3, ... }. 

N4. D[u1 = ± 2jmin, 0'2 = 0, 81 = - 2, 82 = 0], 
jmin = 2,3,4, ... ; 

{j} = {jmin,jmin + l,jmin + 2, ... }. 

Representation VI is a trivial one, (scalar), the repre
sentations V2, V3, V4, Fl, F2, and Nl are constructed by 
starting with the ladder-type invariant spaces, while the re
maining representations, F3, N2, N3, and N4, are construct
ed by starting with the generic-type invariant spaces. The 
unirrep V2 starting with jmin = ~ is unique, while the re
maining nontrivial ladder representations characterized by 
± 10'.1 or by ± 10'21, 0'2#0 are pairs of mutually contragra

dient representations. The Young tableaux corresponding to 
the finite-dimensional non unitary ladder representations 
Fl, F2, and to F3 are given on Fig. 2 and on Fig. 3, respec
tively. 

The two /1i - 2 J' . - 3 representations 2,15,16,19.21.22,27 
:t - , mm -2 ' 

as well as any other pair ofNl representations as well as any 
of her pair of Nl representations, starting withjmin = 2,~, 
3, ... , are bona fide representations, though nonunitary. It is 
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the unitarity condition (a), 0'1 = 0, 0'2 = eR, ofEq. (9) that 
in a clash is, in these cases, with the invariant space condition 
0'1 = 1 - 2jmin, 0'2 = OofEq. (3); unless, ofcourse,jmin = ~ 
when one recovers the unique /1j = 2 spinorialladder repre-
sentation of the SL (3,R) group. 
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Symmetry properties of the space of complex (or formal) hyper-Kahler metrics are studied in 
the language of hyper-Kahler hierarchies. The construction of finite symmetries is analogous 
to the theory of Riemann-Hilbert transformations, loop group elements now taking values in a 
(pseudo-) group of canonical transformations of a simplectic manifold. In spite of their highly 
nonlinear and involved nature, infinitesimal expressions of these symmetries are shown to have 
a rather simple form. These infinitesimal transformations are extended to the Plebanski key 
functions to give rise to a nonlinear realization of a Poisson loop algebra. The Poisson algebra 
structure turns out to originate in a contact structure behind a set of symplectic structures 
inherent in the hyper-Kahler hierarchy. Possible relations to membrane theory are briefly 
discussed. 

J. INTRODUCTION 

This is a sequel of a previous paper] on hidden variables 
of hyper-Kahler geometry. Three types of hidden variables 
are introduced therein and shown to form altogether an infi
nite system of differential equations, which we call a "hyper
Kahler hierarchy." This is fully parallel to the case of var
ious nonlinear integrable systems such as the KdV and KP 
hierarchies. 2,3 

In the theory of nonlinear integrable systems, such hid
den variables also playa basic role in studying symmetries 
(hidden or manifest) ofa system. It has been observed for a 
number of cases that these symmetries give a realization of 
various interesting Lie algebras such as Kac-Moody alge
bras. This is a place where the theory of nonlinear integrable 
systems exhibits a deep connection with representation theo
ry. A systematic classification of nonlinear integrable sys
tems has indeed been worked out from this standpoint for so 
called "soliton equations" (see, for example, Ref. 3). 

For the hyper-Kahler hierarchy, a loop group (algebra) 
of canonical transformations in a finite-dimensional sym
plectic manifold plays the role of such a Lie group (algebra). 
In the case of self-dual metrics, for example, as pointed out 
by Boyer and PlebanskV the target group is a (pseudo-) 
group r of canonical transformations in two dimensions. In 
the 4r-dimensional hyper-Kahler case, r is a (pseudo-) 
group of 2r-dimensional canonical transformations. Loop 
groups relevant to these gravitational cases are thus not of 
matrix type as in the case of a number of nonlinear integrable 
systems known until now, but of diffeomorphism type. This is 
one of the most remarkable characteristics of the hyper
Kahler hierarchy, reflecting its gravitational nature. 

More precisely, Boyer and Plebanski in Ref. 4 derived 
such a group structure from the "nonlinear graviton con
struction" of Penrose5 and called it a "nonlinear superposi
tion principle." Although their results are formulated in a 
more geometric language (a kind of infinite-dimensional 
symplectic geometry), the group thus obtained is a loop 
(pseudo-) group of canonical transformations in the sense 
mentioned above. The present author6 attempted to find a 
more explicit description of these symmetries, but that was 

not very successful. A central difficulty is that these transfor
mations are in general extremely complicated; it seems al
most hopeless to have a concise formula of transformation 
laws. 

In this paper, we reexamine this issue in more detail and 
from several new aspects. First, we mostly focus our atten
tion on infinitesimal transformations rather than finite ones. 
As to finite transformations, as mentioned above, we still 
have to overcome a number of difficulties, whose resolution 
is beyond our present scope. Infinitesimal transformations, 
to the contrary, tum out to have a much simpler, and even 
beautiful structure. In particular, we shall see that the struc
ture of differential equations in the hierarchy itself has its 
origin in these symmetries. 

Second, we now consider the hierarchy. This allows us, 
as discussed in Ref. 1, to consider the Plebanski key func
tions 7 as analogs of the l' functions. 2,3 It turns out that sym
metries constructed above can be further extended to the 
Plebanski key functions. For the l' functions, a similar con
struction causes a nonzero central charge (or commutator 
anomaly) in the extended symmetries;2.3 one then naturally 
has to consider a central extension of original symmetry al
gebras. For the Plebanski key functions, we shall see that the 
hidden symmetries give a nonlinear realization of a Poisson 
algebra rather than the corresponding Lie algebra of Hamil
tonian vector fields, but the Poisson algebra requires no cen
tral charge. 

Such a Poisson algebra structure suggests a very inter
esting possibility that was previously not noticed, i.e., some 
relation with membrane theory. In the recent progress of 
membrane theory (see, e.g., Ref. 8) gauge groups and alge
bras of a Poisson algebra are expected to play an important 
role like Kac-Moody and Virasoro algebras in string theory. 
Further, several groups,9 along that line, discussed self-du
ality equations in such "Poisson gauge theories." This is evi
dently a system of the same kind as we have pursued in the 
previous paper. Our method and results might find new ap
plications in membrane theory. 

This paper is organized as follows. In Sec. II, we show a 
hierarchy version of the construction of finite transforma
tions along the lines of Ref. 6. In Sec. III, we derive their 
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infinitesimal form. Infinitesimal transformations are first 
obtained without putting symplectic constraints (a pseudo
group arising here is, therefore, of general type), then in the 
symplectic situation. A final answer is to be stated in terms of 
Hamiltonian vector fields. Section IV deals with symmetries 
extended to the second Plebanski key function. This is the 
place where a Poisson algebra becomes relevant. In Sec. V, 
we argue the origin of the Poisson algebra structure in the 
context of contact geometry. Appendix A presents an at
tempt at a purely algebraic reformulation of the contents of 
Sec. II. Appendix B is a summary of parallel results on the 
first Plebanski key function. 

Notations in the text obey the convention of Ref. 1 as far 
as possible. Here, E AB and ~B denote the symplectic E sym
bols with indicesA,B = 1, ... ,2r (ris related to the dimension
ality of hyper-Kahler manifolds) normalized as 

E I,2 = EI,2 = ... = E2r _ 1,2r = cr- I ,2r = 1, 
-2 I -2r2r- I 1 

E 2,I = e' ='" = E2r.2r - I = e- . = - , 

other components = O. Symplectic indices A,B, ... are to be 
raised and lowered as 

SA = EABS B, TJB = TJA~B. 

In general, d stands for the total differentiation with respect 
to both space-time variables and other independent variables 
of the hierarchy, but excluding the "spectral parameter" A. 
The Einstein summation convention is applied only for sym
plectic indices; for other indices, we shall write the summa
tion sign explicitly in every event. 

II. LOOP GROUPS AND NONLINEAR GRAVITON 
CONSTRUCTION 

The nonlinear graviton construction, as Boyer and Ple
banski stressed in Ref. 4, is very similar to the Riemann
Hilbert problem. Their formulation, however, as opposed to 
the Riemann-Hilbert problem, still does not take the form of 
a factorization problem in the loop (pseudo-) group. This 
issue is settled in Ref. 6. An advantage of such a formulation 
as a factorization problem is that it is also readily applicable 
to hierarchies like our hyper-Kahler hierarchy. I Penrose's 
original methodS is based on the deformation theory ofKo
daira and Spencer; such a geometric framework breaks 
down in the presence of an infinite number of flows that the 
hierarchy describes. (See Appendix A for an algebraic 
framework for justifying the arguments below along the line 
of Ref. 6.) 

The Riemann-Hilbert problem has long been used as a 
powerful solution technique in the theory of nonlinear inte
grable systems. Hauser and Ernst lO exploited it to the issue 
of hidden symmetries (of the Ernst equation). Veno and 
Nakamura, II deeply influenced by that work, developed the 
theory of "Riemann-Hilbert transformations." Our con
struction of symmetries for the hyper-Kahler hierarchy lies 
in basically the same direction. 

The essence of the Riemann-Hilbert problem method is 
to factorize a loop group element g(A) [i.e., an analytic map: 
SI-+G, where G is a matrix Lie group like GL (r,C), SL 
(r,C), etc.] into two pieces as: 
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(2.1 ) 

where h and h are required to be holomorphic maps 

h:{AEpl;IA I > 1 - d-+G, (2.2a) 

h:{AEPI;IA I < 1 + d-+G, (2.2b) 

for some small E> 0, where S 1= {AEpl;IA I = n. 
The nonlinear graviton construction, in the formulation 

of Ref. 4 (see, also, Ref. 6), requires one to solve functional 
equations of the form 

UA(A) =fA(U I (A), ... ,U2r(A),A) (1,.;;A,.;;2r), (2.3) 

wherefA(x,A), x = (x l
, ... ,X

2r
), are the coordinate compo-

nents of a loop f(A) in the (pseudo- ) group r can of canonical 
transformations, i.e., a holomorphic (local) diffeomor
phism with a loop parameter AES I sending 

~f(A) = (j1(x,A), ... J 2r(x,A», 

and satisfying the symplectic condition 

ECD afA afB = ~B. (2.4) 
axc axD 

The unknown functions UA(A) and UA(A) ofthe functional 
equations are required to have Laurent expansion of the 
form 

00 

UA(A) = L U~A n, (2.5a) 
n= - IX) 

00 

UA(A) = L U~A n, (2.5b) 
n = - 00 

in an annular neighborhood of S I. Such solutions uA (A) and 
UA(A) obviously satisfy the exterior differential equation 

EAB dUA(A) I\dUB(A) - EAB dUA(A) I\dUB(A) = 0, 
(2.6) 

or, equivalently, the system of equations 

L E AB du~ + m 1\ dU! 
m 

- LEABdu~+ml\du! =0 (- 00 <n<oo). (2.6') 
m 

RecalJl that Eqs. (2.6) and (2.6') give basic expressions of 
the hyper-Kahler hierarchy. Actually, we consider only such 
solutions for which u: (n>O) and u:(n,.;; - 1) arefunction
ally independent. This condition is, in fact, included in the 
definition of the hyper-Kahler hierarchy, I and also a basic 
postulate of the following description of symmetries. 

Remark: We call the set offunctionsfA "patching func
tions" after the terminology in the literature. Our usage is, 
however, slightly different from the conventional one. In the 
self-dual case, for example, patching functions in Ref. 4 are 
required to satisfy a relation like Eq. (2.4) but with the right
hand side replaced by A - 2~B. This simply means that the 
patching functions in Ref. 4 are given by A -IjA (A). The 
seemingly somewhat strange multiplication rule of patching 
functions in Ref. 4 then changes into the ordinary composi
tion of maps: 

f. ofz (A) = (fl(fz(x,A),A), ... ,fafz(x,A),A». (2.7) 
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The present convention is thus more suited from a group
theoretic view. 

A key idea of Ref. 6 is to regard UA(A) and UA(A), too, as 
loops in r can by identifying ug with ~. This is indeed reason
able, because uA (A) and uA (A) also obey the symplectic con
dition 

E CD aUA(A) aUB(A) = ~B, 
au~ au~ 

(2.8a) 

ECD aUA(A) aUB(A) = ~B. 
au~ au~ 

(2.8b) 

[Recall that Eqs. (2.8) are derived from Eq. (2.6)Y] 
Therefore, uA (A) and uA (A) define canonical transforma
tions 

U(A):X = (ug)f-+{uA(A», 

U(A):X = (ug) ...... (UA(A». 

They are further factorized as 

U(A) = u + (A)Ocp(A), 

U(A) = u _ (A)O$(A), 

where 

u + (A):X = (ug) ...... x + (L U~A n) , 
n>1 

U _ (A):X = (ug) ...... x + ( L U~A n), 
n< -I 

cp(A):X = (Ug) ...... (L U~A n), 
n<O 

(2.9a) 

(2.9b) 

(2. lOa) 

(2.lOb) 

(2.l1a) 

(2.l1b) 

(2.l1c) 

(2.11d) 

The maps in (2.11) all become canonical transformations. 
The previous functional equations can be rewritten into a 
factorization problem for loops in r can as follows: 

u+ (A)-Io/(A)OU_ (A) =cp(A)O$(A)-I. (2.12) 

It is now obvious that u~ (n> 1) and ~ (n< - I), in the 
above picture, simply play the role of de/ormation param
eters in the factorization problem. Half of the 4r coordinates 
in the original geometrical setting are included in these de
formation parameters. Their group-theoretic meaning is 
thus essentially different from the other half, i.e., ~'s. 

A bisided translation 

(2.13 ) 

on the group manifold now induces a transformation 
Tg(A,)g(A) 0.1: solutions of the hyper-Kaler hierarchy. Let 
Tg(A) and Tg(A)' respectively, denote the transformations 
caused by the left and right translations in (2.13). Evidently 
these two transformations commute with each other and fac
torize the full transformation: 

A A 

Tg(A)..t(A) = Tg(A) Tg(A) = Tg(A) Tg(A)' (2.14) 

The solution space of the hyper-Kahler hierarchy thus al
lows a pseudogroup action by the direct product r can X r can 

of two copies of r can' The transformations obtained above 
thus have a "chiral structure" just as in the case of gauge 
fields. 12 
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III. DERIVATION OF INFINITESIMAL 
TRANSFORMATIONS 

We first derive an infinitesimal form of Tg(A),g(Aj with
out putting the symplectic condition on /(A), cp(A), and 
$(A), which are accordingly loops in 
rgen = {general local diffeomorphisms:x ..... /(x)}. The con
struction in the previous section can carry over to that case. 
An infinitesimal transformation will be associated with a 
pair of vector fields 

S(A,a) = SA(X,A.) ~, (3.la) 
axA 

t(A,a) = tA(X,A.) a~' (3.lb) 

on the x space which also depend on A. 
To make contact with the previous construction, we 

consider the exponentials 

g(E,A.) = exp ES(A,a), (3.2a) 
def 

g(E,A.) = exp Et(A,a), (3.2b) 
def 

where E is an infinitesimal parameter. Then g(E,A.) and 
g( E,A.) become loop group elements of r gen' and accordingly 
give rise to a one-parameter family of solutions of the hierar
chy: 

(3.3a) 

U(E,A.) :f Tg(E,A),g(E,A) U(A). (3.3b) 

From the previous construction [see, in particular, (2.12) 
and (2.13)] one finds that the transformed solutions are 
connected with the original solutions by the relation 

U(A) -log(E,A.) -IOU(E,A.) 

(3.4 ) 

We now calculate both sides of Eq. (3.4) to the first 
order of E, This should yield some equations on the infinitesi
mal transformations 

8UA(A) = 8stUA(A) = aUA(E,A.) I ' 
def aE £=0 

(3.Sa) 

8UA(A) = 8s,tUA (A) = aUA(E,A.) I . 
def aE £=0 

(3.Sb) 

One can indeed obtain, with careful manipulations of deriva
tives of composite functions, the equation 

(aUa~A») - I. [8U(A) _ S(u(A),A.)] 

= (aUa~») -I. [8U(A) _ t(U(A),A.)], (3.6) 

where the first factors on both sides denote the 2rX 2r matri
ces 

aU(A) = (aUA(A»), (3.7a) 
ax axB 

aU(A) = (aUA(A») , (3.7b) 
ax axB 

and the second factors are the 2rX I column vectors 
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Remember that here we still identify u~ with,r4. Let us recall 
the following projection operators that played a very impor
tant role in Ref. 1: 

(r anA n) = r anA n, 
NEZ + def n>O 

(3.8a) 

(r anA n) = r anA n. 
nEZ - def n< - 1 

(3.8b) 

With these projectors, one can split Eq. (3.6) into two 
pieces. Note, on the other hand, that 
(c5UA(A» + = (c5UA(A)L = 0; Un (n>O) and Un (n<, - 1) 
are parameters that the transformations leave invariant. 
Bearing this fact in mind, one can easily deduce from (3.6) 
an explicit expression of the infinitesimal transformations 
for the case of r gen' 

Proposition 1: The infinitesimal trans!0IlI!ation c5 = c5s.~ 
for general vector fields S = S(A,a) and S = S(A,a) acts on 
UA(A) and UA(A) as: 

aUA(A) c5UB(A) 
axB 

= (aUA(A) SB(U(A),-i) _ aUA(A) tB(U(A),A») , 
~B ~B _ 

aUA(A) c5UB(A) 
axB 

(3.9a) 

= (aUA(A) tB(U(A),A) _ aUA(A) SB(U(A),A») . 
~B ~B + 

(3.9b) 
Remark: Equation (3.4) is, for a number of reasons, 

more fundamental than the factorization problem in the pre
vious section. An advantage is that, as we have observed 
above, one can deduce an explicit form of infinitesimal trans
formations with only algebraic calculations. Equation (3.4) 
is also suited for theoretical considerations of finite transfor
mations. In the consideration of formal power series solu
tions, for example, the naive picture of the previous section 
breaks down but Eq. (3.4) is still meaningful, and one can 
make sense of various calculations in this and the next sec
tions; see Appendix A. Basically, the same situation occurs 
in the case of integrable systems of gauge fields. 12 The meth
od of calculations above is mostly borrowed from experience 
therein. 

Our next task is to to put the symplectic condition to go 
to the hyper-Kahler case. The derivative matrices 
(aUA(A)laxB) etc., are then required to take values in 
Sp (r,C). Accordingly the vector fields Sand t must be Ham
iltonian: 

(3.lOa) 

(3.lOb) 
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with A-dependent generating functions F = F(X,A) and 
A A 

F = F(x,-i). Poisson brackets are also defined as 

{F,G} = ~BaF aG = H(F)G. 
def a,r4 axB 

They satisfy the familiar commutation relations 

[H(F),H(G)] = H({F,G}). 

(3.11) 

(3.12) 

Substituting the vector fields in Eqs. (3.9) with these expres
sions, one finds the following proposition. 

Proposition 2: The infinitesimal transformation 
c5 = c5H(F).H(FJ acts on UA(A) and U(A) as: 

c5UA(A) = {(F(U(A),-i) - FtU(A),-i» _ ,UA(A)}, 
(3.13a) 

c5UA(A) = {(FtU(A),A) - F(U(A),-i» + ,UA(A)}. 
(3.13b) 

Remark: The right-hand side of Eqs. (3.13) takes the 
form of Hamiltonian vector fields acting on uA and uA [cf. 
(3.11) ]. Further, it is not hard to see that this expression is 
independent of the choice of the generating functions F and 
F and determined by Hamiltonian vector fields H(F) and 

A 

H(F). 
Having obtained these formulas, one can find their com

mutation relations as follows. 
Proposition 3: The infinitesimal transformations 

c5H(F),H(FJ satisfy the commutation relations 

[c5H(F),H(FJ ,c5H(G).H((i) ] = c5H({F.G}).H({F.G}) , (3.14a) 

[c5H(F),H(FJ ,c5H(G).H(G) ] = c5H({F.G}).H({F.G})· (3.14b) 

The infinitesimal transformations thus respect the Lie 
algebra structure of Hamiltonian vector fields. 

To prove Proposition 3, it is convenient to use a contour 
integral representation of the right-hand side of (3.13); tech
niques available are to be provided in the next section. Since 
necessary calculations are actually very similar to that case, 
we omit details of the proof of Proposition 3. 

Finally, for illustration, let us consider the following 
two cases: 
case (i) 

A 

F=XAA n, F=O(n>1), (3.15 ) 

case (ii) 

F=O, F=xAAn(n<, -1). (3.16 ) 

The corresponding infinitesimal transformations can be 
written, for case (i), 

c5H(X<A n).OUB(A) = - {(uA (A)A nL ,UB(A)} - c5!A n, 
(3.17a) 

c5H(XAAn ).oUB(A) = - {(uA (A)A n)+ ,UB(A)}, (3.17b) 

and, for case (ii), 

c50.H(XAAn) UB(A) = - {(uA (A)A nL ,UB(A)}, (3.18a) 

c50.H(XAAn)UB(A) = -{(UA(A)A n)+ ,UB(A)}-c5!A n. 
(3.18b) 

In the course of the above calculation the following relations, 
which are simply a restatement of Eqs. (2.8), are also used: 

{UA(A),UB(A)} = ~B, (3.19a) 
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(3.19b) 

Recall I that the hyper-Kahler hierarchy consists of Eqs. 
(3.19a) and (3.19b) and the evolution equations 

auB(A) {(l" l) B } 
-""';A"'--..:.- + /I. U A (/I.) + ,u (A) = 0 (n>I), 

au" 
(3.19c) 

(3.19d) 

a~A~A) + {(A "uA (A)L ,UB(A)} = 0 (n..;; - 1), 
U" 

(3.1ge) 

a~A~A) + {(A "UA (A)L ,UB(A)} = 0 (n..;; - 1). 
U" 

(3.19f) 

The right-hand side of Eqs. (3.17) almost reproduces these 
evolution equations, except for the presence of extra-terms 
proportional to tJ~. This discrepancy is due to the fact that 
a/au~(n>O) and a/au~(n..;; -1) act nontrivially on 
(UA(A» + and (UA(A)L , which are, by definition, annihi
lated by tJH(F).H(F>' Thus the infinitesimal transformations 
with generating functions in (3.15) and (3.16) can be, in 
essence, identified with translational symmetries in the 
space of independent variables. In other words, generating 
functions in (3.15) and (3.16) exactly give infinitesimal 
generators ofthe time evolutions ofthe hierarchy. 

Remark: More precisely only half, (3.19c) and (3.19d), 
of these evolution equations are included in the hierarchy of 
Ref. 1. This part closes within itself and forms a subtheory of 
the present setting. A similar subtheory is contained in the 
other half, (3.1ge) and (3.19f), of the full hierarchy. As 
discussed in detail in Ref. 1 for the case of these subtheories, 
full system (3.19) likewise gives an equivalent expression of 
Eq. (2.6) [of course, under the previously remarked re
quirement that u~(n>O) and u~(n..;; - 1) be independent 
variables] . 

IV. INFINITESIMAL TRANSFORMATION OF SECOND 
KEY FUNCTION 

We now consider the second Plebanski key function 0 
defined by the Pfaffian equation 

(4.1 ) 

or, equivalently, by the system of partial differential equa
tions 

(4.2a) 

(4.2b) 

This is a natural extension of the definition in Ref. 1. The 
closedness of the right-hand side ofEq. (4.1) [i.e., the inte
grability condition of Eqs. (4.2)] is an immediate conse-
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quenceofEq. (2.6) [seeEq. (2.6') forn = - 1]. Thus 0 is 
uniquely determined except for an integration constant, @.--+ 

0+ const. 
Our task here is to find a transformation law of 0 that 

consistently reproduces the results of the previous section. 
We first show the answer. 

Proposition 4: Such an infinitesimal transformation of 0 
is given by 

tJ0 = tJF,F0 = res FlU(A),A.) + res f{U(A),A.). (4.3) 
defA=", A=O 

Remark: The residues in the above formula are defined 
as 

( 4.4a) 

(4.4b) 

As opposed to the case of uA and uA
, the right-hand side of 

(4.3) is determined not by Hamiltonian vector fields but 
their generating functions. Having this fact in mind, we 
write tJF•F rather than tJH(F).H(F>' 

Let us give a proof of the above proposition. For the 
moment let tJuA (A) and tJuA (A) denote the infinitesimal var
iations of UA(A) and UA(A) induced by (4.3) via (4.1) or 
(4.2). We have to show that they agree with the previous 
result, i.e., (3.13). 

These infinitesimal variations, by definition, leave in
variant the independent variables u~ (n>O) and 
u~ (n..;; - 1). [This is included in the construction. Accord
ingly, they commute with the action of a /au~ (n>O) and 
a/au~(n..;; - 1).] Therefore, 

a 
tJuA. -" _ I = - -A- tJ0 (n>O), 

au" 
(4.5a) 

tJuA I =~tJ0 (n..;; -1). 
.-n- au~ 

(4.5b) 

It is more convenient to rewrite the residues in (4.3) into 
contour integrals: 

tJ0 = - J Flu(p),p) 2dP. + J f{u(p),p) dP., (4.6) 
j m j 2m 

where the contours both encircle the originp = 0 in the anti
clockwise direction ( along, say, a circle Ipl- 1). All integra
tion contours in the following calculations are supposed to 
be oriented in such a way. [If one attempts to extend the 
present consideration to formal power series solutions, these 
integrals must be replaced with the original algebraic residue 
operation as in (4.4). Nevertheless one can easily check that 
all formulas in the following are still correct under that inter
pretation (see, also, Appendix A).] Now, for n>O, 

tJuA. _" _ I = J ~ Flu (p),p,) dP. 
j au~ 2m 

- J aaA f{u(p),p) 2
dP

., 
j U" 1r1 

(4.7) 

and from evolution equations (3.19), further, 

K. Takasaki 1881 



                                                                                                                                    

= f {(A nUA (Jl» + ,F(u(Jl)"u) - Ftu(Jl),Jl)} ::i' 
(4.8) 

The next step is to use the general formulas 

i fey) dv 
(f(Jl» + = j v{l - Jllv) 21Ti' 

i fey) dv 
(f(Jl)L = j Jl{l - vlJl) 21T;' 

Then, Eqs. (4.7) and (4.8) can be rewritten 

oUA._ n _ 1 =ii {v"uA(v),FtU(Jl),Jl) 
j ~JJI<lvl 
_ Ftu( »} diJ dv 

Jl,Jl (21rl)2V( 1 - Jllv) 

In terms of the generating functions UA (A), 
QO 

OUA(A) = L oUA._ n _ 1 A -n-I 

n=O 

= i i {uA (v),Ftu(Jl),Jl) 
j ~JJI<lvl 
- Ftu(Jl),Jl)} 

X dJl dv 
(21Ti)2v {l-Jllv)A(1-vIA) 

(4.9a) 

(4.9b) 

(4.10) 

(4.11 ) 

Now, one can perform the Jl integration first, using for
mulas (4.9) twice, to find that 

oUA (A) = f {uA (v),(Ftu(Jl),Jl) - Ftu(Jl),Jl» -} 

X dv 
2mA,( 1 - vlJl) 

= ({uA (A),(FtU(A),A) - FtU(A),A» _ }) _ . 
(4.12) 

Because ofthe evident identity {uA (A), .. .} = {CPA (A), ... }, 
the ingredient of the outer ( ... ) _ in the last line contains no 
non-negative powers of A. Therefore, 

oUA (A) = {uA (A),(F(u(A),A) - F(U(A),A» _ }. 
(4.13 ) 

This exactly agrees with Eq. (3.13a). Basically, the same 
calculations show that ouA (A) also coincides with the result 
given by Eq. (3.13b). Proposition 4 is thus proven. 

One can also deduce commutation relations of the infin
itesimal transformations. First, from the construction and 
from what we have just checked above, 

°F.E·oG,a0 = f OF,P(G(U(A),A) - G(U(A),A» ::'i 

i '" '" =j({Y + -Y +,Y} 

(4.14) 

where, for simplifying notations, we use the following abbre
viation: 
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Y = FtU(A),A), Y = FtU(A),A), 
def def 

Y± = (Y)±, Y+ = (Y)±. (4.15) 
def - def 

0G.aOF.pe, too, has a similar expression. Therefore, 

[oF.p,oG.a]0 = f ({Y + ,~} + {Y,~ + } - {Y - ,Y} 

- {F,Y _ } + {Y,~ _ } 

- {Y + ,~} + {Y - ,Y} 

_ {Y Y }) dA . (4.16) 
, + 21Ti 

The first two terms in the integrand can be gathered up into a 
single Poisson bracket as 

f {" "'} {&" } dA f{& "'} dA (Y +,Y + Y,Y + )-.= Y,Y -.' (4.17) 
2m 2m 

because {Y + , ~ + } and {Y _ ,~ _ } disappear after inte
gration. A similar reasoning shows that the sum of the third 
and fourth terms becomes HY,Y}dA 1(21Ti). The other 
terms cancel out. Thus the right-hand side of (4.16) reduces 
to 

(4.18 ) 

To summarize, we have the following proposition. 
Proposition 5: The infinitesimal transformations 0 F.P of 

e obey the commutation relations 

[0 ~ 0 ~] - 0 ~ ~ F.F' G,G - {F.G}.{F.G}· ( 4.19) 

Thus we find that the infinitesimal transformations ex
tended to e give a nonlinear realization of a Poisson loop 
algebra. Further, as (4.19) clearly tells, the Poisson algebra 
is actually a direct sum of two ~oiss.£n algebras carrying, 
respectively, F = F(x,A) and F = F(X,A). The "chiral 
structure" in the symmetries of UA(A) and UA(A) are thus 
also retained at this level. 

v. ORIGIN OF POISSON ALGEBRA AND CONTACT 
GEOMETRY 

For the moment, we forget of the presence of the loop 
parameter A and review several basic facts in symplectic ge
ometry. Suppose that a symplectic manifold with canonical 
coordinates (p,x) = (Pj'~) is given. Naturally, one can in
troduce the notion of Hamiltonian vector fields and Poisson 
brackets: 

H(F) = aF ~_ aF~, 
def apj ax} ax' apj 

( 5.1a) 

{F,G} = aF aG _ aF aG = H(F)G. 
def apj ax' ax} apj 

(5.1b) 

They represent infinitesimal canonical transformations, un
der which the canonical coordinates transform as 

(5.2a) 

(5.2b) 
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In particular, a generating function F depending only on p, 
F = F(p), gives rise to a transformation that leaves xi's in
variant: 

(5.3a) 

(5.3b) 

It is well known that infinitesimal canonical transformations 
can be consistently extended to the contact manifold with 
canonical coordinates (z,p,x) and contact form dz - Pj dxi. 
In the above situation, the z coordinate transforms as 

DF(Z) = - F. (5.3c) 

Their commutation relations become very simple; transfor
mations with p-independent generating functions commute 
with each other: 

[DF,DGJ =0 (VF=F(p),G=G(p»). 

In the hyper-Kahler hierarchy, the x coordinates corre
spond to the independent variables u~ (n;;;'O) and 
u~ (n, - 1) of the hierarchy. The p coordinates are to be 
identified with the other variables. Here, z can be compared 
to the key functions; note that Eq. (4.1) can be viewed as a 
Pfaffian equation defining "contact elements" (or their inte
gral manifolds). Thus, schematically, we have the following 
correspondence: 

z~0, 

xi~u~(n;;;.O), u~(n, - 1), 

pj~u~(n, - 1), u~(n;;;.O). 

An unnegligible difference is that the hyper-Kahler 
hierarchy is related to an infinite number of symplectic 
forms rather than a single one [see Eq. (2.6')]. Boyer and 
Plebanski4 considered this as defining a generalized sym
plectic structure and presented a reinterpretation of the non
linear graviton construction. In their framework, a solution 
of the nonlinear graviton construction may be identified 
with a Lagrangian submanifold under some regularity con
dition. Canonical transformations in the generalized sym
plectic structure will naturally cause transformations on the 
set of all such Lagrangian submanifolds. This is also exactly 
what we have described in Sec. II in a form more suited for 
the group-theoretic view. [In our formulation, the regularity 
condition corresponds to the requirement that u~ (n;;;'O) and 
u~ (n;;;. - 1) be functionally independent.] Replacing one of 
the infinitely many symplectic forms in Eq. (2.6') by an 
associated contact form, one can introduce a key function as 
the z coordinate. Th~s, as also noted in Ref. 4, various key 
functions such as 0, 0, and n (Refs. 1 and 4) are treated on 
an equal footing. 

VI. CONCLUDING REMARKS 

(1) Recently Boyer and Winternitzl3 constructed an 
infinite dimensional symmetry group for the self-dual Ein
stein case. They take the Plebanski first heavenly equation as 
the basic field equation. Their symmetries consist of two 
parts, one of which forms a Poisson algebra, and the other 
forms a special class of coordinate transformations of inde
pendent variables. It seems likely that the first part is includ-
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ed in Aour symmetries as those whose generating functions F 
and F are independent of A. The second part is a kind of 
residual gauge freedom of the first heavenly equation, which 
is fixed in our formulation. [Recall that our symmetries D FoE 
(or their counterparts in the formulation of Appendix B) 
are, from the very beginning, understood to leave the inde
pendent variables invariant.] 

(2) We have seen in Sec. VI that symmetries of the sec
ond Plebanski key function, in contrast to the original vari
ables of the hierarchy, are not determined by Hamiltonian 
vector fields but their generating functions, and that their 
commutation relations respect the Poisson algebra structure 
of generating functions. In the context of commutator anom
alies, this result seems to allow two different interpretations. 

On the one hand, one can understand this as implying 
the absence of commutator anomalies. The geometric consi
deration in Sec. V will also support this standpoint. As we 
have seen therein, the Poisson algebra structure has its origin 
in an interrelation of symplectic geometry and contact ge
ometry. From such a point of view this interpretation looks 
very natural. 

On the other hand, it seems also possible to assert that 
commutator anomalies do exist but are simply hidden. This 
is due to the observation that the Poisson algebra is a central 
extension of the Lie algebra of Hamiltonian vector fields. 
The central part consists of constant loops, i.e., constant 
functions on the symplectic manifold that are allowed to 
depend only on the loop variable. This is thus actually an 
infinite dimensional central extension. The passage from 
Hamiltonian vector fields to their generating functions is 
certainly a nontrivial central extension. This observation is 
also advocated in part by the fact that the first stage of the 
central extension in the case of T functions is to assign to an 
Abelian loop algebra a Heisenberg (CCR) algebra. 3 

It seems plausible that this is simply two manifestations 
of a more fundamental structure that lies behind. This issue 
seems to deserve further study. 

(3) We do not know whether there is any possibility of 
commutator anomalies in these Poisson loop algebras. Pre
sumably, as mentioned in Sec. I, membrane theory will pro
vide some hints to this question. For the case without the 
loop variable (i.e., a pure Poisson algebra), indeed, central 
extensions are already discovered. 14 Such commutator 
anomalies are obviously of quantum nature. Our analysis in 
this paper seems to show that the notion of the Plebanski key 
functions still belongs, at most, to classical field theory. At 
the present stage, it is absolutely unclear whether any struc
ture like the hyper-Kahler hierarchy survives quantization, 
though persuing such a possibility would be an interesting 
problem. This is in sharp contrast to the case of T functions, 
which are already of quantum nature, reflecting the presence 
of quantum field theory behind. 3 

(4) Nevertheless, we still expect our method to contrib
ute to membrane theory, mostly in its classical aspects. 

One possible direction is to study structural aspects of 
equations of self-duality type as discussed in Ref. 9. A re
markable observation in Ref. 9 is that there is an unexpected 
relation of membrane theory with self-dual gauge fields and 
Toda fields. This fact is also very suggestive from our stand-
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point, because we already know a number of common struc
tural characteristics among the hyper-Kahler hierarchy, a 
gauge field hierarchyl2 and a Toda field hierarchyl5 (see, 
also, Appendix A). 

Another related issue of importance is to develop a su
perspace version of our method. A naive idea is to make a 
theory based upon supersymplectic geometry [Le., integra
ble OSp(slr) structures] and super-Poisson algebras; such 
an extension is a rather easy task. This subject will also have 
implications to the work of Chau and Milewski. 16 

(5) After all, it would be better to call our hierarchy a 
"Poisson gauge field hierarchy" rather than the "hyper
Kahler hierarchy." Hyper-Kahler geometry is certainly an 
origin of the present subject, but now we know that math
ematical structures inherent in the hierarchy are of more 
universal nature. In this respect, it would be an interesting 
problem to search for some relation with recent work ofMa
son and Newman. 17 
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APPENDIX A: FACTORIZATION IN FORMAL GROUPS 

The contents of Sec. II are stated within the language of 
complex analytic functions and loops in a pseudogroup. Ba
sically, the same results can be derived for formal power 
series solutions. The algebraic meaning of various formulas 
in Secs. III and IV become rather transparent in such a for
mal framework. 

This Appendix is intended to give an outline of that ap
proach. This will also serve as a brief review and erratum of 
Sec. 5 of Ref. 6. As mentioned in Ref. 18, this part of Ref. 6 
contains several conceptual errors (which are all related to 
an infinite dimensional Grassmannian manifold and dynam
ical flows on it). The first three subsections therein are, how
ever, absolutely correct, and give a rigorous justification of 
our derivation of finite and infinitesimal symmetries. 

Actually the present setting requires a slight extension 
of the formulation in Ref. 6. Namely, we now have to deal 
with both uA and uA

, and the associated two types of transfor
mations caused by the left and right translations in (2.13). 
(In Ref. 6, only uA and left transformations are considered. ) 
Such complexity is already observed in the case of gauge 
fields l2 and the Toda fields. IS Mathematical tools for justi
fying formal calculations in Ref. 12 are provided in Refs. 19 
(in particular, in Part II). We now reconstruct the results of 
Ref. 6 along the line of Refs. 19 so as to fit into the the present 
setting. This formal theory should, in principle, include the 
analytical case; we shall come back to that case in the end of 
this Appendix. 

We have to start with several mathematical definitions. 
Let d denote the set of all formal power series of the inde
pendent variables u~ (n;;.l) and u~ (n.;;; - 1) with complex 
coefficients: 
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(AI) 

This is the most basic ingredient in the present formulation. 
To put such formal power series under good mathematical 
control, we assign to each monomial therein an integer 
called weight (or weighted degree) in such a way that: (i) the 
weights of u~ and uA

_ n for n;;.l are both equal to n; (ii) the 
weight of any monomial of these variables is the sum of the 
weights of all factors. The minimum value of the weights of 
all monomials in a formal power series aEd is called the 
order of a, and written ordeal. Conventionally, we put 
ord(O) = 00. For each n;;'O, elements of d of order.;;;n form 
a vector subspace 

d n = {aEd;ord(a);;.n}. 
der 

Evidently, 

dn~dn+I' 

(A2) 

(A3a) 

(A3b) 

(A3c) 

d mdn Cd m+n' (A3d) 

Mathematically, these properties ensure that one can intro
duce the notion of convergence in d, and d becomes a 
complete topological algebra. By definition, a sequence 
anEd is said to converge to aEd if ord(an - a) -+ 00 as 
n -+ 00. Consequently, an infinite series of the form l:n>oan in 
d converges if ord (a n ) -+ 00 as n -+ 00. The subspaces d n 

play the role of scales measuring convergence. (Compare 
these notions with the case of the construction of p-adic 
number fields;20 both have basically the same mathematical 
structure. ) 

Formal power series solutions of the hyper-Kahler hier
archy are, by definition, solutions whose coordinate compo
nents are such that 

cpA(A)Ed[[X,A -I]], $A(A)Ed[[X,A]] (A4) 

and also satisfy the condition 

cp(A = 00) = identity, $(A = 0) = invertible. (AS) 

[For the definition of cp(A) and $(A), see Sec. II.] 
The problem is to find a framework to make sense ofEq. 

(3.4). Reducing it to the symplectic case is a rather easy 
task. Equation (2.12) is inadequate as a theoretical founda
tion within the present setting, because the right-hand side 
becomes meaningless if cp(A) and $(A) are formal series as 
in (A4). Equation (3.4), on the other hand, turns out to 
have a definite meaning even in that case. 

Actually, since Eq. (3.4) contains the group parameter 
€ as well, we are forced to replace d by 

(A6) 

and repeat the same topological argument as has been done 
above, where € is to be given an appropriate positive weight. 
[This is a new circumstance that is absent in the subject of 
Ref. 6.] The weight of € should be chosen in such a way that 
g( €,J) and g( €,J), respectively, belong to the following sets 
of formal maps: 
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r~~~(A) = (r(A) ;(~t,,,.'Ap'n E(.Ji/ €) _ p + n + I n (.Ji/. ) n' 
def 

and (f~,o )EGL(r,C)}, (A7a) 

i\~~(A) = r~~~(J/A) = (((A);{(A -1)Er;~~(A)}, 
def 

(A7b) 

where f~I, ... ,Ap'n denote the numerical coefficients of the 
Laurent expansion of the coordinate components off(A) as 

(AS) 

Coefficients with p = 0 in (A7) and (AS) simply mean 
those with no lower indices AI ,. .. ,Ap; all conditions given 
therein are also imposed on these p = 0 coefficients. The fol
lowing fact is fundamental. 

Proposition Ai: The above two sets r;~{A) and r;~~(A) 
are, respectively, closed under composition and inversion, 
and therefore become groups. 

Proof (sketch): To prove this proposition, we use an 
infinite-matrix representation of these formal maps. We 
shall see that this technique is also a key to prove the exis
tence of a solution of Eq. (3.4). (This is exactly what was 
intended to be done in Ref. 6.) More precisely, we define for 
eachf(A)Er;~(A) a matrixp(f) ofthe form 

P(f) 1~(f)At .... ,Ap'm) (A9) 
V' B, .... ,Bqtn' 

where (AI , ... ,Ap,m) (row index) and (BI , ... ,Bq,n) (column 
index) range over the same index set as occurs in the expan
sion of f( A), as follows: 

fAt (A) •. • fAp(A)A m 

(AlO) 

Equation (AlO) should be treated carefully, because coeffi
cients resulting from the Taylor and Laurent expansion of 
the right-hand side will become a sum of an infinite number 
of elements of .Ji/ eo In fact, the somewhat involved condi
tions in (A7) guarantee that they fall into "convergent" se
ries in the sense mentioned above. One can likewise check 
with lengthy tedious calculations that the composition fog 
and the corresponding matrix product p( f)p (g) are rigor
ously defined for any pair of two formal maps f and g taken 
from one of the two sets in (A7). Once this fact is estab
lished, it will be immediate from the construction that the 
matrix representation obeys the composition rule 

p(fog) =p(f)p(g)· (All) 

Invertibility of p(f) is a far more technical issue. The es
sence is, however, basically the same as a method developed 
in Part I of Ref. 19 for gauge fields: As in that case, divide the 
infinite matrix p ( f) into the sum of two parts consisting of 
matrix elements with, say, m>n and m < n, respectively (ac
tually, one may also take some other way of splitting); then 
show that the former itself has an inverse (this can be rather 
easily seen because the resulting matrix is blockwise triangu
lar); finally, construct an inverse of the full matrix using the 
familiar equality 
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(A + B) - 1 = A I - A - IBA - I 

+A -IBA -IBA 

and carefully check the convergence of infinite series which 
arise from these constructions. Proposition Al is thus prov-
en. 

Having introduced the above groups, we now tum to the 
issue of giving a precise setting in which to consider Eq. 
(3.4). The vector fields s(A,a) and g(A,a) [see Eqs. (3.1)] 
are assumed to be of the form 

m 

SA(X,A) = L s~(X)An, s~ (X)E.Ji/, (A12a) 
n= - 00 

gA(X,A) = 
co 

LA g~(X)A n, g~(X)E.Ji/, (A12b) 
n= -m 

where m and m are some integers. If one assign to e a weight 
as 

ord(e) = min{m,m,O}, (A13) 

theng(e,A) andg(e,A), respectively, belong to r;~~(A) and 
r~~~{A). The other ingredients of Eq. (3.4) such as u (e,A), 
etc., are further factorized as in Eqs. (2.10), and u + (A) and 
U _ (A) are evidently included in the above two groups. 

To summarize, all ingredients on the left- (right-) hand 
sideofEq. (3.4) are to be taken from the first (resp. second) 
group in (A 7). The equation then requires that both sides be 
in the intersection of these two groups and coincide. (Note 
that this intersection becomes a subgroup of these two 
groups.) This is a precise reformulation of the "factorization 
problem" of Sec. II in the present formal setting. 

Remark: To formulate Eq. (3.4) within the language of 
the groups defined in (A7), one first has to fix 5'(A,a) and 
s(A,a) to define ord(e). The definition of the above formal 
groups thus essentially depends on how s(A,a) and g(A,a) 
are given. This is an unpleasant, but inevitable feature of the 
present approach. A more elegant language for describing 
this situation will be provided by the abstract notion of "cat
egories and functors" in mathematics. 

To state a result on the above problem, we further intro
duce the following subgroups of the above groups: 

r<>"e{A} - {ji(A)Er,<>"e{A)'fA - 0 if ± n <O}, 
gen. ± - gen , A1, ...• Apt-n - , 

(AI4a) 

r·<>"E(A) = {ji~{A)Er.<>"E(A>·f~ A = 0 if +_ n <O}. 
gen, ± gen ) At .... ,Ap , 

(AI4b) 

Then, the existence of a unique solution of Eq. (3.4) in the 
present formulation is a corollary of the following more gen
eral result. 

Proposition A2: For any f(A)Er~~~(A) and/(A)Er~~~(A> 
there ~e a unique pair of elements tp(A)Er:~~~) and 
$(A)Er::~:> that satisfy the relation . 

f-10tp(A) =/ 10$(A) (A15a) 

and the normalization condition 

tp(A 00) = identity. (AI5b) 

We now sketch a proof of this result. A prototype of this 
proof is given in Part II of Ref. 19 for the case of gauge field. 
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Following that idea, we construct a solution ofEq. (3.4) step 

b b fi 1 . J: •• bl' r.<i (A) Y step y, rst, so vmg a lactonzatlon pro em m ge~ 

d h h . rA.<i (A) A h an ,t en, anot er one m ge~ • t eac step, we can use 
the following result, which is mentioned (but with an incom
plete proof) in Ref. 6. 

Proposition A3: (Ref. 6) For any f(A,)Er~~~(A) there is a 

unique pair of elements (j?{A, )Er~~~:~) and r/J{A, )Er~~~:~ that 
satisfy the conditions 

f{A,) = (j?{A,)0r/J{A,) - I, 

(j?{A, = 00) = identity. 

(A16a) 

(A16b) 

Remark: One may find various variations of this result. 

For example, a similar result is also true for r:~(A); the order 
of factors on the right-hand side of (A16a) may be ex
changed; the role of the two groups may be interchanged, 
etc. The second condition in (A16) isimposedjustforensur
ing the uniqueness of solution. If this condition is removed, 
solutions are not unique, but the arbitrariness is limited to 
the obvious one: (j?{A,) --+(j?{A,)oh, r/J(A,) --+r/J{A,)oh, where 
h = (h A(X» is independent of A,. Equation (A15a) also has 
similar arbitrariness, which is suppressed by normalization 
condition (A l5b ) . 

Proof of Proposition A3 (sketch): The uniqueness part of 
Proposition A3 is rather immediate: If there is another solu
tion pair (j?1 (A,) and r/JI (A,), one has the obvious relation 

(j?{A,) -10(j?1 (A,) = r/J{A,) -I0r/JI (A,). (A17) 

This implies that both sides are independent of A,. Hence, the 
two solutions exactly differ by the arbitrariness mentioned in 
the above remark. Actually, we also put normalization con
dition (A16b), by which the difference disappears. Thusfol
lows the uniqueness. To see the existence part, let us consider 
the corresponding factorization problem of infinite matrices: 

F=ct>'I1-1, (A18) 

where 

F=p{f), ct> =p«(j?), '11 =p{r/J). (A19) 

Let us disregard the presence of the first set of indices 
AI , ... ,Ap (row) and BI , ... ,Bq (column) in (A9); more pre
cisely, consider F, ct>, and '11 as 00 X 00 matrices whose ma
trix elements are also matrices with indices 
(AI , ... ,Ap,BI , ... ,Bq ). Then, (A18) is a factorization ofa ma
trix (F) into a lower triangular matrix (ct» and an upper 
triangular matrix ('11). This type offactorization is universal 
in the theory of nonlinear integrable systems; the method of 
Ref. 19 is applicable to the present case. To see this, we divide 
F into four blocks as 

(A20) 

where F _ _ denotes the submatrix in which the second in
dices (m,n) [cf. (A9)] are limited to such regions as m <0 
(row) and n < 0 (column); the other blocks are also defined 
in a similar way. The proof of the invertibility of p( f) (see 
the comments after Proposition AI) carries over to F __ 
without any essential change, and one can show that the 
matrix product F + _ (F __ ) - I is meaningful within .fi'". 
On the other hand, in view of the lower- or upper-triangular 
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form of the factors on the right-hand side, one deduces from 
(A18) the following equation: 

(A2l) 

where {. ")0 ± means the submatrices whose second indices 
(m,n) rangeoverm = Oandn>Oorn< - 1 according to the 
signature ±. One can now solve this linear equation to de
termine all Taylor and Laurent coefficients of (j? - I [written 
as in (A8)] in the following form: 

{-I)A.O =-[F. {F )-I]A.O (j? B, •...• B .. n 0 - - - B, •...• B .. n 

(n< - 1). (A22) 

At this stage, we have only derived a necessary condition for 
(j? to be a solution of (A16a); it is still not clear whether ~ 
agrees with p ((j?). This is, however, sufficient: One can check 

from the above construction that r/J(A,) = f(A,) - I 0(j? (A, ) 
def 

contains no negative powers of A,. Proposition A3 is thus 
proven. 

We can now complete the proof of Proposition A2. 
Checking the uniqueness part is just the same as in the proof 
of Proposition A3. For the proof of the existence part, we 
first factorizefas in Proposition A2: 

f(A,) = (j?1 {A,)0r/JI (A,) -I, (A23) 

where (j?1 (A, )~~~~:~) and r/JI (A, )Er;-~:~. We next factorize 
j(A, )0r/JI (A, )Er;~;(A) in a reversed order: 

j(A,) 0r/JI (A,) = r/J2 (A,) 0(j?2 (A,) - \ (A24) 

h ( 1) Ar'O/c(A) d .1. (1) Ar.<ic(A) Th were (j?2 I\, E gen. _ an '1-'2 I\, E gen. + . en, 

(A25) 

give a solution of (A15a). Suitably adjusting the arbitrari
ness as mentioned in the remark after Proposition A3, one 
can obtain a solution that also satisfies (A15b). This com
pletes the proof of Proposition A3. 

Remarks: (i) The construction of the groups offormal 
maps and the results on factorization problems in this Ap
pendix can be readily extended to the symplectic case. Actu
ally, all that we need are just corollaries of them. For exam
ple, if f(A,) in Proposition A3 is assumed to satisfy the 
symplectic condition as in (2.4), then (j? (A,) and r/J(A,) there
in also turn out to obey the same condition. This is rather 
immediate from the construction (and equally applicable to 
more general cases) as follows: The chain rule of differenti
ation applied to (A16a) gives the relation 

(
af{A,») I (ar/J{A,») = (a(j?{A,») , 

ax X-t/l(A) ax ax 
(A26) 

where the notations are the same as in (3. 7). Let E denote the 
2rX2r skew-symmetric matrix (~B); (2.4) then can be 
written 

(A27) 

where "tr" stands for transposed matrices. From (A26) and 
(A27), one can see that 
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E( a~~A) r E( a~~») = E( a~~) r E( a~~»). 
(A2S) 

In fact, the left- (right-) hand side of (A2S) contains only 
nonnegative (nonpositive) powers of A. Both sides should 
accordingly be independent of A; because of (AI6b) they 
must be equal to - 1. This means that q:1(A) and t/J(A) are 
actually (formal) canonical transformations. A similar ar
gument applies to Proposition A2. 

(ii) To go into an analytic world from the above formal 
setting, one just has to consider such elements of the formal 
groups in (A 7) that are analytic functions of all parameters 
contained in dE [precisely, u~(n>O) and u~(n.(.-1)] 
with a nonempty domain of convergence as Laurent series of 
A. Then, one can show (with many steps of lengthy esti
mates) that the resulting formal solutions ofEq. (3.4), etc., 
have the same property, thus giving an analytic solution. 

(iii) The method presented in this Appendix is devel
oped just for proving the existence of solutions, and not very 
suited for practical use. 

APPENDIX B: TRANSFORMATION THEORY OF FIRST 
KEY FUNCTION 

The results in Secs. II, III, and IV all have analogs for 
the first Plebanski key function. The first key function is the 
"heavenly" counterpart of the Kahler potential. 7 In our for
mulation based on a hierarchy structure it is to be defined by 
the following equation: \ 

dn = - I EABUA_ n+ \ du~ + I EABU~ n+ \ du~. 
n>\ n<O 

(BI) 

The closedness ofthe right-hand side is again ensured by the 
hierarchy itself. As independent variables, we now choose 
u~ (n> I) and u~ (n.(.O) rather than u~ (n>O) and 
u~ (n.(. - I). Such a change of independent variables is per
mitted because of the relation 

2T 2r 

/\ du~= ± /\ du~ 
A~\ A~\ 

mod{Eqs.(2.6'),du~ (n=l=O),du~ (n =l=0)} 
(B2) 

that follows from Eq. (2.6). In terms of these new indepen
dent variables, the above definition of n can also be rewritten 

an 
UA._ n + \ = -a A (n>1), 

Un 
(B3a) 

UA -n+ \ = - an (n.(.O). 
. au~ 

(B3b) 

The next step is to single out an appropriate symplectic 
structure. Actually, there are two different options. The first 

one is to use the pA( = u1) space with the symplectic form 
def 

E ABdpA /\ dpB; the other is due to the pA ( = u~) space with 
def 

EAB dpA /\ dpB. Both lead to essentially the same theory, sim
ply the representation being different. We now adopt the 
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second framework (see Ref. I for the case of the first 
choice). Hamiltonian vector fields and Poisson brackets in 
this setting are then given by 

A aF a 
H(F) = EAB - - (B4a) 

def apA apB' 

A aF aG A 

{F,G} = EAB -- = H(F)G. (B4b) 
def apA apB 

Carets are used to distinguish the new Poisson brackets and 
Hamiltonian vector fields from previous ones. 

The hierarchy then takes the following Hamiltonian 
form, and, like Eqs. (3.19), give an equivalent expression of 
Eq. (2.6): 

{UA(A),UB(A)}A = ~B, (BSa) 

{UA(A),UB(A)}A = ~B, (BSb) 

(BSc) 

a~<:) + {(A nUA (A»>l>UB(A)}A =0 (n>I), 
Un 

(BSd) 

(BSf) 

where ( ... ) > \ and ( ... ) <0 stand for the projectors 

(IanAn»\:f ~ anA n, (B6a) 

(B6b) 

The previous projectors ( ... ) + and ( ... ) _ , in this nota
tion, may be likewise written ( ... ) >0 and ( ... ) < _ \ . 

We now show below a set of results that correspond to 
the case discussed in Sees. II, III, and IV. A point is that we 
now take p = (u~), rather than x = (u~), as a coordinate 
system for which a (pseudo- ) group structure of the nonlin
ear graviton construction is to be identified. 

Proposition Bl: Given a pair of functions (Hamilto
nians) F = F(p,A) and F = F(p,A), an infinitesimal symme
try ~ = ~ F.F of the hierarchy is defined by 

~UB(A) = {(F(U(A),A) - FtU(A),A»<o,UB(A)}A, 
(B7a) 

6UB(A) = {(FtU(A),A) - F{U(A),A»>\,UB(A)}A. 
(B7b) 

Generating functions corresponding to the time evolu
tions of the hierarchy are given by the following: 
case (i) for a lau~ (n> 1), 

A 

F = A np A> F = 0; 

case (ii) for a lau~ (n.(. - I), 

F=O, F=AnPA' 

(BSa) 

(BSb) 
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Proposition B2: An infinitesimal transformation of n 
consistent with (B7) is given by 

A A on = - res A -2F(u(A),A) - resA -2F(u(A),A). 
A~ 00 A~O 

(B9) 

Proposition B3: The infinitesimal transformations 
8 = 8 F.E- of uA (A), uA (A) and n obey the commutation rela
tions 

[8 ~ 8 ~] - 8 ~ ~ ~ ~ F.F' G.G - {F,G} .{F.G} . (BlO) 
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Classification of star and grade-star representations of C(n +1) 
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The two types of * and grade-* representations of the Lie superalgebra C(n + 1) are classified. 
A type (I? irreducible *-representation is characterized by the single condition (A,as ) >0, A 
and as belD.g the highest weight and the odd simple root, respectively, while the type (2) *
representatIOns are duals of type (1) *-representations. For n > 1, only the identity and vector 
repres~ntations ofC(n + 1) are shown to be grade -*. The superalgebra C(2) proves to be an 
exception and admits several classes of nontrivial irreducible grade -* representations. 

I. INTRODUCTION 

The theory of Lie superalgebras first arose in physical 
applications in the context of elementary particle physics 
and Fermi-Bose supersymmetry,l-4 and has since been ap
plied in a variety of other areas including nuclear physics5 

and condensed matter physics:6-8 for a comprehensive re
view of the subject see Kostelecky and Campbell.9 Those 
representations of Lie superalgebras most likely to be of in
terest in physical applications are the * and grade-* repre
sentations that were first introduced by Scheunert et al. 10 as 
a natural generalization of Hermitian representations of Lie 
algebras. However, despite several case studies,II-15 the im
portant problem of classifying the * and grade-* finite-di
mensional irreducible representations (irreps·) of a simple 
(basic classical) Lie superalgebra has so far received com
paratively little attention. 

This is the second paper in a series devoted to the classi
fication of * and grade-* modules for a type I basic classical 
Lie superalgebra. In the first paperl6 of the series (herein 
after referred to as I) some general properties of* and grade
* irreps for the Lie superalgebra gl(mln) were investigated 
and applied to give a classification, in terms of highest 
weights, of the * and grade-* irreps of gl ( n 11 ). In particular, 
it was shown that while a large class of*-irreps exist, grade-* 
irreps for gl( n 11) are comparatively rare, and as such are 
unlikely to be of importance in applications: indeed for n # 2, 
all grade-* irreps are also *-irreps. It is the aim of this paper 
to extend the approach of I to investigate the * and grade-* 
irreps of the type I Lie superalgebra C (n + 1) = osp (212n ) . 

The Lie superalgebra C( n + 1), as for the case of 
gl(mln), admits two types [herein referred to as type (1) 
and type (2)] of* and grade-* irreps. It is shown that, as for 
the gl (n 11 ) case, an irrep of C( n + 1) with highest weight A 
is type (1) * ifandonlyif A is real and (A,a s ) >0, whereas is 
the odd simple root, and that type (2) * irreps are duals of 
type (1) * irreps. The situation with grade-* irreps is quite 
different and it is demonstrated that for n> 1, the only 
grade-* irreps of C(n + 1) are the identity and vector repre
sentations. The Lie superalgebra C(2) proves to be a special 
case and admits two classes of atypical 17 grade-* irreps 
(which are also *-irreps) as well as a one-parameter family 
offour-dimensional typical grade-* irreps (which are not *
irreps): this latter class affords the only examples of grade-* 
irreps for C(n + 1) that are typical. 

It follows from these results, as for the case of gl (n 11), 
that while *-irreps for C(n + 1) comprise a large class, the 
grade-* irreps are comparatively rare. From the point of 
view of extensions, it would clearly be of interest to deter
mine whether a similar situation prevails for the Lie superal
gebras gl(mln) and osp(mln) in general. It would also be of 
interest to investigate * and grade-* irreps arising from non
compact real forms of the basic classical Lie superalgebras, 
particularly those likely to be of interest in applications. 
Such representations will clearly be infinite dimensional, in 
which case the infinitesimal characterl8 of a representation 
may be used in place of a highest weight label. Finally, we 
note that the tensor product of two type ( 1) [or (2) ] * irreps 
again gives a (completely reducible) *-representation, 
which opens up the interesting possibility of determining the 
Wigner coefficients and Clebsch-Gordan series for *-repre
sentations. 

II. PRELIMINARIES 

The generators of the Lie superalgebra C(n + 1) are 
givenbytheevensp(2n) ~0(2) generators 01 (1 <J,j<2n), 
0, respectively, together with the odd generators d, U; 

(1 >:;;i>:;;2n) satisfying the relations 

[01,01'1- = /j;~ - /j;cl; - 'T/;'T/j (8;~ - ~o¢), 

01 = - 'T/;'T/jrl" 

[o1,d' 1 - = oId - 'T/;'T/jo;d, [O,d'] _ = d', 

[o1,uk ] - = - O~Uj + 'T/;'T/j~U7' 
[O,ud _ = - Uk' 

[ d,uj ] + = 0; - oj 0, 

[d,d] + = [UjJUj ] + = [aJ,01- =0, (1) 

where we have employed the useful notation 

i = 2n + 1 - i, - tfi = 'T/; = 1 (1):;;i>:;;n). 

In the above [ , 1_ (resp. [ , I + ) denotes the usual com
mutator (resp. anticommutator): these two cases are taken 
into account below by the graded bracket, denoted [ , ]. 

As a basis for the Cartan subalgebra of C(n + 1) we 
choose the commuting operators 

hi = 01 = -~, 1 <i<:,n, 0, 
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whose eigenvalues serve to label the weights of the represen
tations. We denote the weights of CCn + 1) by17 

n 

A = (A Iw) = L A;E; + w81 
;= I 

so that, with this convention, the root system of C(n + 1) is 
given by the set of even roots 

± E; ± Ej , 1 <,i<j<,n, ± 2Ei> 1 <,i<,n 

together with the set of odd roots 

± E; ± 81 , 1 <,i<,n. 

As a system of simple roots, we choose the distinguished set 

a; =E; -E;+I (l<,i<n), 

an = 2En, as = - EI + 81 , 

so that the sets of even and odd positive roots are given, 
respectively, by 

<1>0+ = {E; ± Ej I 1 <,i<j<,n}U{2E; 11 <,i<,n}, 

<1>1+ = {± E; + 81 I 1 <,i<,n}. 

We denote the half-sum ofthe even and odd positive roots, 
respectively, by 

1 n. 
Po = - L a = L (n - I + 1 )E;, 

2 aE'l>o+ ; = I 

and set 

P=Po -PI' 

Throughout, we let ( , ) denote the nondegenerate bi
linear form defined on the weights byl7 

n 

(A,A') = L ..1;..1; -ww', 
;=1 

where A = (A Iw), A' = (A 'Iw'). We recall l7,18 that this 
form is invariant under the Weyl group of sp(2n) EEl 0(2), 
herein denoted by W. We note that if as is the simple odd 
root then 

(p,as ) = 0, 

and moreover 

(p,a) = (Po ,a) >0, VaE<l>o+. 

Every finite-dimensional CCn + 1) module V admits a 
Z2-grading 

V= VQ EEl VI:' 

where Vo (resp. VI) is referred to as the even (resp. odd) 
component of V. We then define, for homogeneous VEV, the 
parity factor (v) by (v) = ° (resp. 1) according to whether 
VE VO ( resp. VI)' Following Kac,17 the finite-dimensional 
irreducible C(n + 1) modules are uniquely characterized by 
their highest weights A, where A is a dominant weight for 
the Lie algebra sp(2n) EEl 0(2): recall that A = (A Iw), A an 
sp (2n) weight, is dominant if WEe and 

A;EZ + (1 <,i<,n), A; - AjEZ + (1 <,i<j<,n). 

Throughout, we denote the set of dominant weights for 
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sp(2n) EEl 0(2) [and hence C(n + 1)] by D +, and for 
AED +, we denote the finite-dimensional irreducible 
C(n + 1) module with highest weight A by V(A). We de
note the finite-dimensional irreducible sp(2n) EEl 0(2) mod
ule with highest weight AED + by Vo (A) and we let II (A) 
[resp. Ilo (A)] denote the set of distinct weights in V(A) 
[resp. Vo (A)]. 

Following Kacl7 we say that V(A), and its highest 
weight AED + , are typical if 

(A + p,a) #0, VaE<I>t, 

otherwise we say that A and V(A) are atypical. For future 
reference we observe, for A = (A Iw), that 

(A + p,E; + 81 ) = A; - w + 2n - i + 1, 

(A + p, - E; + 8 1 ) = i-I - A; - w, 

so that A is typical if and only if 

Ai - w + 2n - i + 1 #0, Ai + W - i + 1 #0, 

1 <,i<,n. (2) 

Every finite-dimensional irreducible CCn + 1) module 
admits a natural Z_gradation17,19 

d 

V(A) = EEl Vk (A) (3) 
k=O 

in consistency with the Z-gradation ofthe algebra itself. 17,19 
We assume Vd (A) # (0) and say that V(A) admits d + 1 
levels. The Z-gradation (3) induces the following partition
ing of the weight spectrum II (A) : 

d 

Il(A) = U Ilk (A), (4) 
k=O 

where Ilk (A) is the set of distinct weights in Vk (A). Each 
component Vk (A) occurring in the decomposition (3) is to 
constitute a module over the even subalgebra sp (2n) EEl 0 (2) 
from which it follows l8 that Ilk (A) is stable under the Weyl 
group W 

Following I, in order to investigate * and grade-* mod
ules, it is useful to consider a natural method for inducing 
nondegenerate invariant sesquilinear forms on V( A) from a 
given invariant inner product on its maximal Z-graded com
ponent Vo (A). To this end, let us assume that Vo (A) is a 
Hermitian irreducible sp(2n) EEl 0(2) module so that Vo (A) 
is equipped with a positive-definite inner product ( I) satisfy
ing 

(aJvlw) = (vlcr:w), (Ovlw) = (vIOw), 

(vlw)* = (wlv), VV,WEVo (A). 

We note that such a form can always be set up on Vo (A), 
A = (A Iw)ED + , provided w is real. As for the gl(mln) 
case,16 the above inner product can be uniquely extended to 
a form on V(A) in four different ways. 

To treat these possibilities in a unified way, it is conven
ient to introduce two grading parameters (J,E that can take 
values ° or 1. For a given pair of values «(J,E) we then define 

(Vo (A) IVdA» = 0, 0< k<,d, 

(uivlw) = ( - 1 )9'(v) +e(vld'w), 

(av i +{3v2 Iw) = a*(vllw) +{3*(v2 Iw), 

which, as in the gl (m In) case, enables a recursive definition 
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for (I) on all of V(A). By exactly the same method as that 
used in I, it is easily verified that the above determines a well 
defined sesquilinear form on V( A) with the following prop
erties: 

(oJvlw) = (vld;w), (Ovlw) = (vIOw), 

(dvlw) = ( - 1)8'(w) H(vlu;w), 

(vlw)* = (wlv), VV,WEV(A). (5) 

Let us agree to call a sesquilinear form on V( A), satisfy
ing the properties ofEq. (5), invariant of type «(},E). Follow
ing the method of I, the above form induced on V(A) is 
necessarily nondegenerate and is the unique (up to scalar 
multiples) invariant sesquilinear form of type «(},E) on 
V(A): it is thus uniquely determined by its restriction to 
Vo (A). We note that such a form has all the properties of an 
inner product except that it is not generally positive definite. 
As shall be discussed in Secs. III and IV, if the induced form 
(I) is positive definite, we say that V(A) is a *-module of 
type (1) [resp. (2)] if () = 0 and E = 0 (resp. 1) while we 
say that V(A) is a grade-* module of type (1) [resp. (2)] if 
() = 1 and E = 0 (resp. 1). 

As discussed in I, the above procedure in fact extends to 
any finite-dimensional indecomposable C(n + 1) module 
V(A) generated by a highest weight vector of weight 
A = (-1 Iw)eD + ,w real. In such a case the induced form (I) 
is sesquilinear and invariant but is not nondegenerate unless 
V(A) = V(A) is irreducible: indeed the Kernel 

K={veV(A)I(vlw) =0, VWEV(A)} 

of <I> is the unique maximal (Z-graded) submodule of 
V(A) so that 

V(A) ~ V(A)/K. 

In such a case, the form ( 1 ) induces a nondegenerate form on 
the above factor module and suggests a convenient way of 
extracting an irreducible module from an indecomposable 
one. 

We conclude this section by noting that even when the 
above form (I) induced on V(A) is not positive definite, it 
may still be of use for constructing basis states, etc. Indeed, 
the sp (2n) EB 0 (2) Gel'fand invariants are Hermitian under 
the above form, so that irreducible sp(2n) EB 0(2) submo
dules of V( A) with different highest weights are necessarily 
orthogonal. We further note that although ( I) is not general
ly positive definite on V(A), it is possible to decompose 
V(A) into sp(2n) EB 0(2) submodules on each of which (I) 
is either positive or negative definite. Presumably, these use
ful properties of the form can be utilized for the evaluation of 
generator matrix elements, etc. 

III. CLASSIFICATION OF C(n+1)*-MODULES 

In this section we investigate both types of irreducible *
modules for C( n + 1). In particular we will prove Theorems 
1 and 2, which give the necessary and sufficient conditions 
on the highest (resp. lowest) weight of the irrep. in order 
that it be * of type (1) [resp. (2)]. 

As for the gl (m In) case, the Lie superalgebra C (n + 1) 
admits two types of irreducible *-modules. Following 
Scheunert etal. \0 we say that V(A) is an irreducible *-mod-
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ule of type (1) [resp. (2)] if V( A) can be equipped with a 
(positive definite) inner product (I) satisfying the () = 0, 
E = 0 (resp. 1) case of Eq. (5). In view of the uniqueness of 
the induced form, we note that such an inner product (I) on 
V(A) necessarily coincides with the form induced on V(A) 
by the restriction of (I) to Vo (A). We see, therefore, that 
V(A) is a type (1) [resp. (2)] *-module if and only if 
Vo (A) gives rise to a Hermitian irrep. ofsp(2n) EB 0(2) and 
the corresponding () = 0, E = 0 (resp. 1) induced form is 
positive definite. 

We note that if V(A) is a type (1) or (2) *-module with 
inner product (I), then the even generators satisfy 

(oJvlw) = (vld;w), (Ovlw) = (vi Ow), Vv,WEV(A), 
(6) 

which is just the condition that V( A) constitute a Hermitian 
module for sp(2n) EB 0(2): in particular we note that the 
components of A must be real. For the odd generators, we 
have 

(u;vlw) = (vldw), 

(u;vlw) = - (vldw), Vv,WEV(A), 

in the type (1) and (2) cases, respectively. Equivalently we 
have, for the type (1) and (2) cases, respectively, 

t· . t 
'ITA (oj) = 'ITA (d;), 'ITA (0) = 'ITA (0), (7a) 

with 

'IT~ (u;) = 'ITA (d) [resp. - 'ITA (d>], (7b) 

where 'IT A is the representation afforded by V( A). 
As for the gl(mln) case,16 it turns out that the type (1) 

and (2) *-casesareinterchanged by duality. Werecall20 that 
the representation irA dual to 'IT A is defined by 

irA (x) = - 'lTI (x), XEC(n + 1), 

where T denotes the supertranspose. Using the method of 
Ref. 16, it is easily verified that if 'ITA satisfies Eq. (7a) and 

'IT~ (ui ) = 17" A (d), 

then irA also satisfies Eq. (7a) but now 

ir~ (u;) = - 17" A (d). 

In other words, the dual ofa type (1) *-irrep. is a type (2) *
irrep (and conversely). Denoting the module dual to V(A) 
by V*(A), we thus obtain the following. 

Proposition 1: For AeD + ' V(A) is an irreducible type 
(1) *-module ifandonly if V*(A) is an irreducible *-module 
of type (2). D 

The above result demonstrates that the classification of 
the irreducible C(n + 1) *-modules essentially reduces to a 
classification of the type (1) *-modules. To this end, let 
V(A) be a type (1) *-module with inner product (I). We 
first find it convenient to define weights E; for n < i<.2n, by 

e; = - E;, i = 2n + 1 - i, (8) 

in terms of which the odd positive roots are given by the set 

<Pt = {E; + 0 1 1 1 <.i<.2n}. 

Then, for VA the highest weight vector of V(A), we have 
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o«u;vAlu;vA) = (vAldu;vA) 

= (vAI(d;- O)VA) 

= (A,E;+81 )(vA lvA
), 1<i<2n, 

where in the above we used the fact that dvA = 0. Thus in 
order for VeAl tobea type (1) *-module, A must be real and 
satisfy 

(A,a);;;'O, Vaecl>t, 

and in particular (A,as ) ;;;.0. Following I, we call AeD + *
permissible if A is real and (A,as ) ;;;'0: throughout, we denote 
the set of *-permissible dominant weights by D'!'r . The 
above demonstrates that in order for V( A) to be a type ( 1 ) 
*-module we must have AeD '!'r . We now investigate the 
converse. 

We first require the following result, which summarizes 
some properties of *-permissible dominant weights. 

Lemma 1: For AeD '!'r , we have, for all ven (A), 

(i) (v,a);;;'O, Vaecl>t, 

(ii) (A - v,A + v);;;.O, 

(iii) (A-v,A+v+2p);;;.O. 

Proof To prove (i) we note that (as,as) = Oandforthe 
even simple roots 

a;=E,.-E"+1 (1<i<n), an=2En, 

we have 

(a;,as)<O, 1<i<n. 

Now for ven(A), we may write 

v = A - L n;a; - nsas' n;,nseZ + , 
; 

so that 

(v,as) = (A,as) - Ln;(a;,as) 
; 

;;;'(A,as);;;'O, Vven(A). 

Part (i) then follows from the W-invariance of n(A), to
gether with the fact that every root aecl> t is W-conjugate to 
as (cf. Proposition 3 ofI). 

As in Proposition 4 of I, part (ii) follows by induction 
on the Z-grading index k, the result being true for all 
veno (A) by a known l8 Lie algebra result. Employing the 
partitioning of Eq. (4), we proceed inductively and assume 
(ii) holds for all venk _ I (A) and note that every JLendA) 
may be written 

JL = v - a, for some aecl>l+, ven k _ 1 (A). 

Then using (i) and the inductive hypothesis, we have 

(A - JL,A + JL) = (A - v,A + v) + 2(v,a);;;'0, 

and hence (A - JL,A + JL) ;;;'0, V JLen k (A). This establishes 
(ii) by induction. 

Finally as to (iii), we may write, in terms of simple 
roots, 

A-v=Ln;a;+nsas' n,.,nseZ+, ven(A). 
; 

Using 
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(p,a;) >0 (1<i<n), (p,as) = 0, 

it follows that 

(A - v,p);;;'O, Vven(A). 

Thus, using (ii), 

(A - v,A + v+ 2p) 

= (A - v,A + v) + 2(A - v,p);;;'O, Vven(A), 

which proves the result. 0 
Our aim now is to demonstrate that for AeD'!'r, VeAl is 

a type (1) *-module of C(n + 1). To see this, we assume 
that Vo (A) gives rise to a Hermitian representation of 
sp (2n) $ 0 (2) and we let (I) be the corresponding unique 
nondegenerate invariant sesquilinear form of type 
(O,E) = (0,0) induced on V(A). It then suffices to show 
that (I) is positive definite (i.e., gives rise to an inner prod
uct). 

We first note, as mentioned previously, that the 
C(n + 1) and sp(2n) $0(2) Gel'fand invariants are Her
mitian under the induced form so that sp(2n) $0(2) sub
modules of V( A) with different highest weights are orthogo
nal. In particular, we note that the sp(2n) $ 0(2) invariant 

2n 

S= L U;ff 
;=1 

is Hermitian and is expressible in terms of the universal Casi
mir invariants of C(n + 1) and sp(2n) $ 0(2), so its eigen
values depend only on the highest weight labels of C(n + 1) 
and the subalgebra sp (2n) $ 0 (2). We have the following 
result concerning the eigenvalues of the sp (2n) $ 0 (2) in
variant S. 

Lemma 2: For AeD '!'r ,theeigenvaluesofSon VeAl are 
non-negative. 

Proof The universal Casimir invariant of C(n + 1) is 
given by 

12 = C2 + L [U,.lT - du,.] - 0 2
, 

; 

where C2 is the quadratic Casimir element ofsp(2n). Now 
let Vo ( v) be an irreducible sp (2n) $ 0 (2) submodule of 
VeAl and let VV be the maximal state of Vo (v). Then we 
have, for the eigenvalue y of S on Vo ( v), 

L u;dvv = yvv, L du,.vv = rvv, 
i i 

so that 

(y+ r)vv= L (u,.d + du;)vv= (v,2pI )vv, 
; 

(y- r)vV = (/2 - C2 + 02)vv (9) 

= [(A,A+2p) - (v,v+2po)]VV
, 

where we have used the fact that C2 takes the eigenvalue 
( v,v + 2po) + 0)2 when acting on Vo ( v). Adding this last 
equation to Eq. (9) then gives, for the eigenvalue y of the 
sp(2n) $ 0(2) invariant ~ = l;. u.d ~ I I , 

2y= (A,A+2p) - (v,v+2p) 

= (A - v,A + v + 2p) ;;;'0, 

where we have employed part (iii) of Lemma 1. o 
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Weare now in a position to prove that the above induced 
form <I> is positive definite on VeAl, AElJ *+- ' by induction 
on the Z-grading index k, the result holding for k = 0 by 
construction. We now assume that the form is positive defi
niteon Vk _ 1 (A) and note that for VEVk (A), cfVEVk _ 1 (A), 
from which we obtain, using the inductive hypothesis, 

(vlu;cfv) = (cfvlcfv);;.O, 'tIVEVk (A), I <;;;i<;;;2n. 

(10) 

Now VdA) can be decomposed into sp(2n) G>0(2) pri
mary components, 

Vk (A) = G> Vo (v), 
v 

where Vo (v) is the direct sum of all irreducible 
sp (2n) G> 0 (2) submodules of Vk (A) with highest weight v. 
Let us assume initially that v#O belongs to such a primary 
component Vo ( v). Then from Lemma 2 we have for the 
invariant S = l:; u;cf, 

sv = yv, r;;'O 

(noting that these eigenvalues depend only on the represen
tations labels A,v), so that, in view ofEq. (10), 

r(vlv) = (vlsv) = L (vlcfu;v);;.O. 
; 

Hence if r(vlv) #0, we must have r> 0 and thus (vlv) >0. 
The only other possibility is r(vlv) = 0, which, in view of 
Eq. (10), implies 

(cfvlcfv) = 0, I <;;;i<;;;2n, 

so that, by the induction hypothesis, cfv = 0, I <;;;i<;;;2n. Be
cause of the irreducibility of V( A), this can only occur if 
O#VEVo (A), in which case (vlv) >Oby construction. Thus, 
in either case, we have (vlv) > O. 

The above shows, that for v#O in an sp(2n) EB 0(2) pri
mary component Vo (v) of Vk (A), (vlv) > O. On the other 
hand, every 0 # VE Vk (A) is expressible as a sum 

where Va #0 belongs to an sp(2n) G>0(2) primary compo
nent of Vk (A) and since these primary components are or
thogonal under the form (I), we must have 

(vi v) = L (va IVa) > O. 
a 

This proves that the induced form (I) is positive definite on 
Vk (A) and thus, by induction, is positive definite on all of 
VeAl. 

Thus we have shown that if AElJ *+- ' then VeAl is an 
irreducible type (1) *-module. We have already established 
the converse, so we arrive at the following. 

Theorem 1: For AElJ + ' V( A) is an irreducible type ( 1 ) 
*-module of C(n + I) if and only if A is real and (A,as ) ;;.0. 

o 
As to the type (2) case, we have, recalling proposition 

(I), that an irreducible C(n + 1) module VeAl is type (2)
* if and only if V*(A) is type (1 )-*. On the other hand, we 
note that the weights in V*(A) are the negative of the 
weights in VeAl, and if A - is the lowest weight of VeAl, 
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then - A - is the highest weight of V * (A). In view of 
Theorem 1, we thus arrive at the following classification in 
terms oflowest weights. 

Theorem 2: For AElJ + , VeAl is an irreducible type (2) 
*-module of C(n + 1) if and only if A is real and 
(A - ,as )<;;;0. 

Corollary: If AElJ + is typical, then V( A) is an irreduci
bletype (2) *-moduleofC(n + 1) ifand only if A isreal and 
(A +p,E1 + 81 ) <0. 

Proof For A = (A I(U) typical, the lowest weight of 
VeAl is given by 

A- =(-AI(U)-2pl =(-AI(U-2n), 

and the condition of the theorem reduces tOA I + 2n - (U<;;;O, 
which, in view ofEq. 2, may be written (A + p,E1 + 81 ) <;;;0. 
Obviously, for A typical we cannot have 
(A + p,E1 + 81 ) = o. 0 

IV. CLASSIFICATION OF GRADE-* MODULES 

Here we study the two types of grade-* irreps of 
C(n + 1). Our main results are summarized in Theorems 3 
and 4, which give a classification, in terms of highest 
weights, of the type (1) and (2) irreducible grade-* mod
ules, respectively. It turns out that for n > I, only the identity 
and vector representations are grade-*. The superalgebra 
C( 2) proves to be a special case and admits two classes of 
two level atypical grade-* modules as well as a one-param
eter family offour-dimensional typical grade-* modules. In 
view of the similar corresponding results previously ob
tained l6 for gl(211), this latter situation is obviously related 
to the superalgebra isomorphism C(2) ~s1(211). 

Following Scheunert et al.,10 we note, as for the 
gl(mln) case,16 that C(n + 1) admits two types of grade-* 
representations. We say that V( A) is a type (1) [resp. (2)] 
grade-* module if the corresponding representation 7Th sat
isfies the graded Hermiticity conditions 

1T\(cf) = (_I)E7Th(U;), E=O (resp.I), (11a) 

together with 

1T\ (oj) = 7T~ (oj) = 7Th (0-:), 

1T\ (.0.) = 7T~ (.0.) = 7Th (.0.), 

(11b) 

wheret denotes superadjoint: recall lO
•
20 that the grade ad

joint of a homogeneous operator A on a Z2 -graded Hilbert 
space is defined by 

At = (A T)*, 

where T denotes the supertranspose, and that for even opera
tors superadjoint corresponds to normal Hermitian conju
gate (cf. I). 

Equivalently, we say that V( A) is a grade-* module if it 
can be equipped with a positive definite inner product satis
fying the requirements of Eq. (6) for the even generators, 
together with 

(u;vlw) = ( - 1)(V)(vlcfw), 

(u;vl(U) = - ( - l)(V)(vlcfw), 

( 12a) 

(12b) 

in the type (1) and (2) grade-* cases, respectively. Such an 
inner product determines a positive definite invariant sesqui
linear form of type () = 1, E = 0 (resp. 1) on VeAl. As for 

R. B. Zhang and M. D. Gould 1893 



                                                                                                                                    

the case of*-modules, it follows that V(A) is an irreducible 
grade-* module of type (1) [resp. (2)] if and only if its 
maximal Z-graded component Vo (A) is a Hermitian 
sp(2n) eo(2) module and the corresponding induced form 
of type () = 1, E = ° (resp. 1) is positive definite: note that 
the components of the highest weight A must, under such 
conditions, be real. 

As for the gl(mln) case,16 it is important to note that, 
unlike *-modules, the type of grade-* module depends on the 
choice of Z2 -grading. However, from Eq. (12), we see that 
the type (1) and (2) grade-* cases are simply interchanged 
by a reversal of Z2 -grading. In other words, a type (1) 
grade-* module V(A), whose maximal Z-graded compo
nent Vo (A) is chosen to have odd Z2 -grading, may be 
viewed as a type (2) grade-* module in which Vo (A) is 
chosen to have even Z2 -grading. It thus suffices to consider 
only the case where Vo (A) has even Z2 -grading, herein re
ferred to as the standard choice of grading (which is adopted 
throughout the paper). 

Following I, the study of grade-* modules is facilitated 
by noting that if 11'", is a grade-* irrep, i.e., satisfies the condi
tions of Eq. (11), then the dual representation ir '" satisfies 
these same equations. In other words, as distinct from the 
situation for *-irreps, the dual of a type (1) [resp. (2)] 
grade-* irrep is again grade-* of type (1) [resp. (2)]. It is 
important, however, that this duality be interpreted with the 
Z2-grading for the minimal Z-graded component of V(A) 
being given by the grading of the maximal Z-graded compo
nent of the dual module V*(A). Thus, with the standard 
choice of Z2 -grading for V( A), V * (A), we obtain the follow
ing. 

Proposition 2: For AED + , if V(A) has an even (resp. 
odd) number oflevels, then V( A) is a type ( 1 ) grade-* mod
ule ifand only if V*(A) isgrade-* oftype (2) [resp. (1)]. D 

Suppose now that V(A) is a type (1) grade-* CCn + 1) 
module so that A is real and V(A) is equipped with a (posi
tive definite) inner product (I) satisfying the conditions of 
Eqs. (6) and ( 12a). Then, for v'" the maximal weight vector 
of V(A), we have, with the convention ofEq. (8), 

0.;;; (O'jV'" I O'j v'" ) = (v'" I dO'j VA) 

= (A,Ej + 8 1 ) (vAlvA). 

It follows that (A,a»O, 'VaEcI>t, and in particular 
(A,as»O. In view of Theorem 1, we see that V(A) must 
also constitute a type (1) *-module so that we get no new 
type ( 1 ) grade-* modules that are not already *-modules. 

Proceeding further, it follows, by exactly the same argu
ment as that used in I for gl(nl1), that 
V(A) = Vo (A) $ VI (A) can have at most two Z-graded 
levels. This can in fact be seen by noting that the inner prod
ucts 

(O'j O'j v'" I O'j O'j VA ) 

have opposite signs in the type ( 1) * and grade-* cases, and 
hence must vanish. This latter requirement, together with 
the restriction that A is real and (A,as ) >0, imposes strin
gent conditions on A. In fact (see Appendix A) for 
n> 1, A = (010), and for n = 1, A must have the special 
form 
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A = (1'1-1'), 1'EZ +. 

Moreover, such two level type (1) C(2) *-modules are in
deed type (1) grade-* since, with the above inner product, 

(d)t = (d)t = O'j' of = - 0'; = - d. 

We thus arrive at the following. 
Theorem 3: For n> 1, the only irreducible type (1) 

grade-* CCn + 1) module V(A) is the trivial one with 
A = (010). For C(2), V(A) is an irreducible type (1) grade
* module if and only if A has the form 

A = (1'1-1'), 1'EZ +. 

Corollary: All irreducible type (1) grade-* CCn + 1) 
modules are also type (1) *-modules and admit at most two 
Z-graded levels. D 

We now consider the type (2) grade-* case. We note, 
from Appendix A, that V(A) has exactly one level only in 
the trivial case A = (010). In such a case, V(A) is trivially 
type (1) and (2) * and grade-*, so it remains to consider the 
case A=/= (010), in which case we can assume that V(A) has 
at It!ast two Z-graderlle ... e1~. 

Let V(A) be such a type (2) grade-* module so that 
V( A) is equipped with a positive definite inner product (I) 
satisfying the conditions of Eq. (6) and (12b). Then we 
have, for VA the maximal weight vector of V(A), 

0.;;; (O'jvAIO'jv"') = - (VA I dO'j VA ) 

- (A,Ej + 81 )(vAlvA), l.;;;i.;;;2n, 
(13) 

so that (A,a) .;;;0, 'VaEcl>t . We further observe that 

O'jVA=/=O, l.;;;i.;;;n, (14) 

otherwise we would have, for some iE{I,2, ... ,n}, 

0= dO'iV'" = (A,E j + 81 )v
A

, 

and hence 

(A,Ej + 8 1 ) = o. (15) 

Also, applying the even raising generator q (1 q.;;;n) to 
O'j VA = 0 would yield 

O'JvA = 0, 1 q.;;;n, 

from which we similarly deduce 

(A, - Ej + 8 1 ) = 0, lq.;;;n. 

These equations together with Eq. (15) would then imply 
A = (OIO),contrarytoourchoiceofA. ThisprovesEq. (14) 
from which we deduce, in view ofEq. (13), 

(A,E j + 81 ) <0, l.;;;i.;;;n, 

and hence (A, - Ej + 8] ).;;; (A,Ej + 8] ) < O. This last in
equality and Eq. (13) then imply that 

O'iVA=/=O, l.;;;i.;;;n, 

so we may write 

O'jVA=/=O, (A,E j + 8]) <0, l.;;;i.;;;2n. (16) 

It is now convenient to consider the cases n> 1 and 
n = 1 separately. We consider first the case n> 1. 

Condition (16) shows that V( A) has at least two levels, 
from which we deduce that V(A) must have at least three 
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levels, since, from Appendix A, two level irreps exist only for 
n = 1. Now for i <n we have 

O«u;unvAlu;un~) 

= [1 + (A,E; + 8. )] (unvAlunvA), 

0< (uiiujvAluiiOfvA) 

= [1 + (A, - En + 8.>] (ujvAlujvA), 

from which we deduce, in view of Eq. (16), 

(A, - En + 8.» - 1, 

and, since (A,En + 15. »(A, - En + 15.), 

(A,E; + 15.» - 1, l<i<n. 

These conditions, together with those ofEq. (16), then yield 

- 1«A,E; + 15.) <0, l<i<n, (17a) 

- l«A, - En + 15.) <0. (17b) 

We are now in a position to show that V( A) can have no 
more than three levels, and hence exactly three levels. To 
prove this, it suffices to demonstrate 

U. U;OfVA = 0, 1 <i<n, 

and, for n > 2, 

U. U2U3VA = 0, 

(18a) 

(18b) 

because by successively applying the even raising operators 
to (18a), we obtain u;ujOjvA = OjUjOfVA = 0 ViJ, and to 
( 18b) we have u;up k v' = UjOju" v' = 0 V iJ,k. 

Now note that U. U; Of VA #0, for some i> 1, implies 

0< (u. U;ujvAlu. U;OfVA) 

= - [(A,E. +15.) +2](u;OfvAlu;OjvA), 

which can only occur if (A,E. + 15. ) < - 2 in contradiction 
to Eq. (17). Similarly for n > 2, u. U2 U3 VA #0 implies 

0< (u.u2u3vAlu.u2u3vA) 

= - [(A,E. + 15.) + 2] (U2U3 v
Alu2U3 VA), 

which can only occurif (A,E. + 15. ) > - 2, again in contra
dictiontoEq. (17). WehavethusprovedEqs. (18a), (18b), 
from which we deduce that V( A) must have exactly three Z
graded levels. 

To complete the argument, we note that since the com
ponentsA; (l<i<n) of the highest weight A = (A 1m) must 
differ by integers, Eqs. (17a) imply that A has the special 
form 

A = (7lm), TEZ +, r + l>m> r. 

On the other hand, Eq. (17b) implies 1 >r + m> 0, which 
can only occur if r = 0 and 1 >m > O. Thus we conclude that 
A must be of the form 

A = (aim), O<m<1. 

For 0 < m < 1, A must be typical, and since three level typi
cal irreps can only exist for n = 1, we arrive at the final possi
bility 

A=(OII)· 

This is the highest weight of the vector representation of 
C(n + I), which is indeed a three level irrep that is easily 
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seen to be grade-· of type (2): note, however, that the vector 
representation is not a star representation. We have thus 
proved the following. 

Proposition 3: For n > 1, the irreducible C(n + 1) mod
ule VeAl is type (2) grade-· only for the cases A = (010) 
and (all ) corresponding to the identity and vector represen
tations. 0 

It remains to consider the case n = 1. We note that an 
irreducible C(2) module VeAl, for A#O, either has two 
levels and is atypical or else has three levels and is typical. 
Beginning with the former case, we note that the only two 
level irreducible C( 2) modules V( A) with highest weights A 
satisfying the requirements ofEq. (16) have highest weights 
given by (see Appendix A) 

A = (rlr+ 2), TEZ +. 

In such a case, VeAl has lowest weight ( - 1 - rlr + I) 
and hence the dual module V·(A) has highest weight 
( r + 11 - r - 1), which, in view of Theorem 3, is both a 
type (1)· and grade-· module. Thus, from Propositions 1 
and 2, we arrive at the following. 

Proposition 4: For AElJ + , the irreducible C(2) module 
VeAl is atypical and grade-· of type (2) if and only if 
A = (010) or 

A=(rlr+2), TEZ+. 

In such a case, VeAl is also a type (2) ·-module. 
It finally remains to consider the typical three-level type 

(2) grade-· C(2) modules VeAl. Forthiscase,ouronlyodd 
lowering operators are U. ,UT (1 = 2) and we must have, for 
VA the highest weight vector of VeAl, 

0< (u. uTvAlu. UTVA) 

= (uTvAlu·u. lTT VA ) 

= [(A,E. +15.) + 2] (UT VA IlTT VA), 

from which we deduce (A,E. + 15.) > - 2. This condition, 
together with Eq. (16), implies that A must be of the form 

A=(rlm), TEZ+, r+2>m>r. (19) 

On the other hand, V· (A) must also give rise to a typi
cal three level irreducible type (2) grade-· module, and 
since the lowest weight of VeAl is A - = ( - rim - 2), it 
follows that V*(A) has highest weight A· = (r12 - m) 

whose components must also satisfy Eq. (19). This imposes 
the additional constraints 

r + 2 > 2 - m> r, 

from which we deduce that r = 0 and A must have the spe
cial form 

A = (Olm), O<m <2. 

Conversely, it can be shown (see Appendix B) that with A as 
above, V( A) indeed gives rise to a (four-dimensional) typi
cal type (2) grade-* C(2) module: we note that such a mod
ule V(A) is not a ·-module. We have thus proved the follow
ing. 

Proposition 5: Irreducible typical type (2) grade-· 
C(n + I) modules VeAl exist only for n = 1 and have high
est weights of the form 

A = (Olm), 0<m<2. 0 
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Combining the results of Propositions 3-5, we thus ar
rive at the following classification scheme. 

Theorem 4: For AED + , V(A) is a type (2) grade-* 
C(n + 1) module if and only if A has one of the following 
special forms: 

(i) n> 1 

A = (010), 0 = 0,1, 

(ii) n = 1 

A=(rlr+2), TEZ+ or A=(Olm), 0<m<2. 

o 

V. CONCLUSIONS 

A classification of all * and grade-* irreps has been pre
sented for the type I Lie superalgebra C( n + 1). The main 
results are summarized in Theorems 1-4, which give the 
necessary and sufficient conditions for an irreducible repre
sentation to be * or grade-* of type (1) or (2), respectively. 
These conditions, except in the case of atypical type (2) *
irreps (which are classified according to their lowest 
weight), are given in terms of the highest weight labels. It 
would be of interest to exploit the modified induced module 
construction of Ref. 21 to determine the 
C (n + 1) ~ Sp (n) $ 0 (2) branching rules, along the lines re
cently applied to gl (n 11) (Ref. 22), for atypical irreducible 
modules, and to obtain the minimal weights of such irreps. 
In particular, this would enable a classification of the atypi
cal type (2) *-irreps in terms of highest weights. 

Finally, we note that * and grade-* representations have 
the useful property of being completely reducible and in this 
sense are most like the representations of simple Lie alge
bras. It would clearly be of interest to determine the char
acters and dimensions of the * and grade-* irreps for the type 
I basic classical Lie superalgebras, and in particular to deter
mine whether the recent character formula conjectured by 
Hughes and King,23 or the earlier formula proposed by 
Bernstein and Leites24 and Van der Jengt,25 apply to these 
representations. 
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APPENDIX A: CLASSIFICATION OF TWO-LEVEL 
IRREPS 

Here we classify all irreducible C(n + 1) modules 
V(A) with at most two Z-graded levels: throughout, VA de
notes the maximal weight vector of V(A). 

We consider first the one level irreducible modules 
V(A). In such a case, we have 

0= O';vA = dO';vA = (A,€; + 15\ )vA, l<i<2n, 

which implies 

(A, ± €; + 15\) = 0, l<i<n. 

This can only occur for A = (010) corresponding to the tri-
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vial identity representation. 
Now let us suppose V(A) has exactly two levels so that 

O';O'jVA = 0, 1 <i, j<2n. 

We now show that, for n > 1, such two level irreducible mod
ules do not exist. Following the proof of Eq. (14), we have, 
forn>l, 

O';vA=;fO, l<i<n, 

from which we obtain for i < n, 
. A £ A 0= a'O';O'nv = [(A,€; + u\) + 1 ]O'nv , 
. A £ A 0= a'O';O'jV = [(A,€; + u\) + 2]O'jv . 

The first equation above yields, in view of Eq. (A 1 ), 

(A,€; + 15\) = - 1, l<i <n, 

(AI) 

(A2) 

and substituting into the second equation, we arrive at 

O'jVA = 0, l<i < n. 

This last equation in tum implies 

O .3A A £A = u O'jV = ( , - €; + u\)v , 

so that 

(A,-€;+D\)=O,I<i<n. 

Equations (A2) and (A3) together yield 

2(A,€;) = - 1, 1<i<n, 

(A3) 

which is impossible, since the components A; = (A,€;) of 
A = (A 1m) are non-negative integers. Hence we conclude 
that C(n + 1), for n> 1, admits no two level irreps. 

For the case of C(2), we observe that all typical modules 
have three levels, so the atypical C( 2) modules must all have 
at most two levels. In view of the typicality conditions ofEq. 
(2), we see that V( A) is atypical only in the following cases: 

(i) A= (rl-r), TEZ +, 
(A4) 

(ii) A=(rlr+2), TEZ+. 

Note that the first class. above corresponds to the two level 
type (1) * and grade-* irreps of Theorem 3, while the second 
class above corresponds to the two level type (2) * and 
grade-* irreps of Proposition 4. 

Thus, in conclusion, the (at most) two-level irreps of 
C(n + 1) have highest weights A satisfying Eq. (A4) in the 
case n = 1, and for n> 1, we have only the case A = (010). 

APPENDIX B: TYPICAL GRADE-* IRREPS OF C(2) 

Here we explicitly investigate the irreducible C( 2) mod
ules V(Olm), 0 < m < 2. We have the Z-gradation 

V(Olm) = Vo (Olm) $ Vo(llm - 1) E9 Vo(Olm - 2), 

where the top level is a one-dimensional sp(2) E9 0(2) mod
ule with basis vector eo satisfying 

aJeo = 0, !leo = meo, iJ = 1,1. 

The next level gives a two-dimensional module with (nor
malized) basis vectors 

e; = (U - 1I20';eo, i = 1,1, 
and the bottom level is again one-dimensional with basis vec
tor 
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eo = [w(2 - w)] - 112UI u,eo' 

Thus we have a four-dimensional module with basis vectors 
eo,el ,~,eo in which eo,eo are regarded as even and el'~ as 
odd vectors. The action of the odd generators in this basis is 
easily seen to be given by 

deo = u;eo = 0, i = 1,1; 

'I 0 uel =ue, =ulel =u,e, = , 

u;eo = w l12e;, i = 1,1; ulel = - wll2eo = u'el , 

u,el = -UI~ = - (2-w) 1/2eo, 

uleo = (2 - w) 112~, u'eo = - (2 - w) 112el , 

and for the even generators we obtain 

hle l =el , hl~ = -~, hI =u\; 

ne; = (w - 1 lei> i = 1,1, 

ute l = - 2~, uIe, = - 2el , uIe l = ut~ = 0, 

aJeo = 0, ij = 1,1; neo = (w - 2)eo. 

Thus in the basis eo,el'~ ,eo we have the following 4 X 4 
matrix representation: 

,,(u') ~ u -w 0 

(2~W} 0 0 
0 0 
0 0 

( 
-w 0 _ (20_w) - 0 0 0 

11'(u
l

) = ~ 0 0 o ' 
0 0 0 

*')~(~ 
0 0 

v~ _"(U')T, 
0 0 
0 0 
0 (2 - w) 

,,(~) ~(~ 
0 0 

v~ 0 0 
_11'(UI )T, 

0 0 
-(2-w) 0 

(Bl ) 
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where T denotes supertranspose. One may similarly obtain 
the matrices of the even generators and check directly that 
the above in fact determines a (real) faithful matrix repre
sentation. Such a representation, in view of the € = 1 case of 
Eq. (11) and Eq. (Bl), is indeed irreducible and grade-· of 
type (2) as noted previously. 

Finally, by comparing this matrix representation with 
the faithful matrix representation of gl (211 ) constructed in I 
(see Appendix B), we see explicitly that C(2) ~sI(211) and 
that the typical type (2) grade-· irreps constructed above 
are isomorphic to the corresponding irreps of sl (211 ) arising 
from the construction of I, Appendix B. 
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This paper extends the class of orthonormal bases of compactly supported wavelets recently 
constructed by Daubechies [Commun. Pure Appl. Math. 41, 909 (1988)]. For each integer 
N> 1, a family of wavelet functions tP having support [0,2N - 1] is constructed such that 
{tPjk (x) = 'l!l2tP('l!x - k) V,keZ} is a tight frame of L 2(R), i.e., for every fEL 2(R), 
/ = C~jk (tPjk If) tPjk for some C > O. This family is parametrized by an algebraic subset V N of 
R 4N. Furthermore, for N>2, a proper algebraic subset WN of VN is specified such that all 
points in V N outside of W N yield orthonormal bases. The relationship between these tight 
frames and the theory of group representations and coherent states is discussed. 

I. INTRODUCTION 

This paper discusses families of functions 
ha,b (x) = a - 1I2h«x - b)la), a#O, called wavelets,l which 
are generated from a single function heL 2(R) by dilation, 
translation, and possibly reflection. Wavelets provide a 
means of representing functions as a continuous linear su
perposition that is analogous to the Fourier transform. This 
representation is related to group representations. Let G de
note the ajfinegroup {x-+ax + b la#O} and let U denote the 
unitary representation of G on L 2 (R) defined by 
U(a,b)h = ha.b. In this framework wavelets are subsets of 
L 2(R) having the form D(h) = {ha,bl(a,b)ED} for some 
subset D of G. 

Let G, denote either G or the connected affine subgroup 
G c = {( a,b) ,a > O} and let L 2 ( G" ) denote the Hilbert space 
of measurable functions on Gs that are square integrable 
with respect to the left-invariant Haar measure 
dIL(a,b) = a - 2 da db on Gs • A function heL 2(R) is admis
sible if h # 0 and if 

f dIL(a,b) 1 (ha,b,h >12 = Ch < 00. JG, 
This condition is independent of the choice of Gs and is 
e~uivalent to the condition fdylyl- Ilh ~ (y) 12 < 00, where 
h (y) = fdx h(x)exp( - 21Tixy) is the Fourier transform 
of h. The following result is a consequence of standard re
sults in the theory of unitary group representations:2 If 
G, = G or G, = Gc and heL 2(R) is admissible, then 

Ch-
1 L, dIL(a,b)( U,j) (a,b)ha,b = P(f), for all/eL 2(R), 

(1) 

where P(f) denotes the orthogonal projection of/onto the 
closed subspace H spanned by the wavelets Gs (h). 

The wavelets Gs (h) constitute a set of coherent states for 
the action of Gs on H if h is admissible and if H is irreducible 
under the action ofGs • Note thatL 2(R) is irreducible under 
the action of G but not irreducible under the action of Gc 

since the subspaces H + and H - of L 2(R) consisting of 
functions whose Fourier transforms are supported on the set 
of positive, negative real numbers that are closed and invar
iant under Gc • However, these subspaces are irreducible un-

der the action of Gc ' Therefore, wavelets generated by ad
missible functions are generalizations of coherent states. 
Coherent states have extensive applications in physics. 3 

Computational considerations suggest the utility of rep
resenting functions by expansions involving discrete wave
lets. A tight frame of a Hilbert space H is a countable subset 
{hal of vectors such that for every jEll,f = c~a (ha If)ha 
for some c> O. Therefore, the discrete wavelets 
{ha,b 1 (a,b)ED} form a tight/rame if: 

/=c I (ha,blf)ha,b' for every/eL 2(R). (2) 
(a,bleD 

This relation is a discrete analog of relation (1) in which 
P(f) = f Daubechies et al.4 constructed tight frames for 
L 2(R) that consist of discrete subsets D(h) of coherent 
states for the action of G. In their construction, the set D is a 
lattice in G having the form 
L a,{3 = {( ± exp(an),{3m exp(an»lm,nEZ} for {3 #0. The 
function h is an admissible bandlimited function con
tained in either H + or in H - satisfying additional restric
tions. Since D contains reflections, it is not a subset of Gc and 
thereforeD(h) is not a set of wavelets for Gc • Furthermore, h 
does not have compact support. 

The first bases consisting of wavelets having compact 
support were orthonormal bases for which 
D = {(2 -j,2 -jk) V,keZ} = L a.{3 nGc where a = In(2) and 
{3 = 1. In 1910, Haar5 constructed the following basis for 
L 2(R):{'l!/2tP('l!x - k) V,kEZ} where tP = 1 for [O,!], 
tP= -Ion [p), and tP=O on (- oo,O)U[I,oo). In 
1988, Daubechies6 constructed, for each integer N>2, a 
function tPN satisfying: (i) the support of tPN has length 
2N - 1; (ii) the O, ... ,N - 1 moments of tPN equal 0; (iii) 
each tPN is continuous and its regularity increases indefinite
ly as N increases; (iv) {2j /2tPN (2j x - k) V,kEZ} is an ortho
normal wavelet basis for L 2(R). Daubechies constructs 
each wavelet tP N from 2N parameters, called scaling param
eters, which are constrained by a set of N linear and N qua
dratic equations. These constraints are necessary and suffi
cient to ensure that all four properties above are satisfied. 
However, they imply that there exist at most 2N different 
wavelets and, furthermore, all these wavelets have identical 
Fourier moduli. In this paper we prove that if N - 1 of the 
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linear constraints are removed, then Daubechies' construc
tion results in tight frames of compactly supported wavelets. 
Furthermore it is proved that for "almost all" choices of 
scaling parameters, the resulting frame is in fact an ortho
normal basis. 

II. STATEMENT OF RESULTS 

The Haar wavelet function can be constructed as 
t/l(x) = t/J(2x) - t/J(2x - 1), where t/J is the characteristic 
function of the set [0, 1). The function t/J satisfies and is 
uniquely defined in L 2(R), up to normalization, by the scal
ing relation t/J(x) = t/J(2x) + t/J(2x - 1). This approach is 
generalized below. 

Step 1. Choose an integer N and construct a sequence of 
complex numbers {Co, ... ,C2N _ I}' called scaling param
eters, that satisfy the following two equations: 

ICm C!'+2n =2c5on , foralln, (3) 

(4) 

Here, Cm = ° for m <0 and for m;;'2N, * denotes complex 
conjugation, and 1500 = 1 and c50n = ° for n:;60. Let VN de
note the set of all such sequences. Then V N is an algebraic 
subset of C N = R 4N, VI = {( 1 I)}, and V N is uncountably 
infinite for N;;.2. 

Step 2: Construct a scaling function t/JeL 2 (R) that satis
fies the scaling relation 

(5) 

Step 3: Construct the wavelet function t/JeL 2 (R) by 

(6) 

The main objective of this paper is to prove the following 
three results. 

Theorem 1: If {Co,""C2N _ I }EVN and t/J0 denotes the 
characteristic function of [0,1 ), then the sequence ¢J defined 
by 

(7) 

converges weakly in L 2(R) to a function t/J. Furthermore, t/J 
is the unique function that satisfies (5) and for which 
f t/J = I. Also, support (t/J) = [0,2N - I]. 

Theorem 2: If {Co , ... 'C2N _ I }EVN, t/JeL 2(R) satisfies 
(5), and t/l is constructed by (6), then: 

(i) {t/J(x - m) ImEZ} forms a partition of unity, i.e., for 
almost allx,l:mt/J(x - m) = 1, 

(ii) {2 - j/2t/l( 2jx - k) li,kEZ} is a tight frame of L 2 (R); 
in particular, 

ICy) = I (2 -j/2t/l(2!x - k) '1)2 -j/2t/l2jy - k), 
j.k 

for all/eL 2(R). 

The next result expresses the fact that "most" of the 
tight frames constructed above are orthonormal bases. Fix 
an integer N> 0, let L N denote the 4N - 3 dimensional sub-
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space of L 2 (Z) consisting of all sequences {B m} such that 
Bm =0 if m< -2N+2 or if m>2N-2. For any 
v = {CO"",C2N _ I }EVN, construct the following: 

(i) a linear mapping Sv:L N -+ L N defined by 

Sv(A)m = ~ [~ C-*C ]nA2m-n, (8) 

where C-(k) = C*( - k) for all k and C-*C denotes the 
convolution of C and C; 

(ii) a sequence AveLN by 

Av.m = J t/J~(x)t/Jv(x - m)dx, (9) 

where t/JveL 2(R) is the unique function, constructed as in 
Theorem 1, that satisfies Eq. (5) and the condition ft/Jv = 1, 

(iii) a subset 

WN ={v={CO"",C2N_I}EVNIDPv(1) =O}, (10) 

where DPv denotes the derivative of the characteristic poly
nomial P v of S v' The following result shows that "most," but 
for N;;.2 not all, of the tight frames constructed above are 
orthonormal bases. 

Theorem 3: For all VE V N' SV (150m ) = 150m and 
Sv (Av) = Av· The subset of WN of VN is a proper algebraic 
subset of VN. For N;;'2, v = {1,O, ... ,O,t}EVN, VEWN, and the 
set {t/ljk li,kEZ} is not orthonormal. If VE VN and vEWN then 
{t/ljk li,kEZ} is an orthonormal basis for L 2(R). 

III. DERIVATIONS 

Several intermediate results are required for the proofs. 
Lemma 1: The sequence {t,6'} in Theorem 1 converges to 

a distribution t/J whose support is [0,2N - 1]. 
Proof The Fourier transforms ct>i of ¢J satisfy ct>i+ I(y) 

= ct>i(y/2) mo (y/2) for j;;. 1 and ~O(y) 
= exp(1Tiy)sinc(1TY), where mo (y) = ~l:n Cn exp(21Tiny). 

Equation (4) implies mo (y) = 1, therefore the sequence ct>i 
converges uniformly to the function ~(y) = llj>1 mo (2 -jy) 

on compact subsets of R. Furthermore, for Iyl;;. 1, each ct>i 
satisfies the inequality Ict>i(y) I <CB I + I08'(Y), where 

C = max{I~(Y) I, Iyl < t} and B = max{lmo (y) I}· Thus ct>i 
and ct> are bounded by polynomial gro~th and {t,6'} con
verges to a distribution t/J such that t/J = ct>. Clearly, f '" 
= ct>(0) = 1. Also, support(t/J) = lim support(¢J) 
=lim[0,(N-1)(1-2- j

)] = [O,N-l]. 
Lemma 2: For allj;;.O, (¢JI¢J) = 1. The distribution t/J is 

in L 2(R). 

Proof Clearly for any integer n, (t/J°(x) It/J°(x - n» 
= c5on ' By (7), (3) and induction 

(¢J+ I (x) I¢J+ I (x - n» 

= (I Cm¢J(2x - m) I I Ck ¢J(2x - 2n - k» 
m k 

= I I C!'Ck (¢J(2x - m)l¢J+ 1(2x - 2n - k» 
m k 

1 
=- I C!,Cm _ 2k =c5on ' 

2 m 

Therefore, since the unit ball in L 2(R) is weakly compact, 
any subsequence {gk} of {t,6'} has at least one accumulation 
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point. say g. in the weak topology. Then there exists a subse
quence of {gk} that converges weakly to g. Since the weak 
topology on L 2(R) is stronger than the distribution topol
ogy. g = t/J. Therefore. {if} converges weakly to t/J€L 2(R). 

Proof of Theorem 1: It suffices. from Lemmas 1 and 2. to 
demonstrate the uniqueness of t/J. Assume t/J is any distribu
tion satisfying the scaling recursion (7) and the condilion 
St/J = 1. The Fourier transform satisfies t/J (y) 
= <I>(y)t/J~(O) = <I>(y) where <I> is the function represented 

by the infinite product expansion in Lemma 2. This con
cludes the proof. 

Lemma 3: The set {t/J(x - m) ImEZ} forms a partition 
of unity. 

Proof Let {if} be the sequence in Theorem 1. Since 
t/J = lim f/J it suffices to prove {f/J(x - m) ImEZ} forms a 
partition of unity for all j = 1. For j = 1 this holds since 
t/J0 = characteristic function of [0.1). The result for i~ 1 fol
lows by induction. 

For any vectors g and h in a Hilbert space H let Ig) (h I 
denote the operator. called the outer product of g and h. de
fined by Ig) (h I (f) = (h If) g. Therefore, a subset {ha } of H 
is a tight frame if and only if l:a Iha ) (ha I = I. where I de
notes the identity operator on H and the limit is in the weak 
sense. 

Lemma 4: Let t/J be a scaling function with support 
[0.2N - 1] and for any integer J let I J denote the operator 

l:m I 2J12t/J(2Jx - m» (2J12t/J(2Jx - m) I. Then limitIJ = 1. 
Proof The set of operators {IJ } is uniformly bounded 

since for any fEL 2(R). the orthonormality of 
{2J12t/J(2Jy - n(2N - 1 »/1 I t/J II InEZ} and Bessel's inequali
ty7 imply 

IIIJ(f)1I 
n=2N-2 

=11 L L (2J12t/J(2Jy-m)lf(y» 
n=O m=nmod(2N-Jl 

Therefore. it suffices to prove that limit I J (f) = f for allfin 
a dense subset of L 2(R). Assumefis continuous and has 
compact support. Then if m - 00 and J - 00 such that 
2 -Jm_x.lim 2J (t/J(2Jy - m) If(y)) =f(x) uniformlyinx. 
The result now follows since. by Lemma 3. 
{t/J(2Jy - m) ImEZ} forms a partition of unity. 

Lemma 5: Let t/J and t/J denote the scaling function and 
wavelet corresponding to a {Co •... 'C2N _ I }E V N' For any in
teger J define the operators I J as in Lemma 4 and 
FJ = l:m J2J/2¢(2Jx - m» (2J/2¢(2Jx - m) I. Then for all 
J. I J + FJ = I J + I . 

Proof Substitute the expressions for t/J and ¢ in Eqs. (5) 
and (6) to obtain 

= L L CU.k) 12(J+ 1)/2t/J(2J+ IX - i» (2(J+ 1)/2t/J(2J+ IX - k) I. 
i k 

where 

CU.k) =~ L [C~m+iC2m+k + (_1)2m+i 
2 m 

XCI _ 2m _ i ( _1)2m+kCT-2m_d· 

It suffices to prove that CU,k) = l)ik' Assume i is even and k 
is odd. Then replace m by m - i/2 in the first expression and 
replace m by - m - (1 - k)/2 in the second expression 
(within brackets) above to obtain 

C(i,k) = ~ L [C 1m C2m _ ; + k - CZm _ i + k C ~m] = O. 
2 m 

lfi is odd and k is even it follows similarly that CU.k) = O. 
Now assume i is even and k is even. Then replace m by 
m - k 12. respectively - m - il2 in the first and second 
expression above to obtain 

CU.k) = ~ L [C~m_ k+ iC2m + CI +2m C r +2m- k+;)' 
2 m 

Since 2m ranges over all even integers and 1 + 2m ranges 
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over all odd integers. this expression is equivalent to 
P:m c:, _ k + i C2m · Equation (3) implies this expression 
equals l)ik because - k + 1 is even. Finally, if both i and k 
are odd. replace m by - m - (i + k) 12 in the second 
expression to obtain 

1 2 ~ [C ~m + i Clm + k + CI + 2m + k C r + 2m +;) = l) ik . 

Proof of Theorem 2: The first conclusion follows from 
Lemma 3. The second conclusion follows from Lemma 4 
and the repeated application of Lemma 5 to obtain 

I = lim I J = lim FJ _ I + FJ _ 2 + ... + F _ J + I _ J 
J-oo J-oo 

Proof of Theorem 3: Let N~ 1 be an integer. let 
v = {CO ' .... C2N _ 1 }EVN , and let Sv denote the operator de
fined by (8). Then Sv(l)om) =l)om follows from (3) and 
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Sv (Av) = Av is obtained by substituting the scaling relation 
(S) into the integrand in Eq. (9). Clearly, DPv ( 1) is a poly
nomial in terms of the scaling parameters { em} and their 
complex conjugates. Therefore, WN is an algebraic subset of 
VN • Also, WN :;6 VN because the scaling parameters con
structed by Daubechies are in VN and not in WN , therefore 
WN is a proper algebraic subset of VN • Clearly, for N>2, 
v = {1,O, ... ,O, l}EWN and also the set {J/ljk li,kEZ} is not or
thonormal. Assume {J/ljk li,kEZ} corresponding to VEVN is 
not an orthonormal basis for L 2 (R ). It suffices to show 
VEWN • Consider the sequenceAv defined by Eq. (9). If Av is 
a linear multiple of the sequence DOm then the functions 
{tfo(x - m) ImEZ} are orthogonal. However, by construc
tion f", = 1, and by Lemma 3, {tfo(x - m) ImEZ} forms a 
partition of unity, therefore, 

Av (0) = f tfo*(x)tfo(x)dx = f tfo*(x) ~ tfo(x - k)dx 

= f tfo*(x)dx = 1. 

Then Eq. (8), describing the construction ofthe wavelet J/I in 
terms of tfo, implies the functions {J/ljk li,kEZ} are orthogonal. 
Since by Theorem 2, this set is a also a quasiorthonormal 
basis for L 2(R), 

m.n 

for all j, kEZ, hence {'I'jk li,kEZ} is an orthonormal basis. 
Since this contradicts the original assumption, it follows that 
Av is not a linear multiple of DOm. Therefore, Av and DOm are 
linearly independent eigenvectors in L N , having eigenvalue 
1, for the linear operator Sv defined by Eq. (8). Therefore 
the characteristic polynomial Pv of Sv has the root 1 occur 
with multiplicity >2. Hence its derivative DPv satisfies 
DPv (1) = 0 and VEWN • The proof is complete. 

Remark: It follows from Pollen's factorization 
theoremS for unitary matrices over the ring of Laurent poly-
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nomials that V N is an irreducible algebraic set. Therefore, 
the subset W N of V N has zero measure. 

Open Problem: Does every VE W N give rise to a nonorth
onormal basis? 
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A half-infinite chain of spring-mass oscillators with nearest-neighbor coupling is excited by a 
sinusoidal force applied to the mass at the accessible end of the chain. The identical linear 
springs are massless. Each mass has measure m (m > 0) except one, which has measure 
p,m(p, > 0). An exact solution is given for the initial-value problem in which all initial 
velocities and displacements are zero. Behavior of the solution for large t (time) is examined. 
When the concept of average power supplied by the source to the chain in steady state is 
meaningful, expressions for average power are deduced. 

I. INTRODUCTION 

A half-infinite chain of harmonic oscillators is consid
ered in which each mass is coupled to its nearest neighbors 
by massless linear springs (Fig. 1). The chain is called half
infinite because it extends indefinitely to the right only. The 
leftmost mass, which is acted upon by an applied sinusoidal 
force F sin (mt), is not connected to the inertial frame. The 
supporting plane is horizontal and frictionless. All the 
springs are alike with linear spring constant k ( k > 0); and 
each mass has measure m(m > 0) except one, which has 
measure p,m (p, > 0). The masses are numbered 0,1,2, ... from 
the left; and the anomolous mass, which is thought of as an 
isotopic defect,t·2 is the (N - l)th mass. The displacement 
of the nth mass from its equilibrium position is represented 
by X n • Note that any configuration of the masses in which 
each spring has its natural length is an equilibrium position; 
and from all such configurations, an arbitrary one may be 
selected and called the equilibrium configuration. 

In Sec. II the general case of a single isotopic defect in an 
arbitrary position is discussed. An initial-value problem is 
considered in which all velocities and displacements are zero 
at time t = O. A solution of this problem is defined to be a 
sequence {xn }: = 0 oftwice-differentiable, real-valued func
tions of t that satisfy the prescribed initial conditions and 
reduce the differential equations to identities in t for t> O. 
Such a solution is unique if each Xn (n>O) is required to be 
analytic (that is, expansible in a power series). The initial
value problem is solved by giving an integral representation3 

of Xn in terms of a suitable set of orthogonal polynomials and 
a generalized weight function (distribution). The behavior 
of the displacement x n is analyzed for large t, and the results 
are summarized in Tables II and III. When the concept of 
average power supplied to the chain by the source is mean
ingful, the average power is calculated. 

For given m, k, and F, the other parameters of the prob-

a) Dr. Marvin B. Sledd passed away on 30 October 1988. 

lem are the angular frequency (m) of the exciting force and 
the location (N) and seriousness (p,) of the defect. In ana
lyzing the solution, it is convenient to consider ten cases, 
which are determined essentially by the relation of m to the 

natural frequency ~ 4k 1m and of p, to a critical defect factor 
P,c that will be defined subsequently. The various possibili
ties are enumerated in Table I. 

The remaining sections consider special cases or exten
sions of the work undertaken in Sec. II. In Sec. III the case of 
a single isotopic defect in the leftmost position is discussed in 
greater detail by using the results of Sec. II for N = 1. Re
sults for the uniform half-infinite chain with no defect are 
obtained (Sec. IV) by settingp, = 1 in the appropriate loca
tions in Sec. II. Section V examines the effects of the change 
in phase when the exciting force Fsin(mt) is replaced by 
Fsin(mt - <p). 

II. THE UNIFORM CHAIN WITH A SINGLE ISOTOPIC 
DEFECT IN AN ARBITRARY POSITION 

The equations of motion of the half-infinite uniform 
chain with a single isotopic defect in an arbitrary position are 

p,mxo = k(x 1 - xo) + Fsin(mt), (1a) 

mXn =k(xn+ 1 -2xn +xn_ 1 ), n;;d, (1b) 

when N = 1, or when N>2, 

mxo = k(x 1 - xo) + Fsin(mt), (2a) 

~o Xl ~N-l "N 
sin wt k k k k k 

_ m m ••• Lim m ~. 

FlG. 1. A uniform half-infinite chain with a single isotopic defect. 
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fLmXN-1 =k(xN -2xN_ 1 +XN_2)' 

mX" = k(x,,+ I - 2x" + X,,_I)' 

l<n<N - 2 and n>N, 

(2b) 

(2c) 

where x" (N,t) represents the displacement of the nth mass 
from its equilibrium position and the dots above a variable 
signify differentiation with respect to time t. To Eqs. ( 1 ) and 
(2) the initial conditions 

x" (N,O) = 0, i" (N,O) = 0, n>O, (3) 

are adjoined for arbitrary N> 1. 
It has been shown4 that, for fixed N> 1, each component 

x" (N,t) of the solution ofthesystems (l),(3) and (2),(3) 
can be written in the form 

1 f+ 00 

x" (N,t) = - W(y,t;O)P" (N,y)da(N,y) , n>O, 
mo - 00 

(4) 

where mo is the measure of the leftmost mass (mo = fLm 
whenN = 1 and mo = m whenN>2). Then, W(y,t;O) is the 
solution of the differential system 

Notice that W(y,t;O) is a continuous function of y for 
y>O provided W(O,t;O) is defined to be 
F[wt - sin(wt) ]/w2. The sequence {P" (N,y)}:,=o consists 
of polynomials that satisfy the recurrence 

Po (l,y) = 1, 

PI (l,y) = 1 - mfLyk - I, (7) 

P,,+ I (l,y) = (2 - myk -I)P" (l,y) - P,,_I (l,y), n>l, 

when N = 1 or the recurrence 

Po (N,y) = 1, 

PI (N,y) = 1 - myk -I, 

Wu (y,t;O) + yW(y,t;O) = Fsin(wt), 

W(y,O;O) = 0, W, (y,O;O) = o. (5) P" (N,y) = (2 - myk -I)P"_I (N,y) - P,,-2 (N,y) , 

Thus 

{
F[WSin(~t)2-~Sin(wt)] , 

W(y,t.O) = ~(w - y) 
, F[sin(wt) -wtcos(wt)] 

2w2 
' 

(6) 

l<n<N - 2 and n>N, (8) 

when N>2. Each system may be solved using standard tech
niques for difference equations.5

,6 A convenient form for 
this solution is obtained by making the change of variable 
2 cosfJ= - 2 + myk -I when 0<y<4klm or 
2 cosh 1/1 = - 2 + myk - I when y > 4k 1m. This yields 

P N 
_ sin(~ fJ) , sin(n - N + l)fJ sin(N - pfJ if 

{

( _ 1)" sin(n + pfJ ifO<n<N - 1, 

( y) - , . N<n, 
", ( _ 1)" sin(n + pfJ _ ( _ 1}"2(l _ fL)( 1 + cos fJ) sin fJ sine! fJ) 

(9) 

sine! fJ) 

forO<y<4klm, or 

{

( - 1)" sin~(n + P1/l, if O<n<N - 1, 
P (N ) = smhq1/l) sinh(n - N + 1}1/1 sinh(N - p1/l 

",y (_ 1)" sinh(n + p1/l _ (-1}"2(l- }(1 + cosh 1/1) sinh 1/1 sinhq1/l) 
sinhq1/l) fL 

ifN<n, (10) 

for y > 4k 1m. By applying a known test,7 it can be verified that these polynomials are orthogonal with respect to some weight 
function (distribution). It can also be shown that these polynomials are a special case of a class of polynomials for which 
McKibben8 has described a method for constructing the appropriate distribution. In addition to an absolutely continuous 
part, the distribution may contain a singular part represented by a Dirac delta.9 The location and weight of this distribution 
are determined by certain properties of a polynomial P(N,z) and by the distribution corresponding to a set of orthogonal 
polynomials associated with the polynomials P" (N,y). As a practical matter, it is not always possible to carry out McKibben's 
procedure. However, in the present case, the distribution is given by 
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[ mo~(4k - my)/myI[o,4klml(Y) + (1/m)J(x )c5( -y )]d if 0<11 < (4N - 3)/(4N - 2), 
211'kTI (N,1 _ myl(2k» n Y N y, r-

da(N,y) = 

[ 
mo~(4k - my)/myI[o,4klml(Y) ]d

Y
, if (4N - 3)/(4N - 2)<1", 

211'kTI (N,1 - myl(2k» 

(11) 

where T J is defined by 

TdN,x) ~ [ (I" - 1 )21 z'lN - J 

2N-2 I" 12]1 -2 L (_Z)I +--
1=1 1-1" Z=.'8 

More detail on the preceding calculations can be found in 
Mokole;1O in particular, the function T J isthefunctionSJ on 
page 97 of this reference. 

with x = cos () = 1 - (my)/(2k). Here, I[o,4klm I (y) is the 
indicator function of the interval 0<.v<4k 1m. The numbers 
y N and x N needed to determine the location and strength of 
the Dirac delta in (11) are given by the relation 

Observe that the presence or absence of a Dirac delta in 
the distribution da(N,y) depends on the relation of the pa
rameter I" (seriousness of the single isotopic defect) to the 
critical value Pc(N) = (4N - 3)/(4N - 2). This special 
value of p is obtained from (13) by setting P(N, - 1) to 
zero. That the Dirac delta is present when I" <Pc (N) and 
absent when P;;'Pc (N) increases the number of cases that 
must be analyzed. 

where ZN is the single zero in the interval ( - 1,0) of the 
(2N)th-degree polynomial 

A major objective of the analysis is to derive useful infor
mation about Xn (N,t) for large t. Since Eq. (4) is not very 
well adapted to this end when all frequency ranges are con
sidered, the expression for Xn (N,t) is now reformulated. 

P(N,z) = (z-I)(1" -1) 
The form in which Xn (N,t) is to be recast is suggested by 

past experience with similarly excited finite frictionless 
chains. Except when resonance is involved, the displace
ments in such systems are sinusoids with the possible addi
tion ofan affine term. So a representation ofxn (N,t), n;;'O, of 
the form 

X z'lN-J -2 L (_Z)I+~, [ 
2N-2 ] 

I=J I-p 
(13) 

the summation being defined to be zero when N = 1. The 
strength of the Dirac delta is 

{

An (N,t) + en (N,t)cos(wt) + Sn (N,t)sin(wt) 

1 
xn (N,t) = + m J(xN )Pn (N'YN) W(YN,t;O), 

An (N,t) + en (N,t) cos (wt) + Sn (N,t)sin(wt), 

if 0 <I" <I"c (N) 

if Pc (N) <I" 

is chosen, where An (N,t), en (N,t), and Sn (N,t) have finite limits as t approaches positive infinity. The expressions, 

m - JJ(xN )Pn (N'YN) W(YN,t;O) and An (N,t) + en (N,t)cos(wt) + Sn (N,t)sin(wt), 

(15) 

are obtained respectively from the Dirac delta and the absolutely continuous parts of the generalized weight function appear
ing in (11). One means for arriving at (15) from (4) is first to rewrite (6) as 

Fsin('/yt) Fsin[~(./Y - w)t] cos [!(./Y + w)t] 
~~~)= - , 

'/y(w+'/y) ~(./Y-w) ('/y+w) 
(16) 

with the understanding that W( w2 ,t;O) = lim
y
_.,' W(y,t;O). The substitution of (16) and (11) into (4), followed by the 

changes of variable v =./Y and u = v - w, leads to Eq. (15) with 

F rk,m Pn(N,v2)~(4klm) - v2 sin(vt) d 
An (N,t) =- --....;;,..--------- v, 

11' 0 (w + v)kTJ (N,1 - mv22 - Jk - J) v 
(17a) 

1904 J. Math. Phys., Vol. 31, No.8, August 1990 Mokole, Mullikin, and Sledd 1904 



                                                                                                                                    

With the following definitions: 

f(N,v) 

g(N,u) =f(N,u + w), (18b) 

fn (N,v) = Pn (N,v2 )f(N,v) , (18c) 

gn (N,u) =fn (N,u + w) = Pn(N,(u + wf)g(N,u), 

(18d) 

Eqs. (17) become 

(19a) 

J
J4k 1m - OJ sine ut) 

Cn (N,t) = _OJ - gn (N,u) u du, (19b) 

(17b) 

(17c) 

~-OJ 1- cos(ut) 
Sn (N,t) = J _ OJ gn (N,u) u duo (19c) 

Observe that in the integrals for Cn (N,t) andSn (N,t) in 
(19) the upper limits of integration are positive, zero, or 
negative depending on whether the angular frequency w is 
less than, equal to, or greater than ,j 4k / m. Also note that 
the form that x n (N,t) takes in ( 15) depends on whether the 
physical parameter ft is less than, equal to, or greater than 
the critical value ftc (N) = (4N - 3 )/( 4N - 2). Thus, the 
ten cases listed in Table I are considered. 

Because case 5 involves both a special frequency and a 
special value of ft, it is handled separately. The remaining 
nine cases are now considered collectively. By using the Rie
mann-Lebesgue lemma and similar concepts, it can be 
shown 11 that for each n>O the functions An (N,t), Cn (N,t), 
and Sn (N,t) in (19) have finite limits as t approaches posi
tive infinity. Call these limits an (N), Cn (N), and Sn (N), re
spectively. Then, for each fixed N> 1 and for each n>O, the 
function 

_ {an (N) + Cn (N)cos(wt) + Sn (N)sin(wt) + (l/m)J(xN )Pn (N'YN) W(YN,t;O) , 
Xnss (N,t) -

. an (N) + Cn (N)cos(wt) + Sn (N)sin(wt), 

if 0 <ft <ftc (N), 
(20) 

if ftc (N) <ft, 

represents Xn (N,t) for large t. In particular, 
lim t _ + "" [xn (N,t) - xn.ss (N,t)] = 0 for each n>O. The 
portion of Xn (N,t) that arises from the absolutely contin
uous part of the distribution da is written in the 
form An (N,t) + Cn (N,t)cos(wt) + Sn (N,t) sin (wt) , where 
An (N,t), Cn (N,t), and Sn (N,t) have finite limits as t ap
proaches infinity. Since trigonometric identities may be 
used to arrive at different representations for the coeffi
cientsA n, Cn' andSn, it is unclear whether an (N), Cn (N), 
and Sn (N) are unique. This issue is resolved by the follow
ing theorem. 

Theorem: Suppose that w > 0 and that a real-valued 
functionf of a real variable can be represented for all real t 
as 

f(t) = A(t) + C(t)cos(wt) + S(t)sin(wt), 

and as 

f(t) = A (t) + C(t)cos(wt) + S(t)sin(wt). 

Also suppose the real-valued functions A(t), C(t), S(t), 
A (t), C(t), and Set) have the properties 

lim t _ + ""A(t) = a, lim t _ + 00 C(t) = c, 

lim t _ + "" S(t) = s, 

1905 J. Math. Phys., Vol. 31, No.8, August 1990 

lim t _ + ""A(t) = a, lim t _ + "" C(t) = c, 
limt _ + 00 Set) = s, 

for the finite real numbers a, c, s, a, c, S. Then a = a, C = C, 
ands=s. 

Argument: It is sufficient to prove that iflimt _ + "" F(t) 

=f, lim t _ + "" G(t) = g, and limt _ + 00 H(t) = h and if 
F(t) + G(t) cos(wt) + H(t) sin (wt) = 0 for t>O and 
w>O, thenf= g = h = O. Let tn = 2n1T/W for n = 1,2, ... , 

TABLE I. Enumeration of the ten cases to be considered by the ranges of 
the parameters J.l and £I). 

J.lc (N) <J.l Case( I) 

J.l = J.lc (N) Case(4) 
o <J.l <J.lc (N) Case(7) 

Case(2) 
Case(5) 
Case(8) 

4klm<£I)2 

Case(3) 
Case(6) 
Case(9) 
£l)2=YN 

Case( 10) 
£l)2#YN 
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then limn _ 00 [FUn) + GUn ) cos (wtn ) + HUn ) sin (wtn )] 
= / + g = O. Now let Tn = (2n + 1 )1rlw for n = 1,2, ... , 

then limn _ 00 [F( Tn) + G( Tn )COS(WTn ) 

+H(Tn)sin(WTn)] =/-g=O. Hence/=g=O. The 
proof of h = 0 is similar. 

Thus, although the choice of An (N,t) , Cn (N,t) , and 
Sn (N,t) in (15) is not unique, it follows by the preceding 
theorem that every representation of the exact solution 
{xn (N,t)}: = 0 in the form (15) leads to the unique result 
(20) provided only that An (N,t) , Cn (N,t), and Sn (N,t) 
have finite limits as t approaches positive infinity. 

To evaluate lim t _ + 00 An (N,t) = an (N), consider 
(l7a). It can be shown that TI (N,[2k - mv2 ]![2k]) is 
nonzero on the interval of integration except when 
J.l = J.lc (N). In this case the ratio 

~ [4k - mv2 ]!mlTI (N,[2k - mv2]![2k]) 

has an absolutely (improperly) integrable singUlarity at 

v = ~4k 1m. So for all choices of J.l, the limit is given by 

an(N) = [FPn(N,0)]/[wT1 (N,I)~mk], n>O. Since 

Pn(N,O) =J.l and TI (N,l) = 1, an(N) =FI[aNnik] for 
n>O. 

By using similar techniques, intricate algebraic argu
ments, and various limit theorems like the Riemann-Lebes
gue lemma, the limits Cn (N) and Sn (N), n>O and N> 1, can 
be calculated. 12 An indirect approach which provides the 
same results and is considerably easier to execute consists of 
the following steps. 

(i) First the sequence {xn•ss (N,t)}: = 0 is shown to satis
fy the differential equations ( 1) when N = 1 or the differen
tial equations (2) when N>2Y 

(ii) It is observed that if an expression for xO.ss (N,t) is 
known, the remaining xn•ss (N,t), n> 1, are uniquely deter
mined by the differential equations. 

(iii) By using the differential equations and standard 
techniques of difference equations, the coefficients cn (N) 
and Sn (N), n> 1, can be expressed in terms of Co (N) and 
So (N), which are recorded in Table II for all cases except 

TABLE II Coefficients CO (N) and SO (N) ofEq. (20). A horizontal bar through an integral denotes the Cauchy principal value. 

Case co(N) 30(N) 

(1) -F.J(41cIm)-w' r./41c1m F*(41cIm)-v' 
21cw:l'1{N,l mw'2-11e- 11 o trle{ v' w'-1{N,l-mv'2-11e-lj dtJ 

(2) 0 ~w -F d 
o trlev'w'-v'T.(N,l-2v'w-') tJ 

(3) 0 ../41e1m 
fo trle{v' 

Fr{rle,m)-v' d 
w'"T.{N,l mv'2-11e-11 tJ 

(4) -F.J(41eIm)-w' 
21cwT1(N,l mw'2 ile-ij 

../41e1m 
fo trle(v' 

Frf(4Ic/m)-v' 
w'"T1(N,l mv'2- i le-ij dtJ 

(6) 0 J.../41cIm Frf(41eIm)-v' 
o trIc{v'-w'"T.{N,l mv'2-11e ijdtJ 

(7) -F.J(41eIm)-w' f../41e1m Frf(41eIm)-v' d 
2lcwTl (N,l-mw'2-11e-lj o trle(v'-w'"T1{N,l mv'2-11e-lj tJ 

(8) 0 ~w -F d 
o trlev'w'-v'T.(N,l-2v'w-') tJ 

(9) 0 ../41e1m 
fo trle{v' 

Frf(41cIm)-v' 
w'"T.{N,l-mv'2 11e-lj dtJ 

(10) 0 J.../41eIm Frf(41eIm)-v' 
o trIc{v'-w'"T.{N,l-mv'2 ile-Ij dtJ 
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case (5). In addition, the expressions for Cn (N) and Sn (N) 
are listed in Table III. 

For given values of N, IL, and Cli, evaluation of CO (N) 
involves only algebraic operations, and SO (N) is represented 
by an integral that can be evaluated exactly for N = 1. For 
N> 1, the integral expression for SO (N) has not been deter
mined explicitly, but various numerical techniques can be 
used to approximate its value. 

In case (5) [where IL = ILc (N) and m2 = 4k 1m], the 
displacement Xn (N,t) for large t is treated somewhat differ
ently because Cn (N,t) and Sn (N,t) do not have finite limits 
as t approaches positive infinity. However, since 
t - 112Cn (N,t) and t - 112Sn (N,t) have finite nonzero limits 
as t approaches infinity,14 rewriteXn (N,t) , n>O, in the form 

Xn (N,t) = An (N,t) + t 1I2Cn (N,t)cos(mt) 

+ t 1I2Sn (N,t)sin(mt), (21) 

where 

en (N,t) = t - 1I2Cn (N,t) and Sn (N,t) = t - 1I2Sn (N,t). 

(22) 

In this instance the behavior of Xn (N,t) for large t is repre
sented by 

x n, .. (N,t) = an (N) + en (N)t 1I2cos(mt) 

+ sn (N)t 112 sin(mt), (23) 

where 

an (N) = lim t _ + ""An (N,t) , en (N) = lim t _ + "" C n (N,t) , 

sn (N) = lim t _ + "" Sn (N,t). (24) 

By an argument not very different from the one used to prove 
the previous theorem, it can be shown that although 
An (N,t) , C n (N,t), and Sn (N,t) are not unique, the result 
xnss (N,t) is unique provided that An (N,t), C n (N,t) , and 
Sn' (N,t) have finite limits as t approaches infinity. Calculat
ing the appropriate limits yields 

{

£ _ F( - 1)n ~ (2n + 1) .Jt cos(mt) _ F( - 1)n ~ (2n + 1) .Jt sin(mt), ifO..;;n..;;N _ 1, 
2k 2k \j 11' (2N - 1)2 2k \j 11' (2N - 1)2 

X (N,t)= ~ ~ n,ss F F( _ 1)n m 1 F( - 1)n m 1 
- - - .Jt cos(mt) - - ---.Jt sin(mt), if n>N. 
2k 2k 11' 2N - 1 2k 11' 2N - 1 

(25) 

TABLE III. Coefficients an (N), Cn (N), and sn (N) of Eq. (20) in terms of ao (N), Co (N), and So (N). an (N) = ao (N) = F /[wJnik] for all cases, 
(J = arcsin~ml<N4k, 2 cosh !/I = - 2 + m(Ji/k, and 2 cosh !/IN = - 2 + mYN/k. 

c,,(JI) 

c ••• [If cO(II) - 0, cn(lI) - 0 for .11 oJ 0
0

(11) 

(ll, 0'0'"-1 .0(11) CO'~!::118 00(R) c ... ~t118 - f :~~22-: 

(ll, o~II (II) [cOO(2n+U8 
Co co. a (1I)[COO(20+U8 +2(1- )(1- coo 28) 00 COO 8 ~ 

.00(2M- U8 aio(2n- 2R+ 2>81 
co. 8 .102e J 

+ 2(l-~)(1- co. 28) cod211 - U8 aio(2n - 211 + 2)8 ] 
co. 8 .1" Z8 

r [ aio 208 ( 8) - it "'8iDii+ 2 (1-~) 1- co. 2 .1o~2M - 218 ai"~2" - 211+ 218) 
.la 28 .10 28 

(2),0,,,'11-1 0 (-Unl·o(l) (2n+ U +f "I 
(2), ,,~. 0 (-1)"I.o(IH2a+ 1) +f ,,] 

-4(1- ~Ha - 1+ 1H-1)a l.o (Jl) (211- 1) +f (I -1)] 

(3), 0',,'11-1 0 (1)"[ (JI) .1 .... (,,+1~Zlt +1 Olab .. ] 
-·0 _.2 k .JaII. 

(3), ,,~. 0 (_1)"[ (JI) .lDh(g +l~2>t + 1 °lit r] 
·0 dab. 2 " • 

-2(-1)a(1-1I)(1+_.) .1eh.tb:+ Ut 

[ (I) .lDh(! - ~Z)t + 1 11 .... (! - tl1 
• ·0 .hIo I k .II1II 

(4), 0<a'I-1 .0(1) s.~: &11 .0(1) 11!!I!2!~~18 - f :~ It 
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TABLE III. (Continued.) 

C.(II) 

c.. (If co(ll,· 0, CD (11)·0 'or .u .J ~(.) 

(4), .>1 (11)( coa<2_ + U8 
Co coa 8 

(11)[ coa(2ft+ U8 + 2(1- co. 28) 
·0 _i 41-2 

coa(21-U8 .Ia(21- 211+ n8] 
coal .ln2' 

+ UI-!l2! i 8l 
41- 2 

COl (2M - lI8 1i.(20 - ZII + 2)8) co. 8 .Ia B 
_!( 11.2 .. + Z(1-c0I28l 

.. -;I;1i" 41- 2 
.1a'D- 218 .Ia,21- 21+!l8) 

.lnB .lnR 

(6), 0'a'I-1 0 (-U·[ (I) !!!I",p+1~2l. +!..!!!!Ut] 
'0 .taIl t 2 ...taIl t 

(6) •• >1 0 (-U·( (II) 'l!!bg+1~m +!911 
'0 .taIlt 2 ....... 

- U-U·U+S!llItl .I.(a-II+Ut 
41-2 .tut 

I (I) .l!!b0! - 1/Zlt + ! .1.'1 -U~ 
• '0 1I .... i2 .. .tui 

(1).0'_'11-1 cO(ll) c0I2.a/U8 [ (.) co.,21+U8 _ r .1.218) 
'0 ' eoai r .Ia28 

(eOl,21+U8 _"1 ,'-(a+1/2).1 ) 
FJ ("II) co. i + ( 1) .1 ••• 72 

+-.. - 2(coab •• +co.28) 

(1), .>11 (I) [coaUP+U8 "0 coai 
(I) I eo. ,21 + U8 +2(1-\1)(1- eoa 28) coa(21- U8 .!!I(21- 21+ 2)11.1 

'0 _8 co., .lnB J 

+ 2(1- \I) (1- co. 28) eOl'ZII- II IIn(21- ZII+ 218) ! [ .ip 218 + Z(1 ) (1- 28) 11.,21- 2le .1a<2. - 21+ 2l8) 
co.8 .1a 28 -.. 11. 28 - \I eo. .In 28 .1a 28 

[eOlU.+U8 _ "l l1ab(a+l/ntl ) 
rJ("II) _ 8 + ( U .l!!b ti2 

+-.. - 2(c.bt. + COl 28) 

+ PJ("II) 2(1-1!l(1-coI 281 11.(~- 2M+ ZI8 
.. Z(co.h •• + co. 28) lia Z8 

[eo.UII- U8 • liab(.-l/Z) •• ) 
• co. 8 + (-U IInh t.12 

,J("II) • linUn- 211+218 .Iab(I-1/Z).1 
+ - .. - (1- ,,)(-1) ola 28 .iph •• 72 

cn°l) 

c ••• Ilf cO(N). O. cnCN). 0 for aU n1 an(N) 

[ doh (0 + lIZ)"'.] 
'J(x ) (20+ 1) - Ilab. IZ 

01 • I 0 0 • (1),0"0".-1 0 (-I) 'o(.)(Zo+ 1) +ii: 0 + -k- (-1) Z(e.ob", -1) 
• 

(I), .... 0 (-Uo"O(II)(ZO + 11 + Eol -4(1- \1)(0 -. +I)(-uo[oo(.)(Z. - U +E (. -1)] 
[ .Iohlo+ 1/2)"'0) 

'J("H) 0(20+1) - oIob+.'Z 
+ -k- (-1) Z(e.ah •• -1) 

[ olah(. - lIZ)"'.1 
.J("H) • (2. - 11 - Ilab "'.IZ 

- -k- 4(1- \I)(a -. + I)(-U Z(eooh •• _ U 

FJ("H) 0 olobl. -1IU"'. 
+ -k- (1- \1)(0 -11+ 1)(-11 dob +./Z 

(9). 0<.'1-1 0 <_1)0[ CM) .toMa + 1~2). +! .tAh nt] 
00 olab", Z k dab. 

[dObIO+}'Z)!I! _ dOh(O+lIZ) •• ] 
,J("H) • .1ab. Z dab ",.12 

+ - .. - (-U 2(eolbt II - .. lb.) 

(9), .... 0 (_1Io[ (I) dab I. + 112). +! dab ot) 
·0 o1ab +/z .. dab.,. 

-2(-U·(1- \I) (1 + coob.) d"':.~",;: +I)' 

[ ( doh(.-1I2)t ! 010hl.-1I;] 
• ·0·) .Iah .12 + .. dDb. 

I [~IOh!O+II2)* _ Ilab(o+I/Z)·.l 
,J("H) • o1ab .12 01 ...... /z ~ 

+-.. - ~-U Z(eOlbt
ll

- aoob .) 

,J("H) 0 dnh(o-lI+llt 
- -k- (-U Z(1-\l)(l+e.ob.) 01 ..... 

rdohl·-lIZlt _ doh(lI- l/Z).!!l 

I .1 .... .,.7z Ilob •• /2 3 
.2 (coah ... - cOIIh III) 

FJ ("H) 0 olob (0 _ • + 11* dob(1 - lIZ) •• 
+ -k- (-11 (1- \I) dob. 01 .... •• /Z 
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TABLE III. (Continued.) 

eo(N) 

c ... [If eO(R) - 0, en(H) - 0 for .U nJ 

(10), O<n<N-l 0 

(10), n;>H 0 

In determining the behavior of Xn (N,t) for large t in all 
cases except case (5), the fact that {xn•ss (N,t) }:= 0 satisfies 
the differential equations (1) or (2) is used. For case (5), 

x n•ss (N,t), which has a.Jt dependence [see Eq. (25)], fails 
to satisfy Eqs. (I a) and (2a) by a term of order to and fails to 
satisfy the remaining differential equations by a term of or-

der 1I.Jt. So in case (5), the expression for xn•ss (N,t) is not 
obtained by beginning with xo.ss (N,t) and using the succes
sive differential equations; rather it is obtained for each n by 
calculating directly the limits of An (N,t), en (N,t) , and 
Sn (N,t) as t approaches infinity. Another feature which dis
tinguishes case (5) from the other nine cases is that the be
havior of Xn (N,t) for large t implied by (25) does not agree 
with the usual concept of steady state but is more like un
damped resonance. 

The remaining question to be considered in this section 
is: For large values of t, what is the steady-state average pow
er supplied by the source to the chain? The concept of steady
state average power is meaningful if the expression (the inte
gral is the energy transmitted to the system over one cycle of 
the applied force), 

~ xo (N,t)Fsin(wt)dt, i
T+ 21T/W 

211" T 
(26) 

has a finite limit as the positive number T approaches infin
ity. When this limit exists, it is by definition the steady-state 
average power Pav•ss (N). Thus, 

Pav•ss (N) = lim ~ xo (N,t)F sin (wt)dt. i
T+ 21T/W 

T-ao 211" T 

(27) 

Intuitively, one might expect the expressions 
(T+ 21T/W d 

Pav.ss(N) = ;: JT dt [xo.ss(N,t)]Fsin(wt)dt 

(28) 
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·n(H) 

(_1)n[ (H) doh(0+1/2)t +!..!!!!l!..!!t.] 
·0 .1 ..... 12 k dnh. 

FJ() (01 .... (0+112). _ (20+1) eo.h(0+V2)t I 
+ ~ (_1)0 dnhil2 eo.htl2 

k 4 (eooh • -1) 

(_1)n[. (N) doh(o+ 1/2). +!!!!l!!!!t.] 
o doh ./2 k 01 ..... 

-2(_1)0(1- ~)(1 + coah.) dnh(n- R+ 1); 
01 ..... 

• [a (N) dnh(N-l~2)i +! dnh(N-1)i] 
o dnh.2 k 01 ..... 

FJ( ) !a1nh(n+ 1(2). _ (2n + 1) eo.h (n + 1/2).1 
+ ~ (_1)n I Blnh ./2 eo.h .,2 I 

k 4 (cooh .-1) 

FJ ("tt) 
- -k- 2(-I)n(l-~)(1+coah.) o1nh~~:h~+1)i 

.. l .... (R-l/2). _ (lR-1) eo.h(II-1/2)t I 
• n eo.h .. 72 

OIeO.h .... 11 

+ FJ("tt) (_1)n(l_ ) ainh(n-N+1)i .lnhue-I/2). 
k ~ dnh; .inh ./2 

and 

A iT
+

2VW 

Pav.ss(N) =~ [xo(N,t)]s.Fsin(wt)dt 
211" T 

(29) 

to be related, at least in some cases, to Pav•ss (N). The steady
state velocity (in brackets) is obtained in the same way that 
the steady-state displacements ofEq. (20) are derived. It can 
be shownl5 that whenever Pav•ss (N) is meaningful, 

_ A 

P av•ss (N) = P av•ss (N) = P av•ss (N). 

The expressions for Pav,ss (N) and Pav•ss (N) are frequently 
more amenable to evaluation than the expression for 
Pav•ss (N). 

If J.L > J.Lc (N), the steady-state average power supplied 
by the source to the chain is a meaningful concept for all 
ranges of the angular frequency w. Its value is 

Pav,ss (N) 

{ 

F2~ (4klm) _w2 

= 4kTI (N,l - mw22 -Ik -I) , 

0, 

(30) 

In this case xo,ss (N,t) = ao (N) + Co (N)cos(wt) 
+ So (N)sin(wt), When CO (N) =1=0, the de phasing term 

Co (N)cos(wt) introduces a phase shift in the oscillatory part 
of xo,ss (N,t) relative to the applied force Fsin(wt). Recall 
from cases (2) and (3) of Table II that the de phasing term 
vanishes for w2 ;;;.4k 1m; and as is indicated by (30), no pow
er is absorbed by the chain for high frequencies. Therefore 
one might think of the half-infinite chain as acting like a 

perfect filter for angular frequencies greater than ~4k 1m. 
But for each frequency less than ~4klm [see case (1) of 

Mokole, Mullikin, and Sledd 1909 



                                                                                                                                    

Table II] the chain receives a positivel6 steady-state average 
power from the source; and consequently energy is absorbed 
from the source even though the chain is frictionless and in 
steady-state motion. Any finite frictionless chain receiving a 
positive average power could not display steady-state mo
tion. The difference in the properties of the half-infinite and 
the finite frictionless chains is that in the half-infinite chain 
the same steady-state average power that is supplied by the 
source to the leftmost mass is also transmitted from any mass 
to the mass to its right; and thus, in a sense, energy is trans
mitted down the half-infinite chain and never returns, which 
is an impossibility for the finite frictionless chain. 

If Jl = Jlc (N), the concept of steady-state average power 
supplied by the source to the chain is meaningful for all val-

ues of the frequency except W = ~ 4k 1m. It is not meaning
ful in this special case because the limit in (27) is positive 

infinity. So, for Jl = Jlc (N) andw=I=~4k 1m, Pay•ss (N) is also 
given by Eq. (30). 

If 0 <Jl <Jlc (N), the steady-state average power sup
plied by the source to the chain is meaningful if and only if 

W = Wn ~.JY;ln(n = 2,3,4, ... ); that is, W is a subharmonic 

of the frequency .JY;. The average power for these discrete 
values of w is also given by (30) with w replaced by wn • 

III. THE UNIFORM CHAIN WITH A SINGLE ISOTOPIC 
DEFECT IN THE LEFTMOST POSITION 

The special case N = 1 is now considered. This example 
is chosen because it illustrates the results of the previous 

section and because some of the computational difficulties 
encountered for large N are avoided. In this case, 

(i) TI (1,x) is a first-degree polynomial in x, and the 
integral present in So ( 1) can be evaluated exactly in each of 
the ten cases except case (5); 

(ii) the expression YI = k l[mJl( 1 - Jl)] determines 
YI exactly [see Eqs. (12) and (13)]; 

(iii) it is relatively easy to derive information about 
Pay•ss (1) [graphs of Pay•ss (1) as a function of w for several 
values of Jl are shown]. 

First, the behavior of Xn (l,t) for large t as represented 
by xn•ss (1,t) for all ten cases is summarized in Table IV. 

To obtain expressions for the steady-state average power 
supplied by the source to the chain for the three ranges of the 
physical parameter Jl, set N = 1 in (30). Since 

TI (1,1 - mw22 -Ik - I) = 1 + Jl(Jl- 1 )mw2k - I, 

the expressions that describe the behavior of Pay ... ( 1) as a 
function of the angular frequency w for fixed values of Jl are 
simple. 

Iq ~Jlc (1) <Jl, 

{ 

F2~(4klm) _w
2 

ifO<w2<4klm, 
Pay•ss (1) = 4[k+Jl(Jl-l)mw2]' 

0, if 4k 1m <...w2
• 

(31) 

Graphs of Pay•ss ( 1) as a function of w for several values of 
Jl (Jl > 1/2) are shown in Fig. 2. All of the graphs for 

TABLE IV. Summary of the expressions for x •. s.< (I,t), n)O. x •. n (I,t) = a. (I) + q. (l,t)cos(llJt) + r. (l,t)sin(llJt) + k - '( I - 2Jt)y, 

X [Jt/(Jt - l)]·W(y"t;O), a.(1) = F /[~] for all cases, and 0= arcsin~mIlJ2/4k. 

ea •• 

...:!- ,I.I.(2n+1)8.(I-u).'.(2.-I)' 

..r.ii: .. z 
1+~(~-1). 

(I) -. e c .. U. + 1l8+ 11- e)c •• U .. - 118 
..... ..Z 

1+~(JI-1) T 

.:!~ 
Zk 2\1-1 (ll o 

(]) o 
-.(-Il"[ (4k/.)I/Z ]Z.+I./"Z(~_Il+~+"(~_Il(ooZ_';')1IZ, 
..r.ii: w+ (ooZ - .;.)lIz Z/H ~(~ _ I) .. Z, 

(110 ...... ra .. '-a .. ) 

(4) -=L cHCIa+ue.;"'2a-l). 
""'* .. ZI1-u:' 

....:!... ".(2.+1)8+., .. (2.- ne 

...... ZI1- .. Z/4k) 

m * (_1)"(oo/1I)1IZ.1IZ 

(i) o (110 Such ra .. ,-ara) 

(I) o ( ...I!....I)· • (~I.laW'-"al"IY-'I" e- k~(I-Z\II 
I 

(9) o 

(10) o ::! (....lL)" lill.:..I!) -"J k p- I 1- 2\1 ( --1!... .)" '(1- Z.l (., .... _ ... co .... ) e- J Zk 
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FIG. 2. "Steady-state" average power as a function of the angular frequency 
of the applied force for a half-infinite chain with a single isotopic defect in 
the leftmost position (Jl;;' 112). 

! <f.l <! + {2/4 have a single point of inflection and a 
maximum ordinate exceeding F2/[2~mk]. For 
f.l >f.lo (~1.25771), the graphs have two points of inflection 

and are strictly decreasing. For! + {2/4<,p<f.lo, the graphs 
have no inflection points and are strictly decreasing. 

Whenf.l =!, 

(32) 

The graph of Pav•ss (1) for fl = ~ appears as the uppermost 
curve in Fig. 2. Notice that as fl approaches ~ from above, the 
curves for fl > ! more closely resemble the curve for fl = !. 

Lastly,ifO<fl <!andm2 = m~ = n -2Y1 (n = 2,3,4, ... ), 

I 

p 
av ,8a 

2.5 

j _ 2.e 

~ l' 
.! .!!. ... r;: 1.5 )J i!!·0.lS99 0 
3 l' 

1 1 x )J i!! 0.0101 

• b I.e .......... : 
'" .e- x x 

! 11 
!. x 

e.5 

•. II-1---..Jf----+-----lr---+---4Ir---+-_t4- w 
1.1 1.2 8.4 e.. e.8 I.e 

AaruJar Freqamcy .. of ExciIiD. Foru 

(M1IIIiplJ ocaIo by ..ftii/m.) 

1.2 1.4 

FIG. 3. "Steady-state" average power as a function of the angular frequency 
of the applied force for a half-infinite chain with a single isotopic defect in 
the leftmost position (0 <Jl< 112). 

Pav•ss (1) 

1 
F2n,fY; ~4fl(l - fl)n2 - 1, 

4k(n2 
- 1) 

- ifO<m~ <4klm, 

0, if4k Im<.m~. (33) 

Graphs of Pav•ss (1) as a function of the discrete variable mn 
appear in Fig. 3 for two values of f.l (0 < fl < !). Observe that 
there are at most finitely many values of mn that are equal to 
or greater than ~4k 1m; so Pav•ss (1) is zero at finitely many 
points. 

IV. THE UNIFORM CHAIN WITH NO DEFECT 

The equations of motion of the half-infinite chain with 
no defect (Fig. 1 with fl = 1) are obtained from (1) or (2) 
by settingfl = 1. The behavior of the displacementxn (t) for 
large t can be obtained by letting fl = 1 in cases (1), (2), and 
(3) of Tables II and III. Thus 

_F_ {I _ cos[mt - (2n + l)arcsin(~[mm2]1[4k]) n, ifO<m2 <4klm, 
m~mk 

(t) £{l- (-I)nsin(mt)}, 
xn•ss = 2k ifm2 = 4klm, (34) 

_F_ 1 _ ( _ 1)n ,,4Mm sin(mt) , 
{ [ 

~I 
]

2n+1 } 

m~mk m + ~m2 - (4klm) 

where the principle value of the arcsine is used. 
The steady-state average power supplied by the source 

to the chain is a meaningful concept for all values of the 
frequency m, and the graph is the curve designated f.l = 1 in 
Fig. 2. 
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V. THE EFFECT OF THE PHASE OF THE EXCITING 
FORCE 

This section discusses the effect of replacing the force 
F sin (mt) applied to the leftmost mass by F sin (mt - t/J), 
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where t/J is real. In particular, it describes the effect of such a 
change of phase on thebehaviorofxn (N,t), n>O, forlarge t. 

The unique analytic solution of the slightly modified 
differential system is 

1 f+ 00 

Xn (N,t,t/J) =- Pn (N,y) W(y,t,t/J;O)da(N,y), n>O, 
mo - 00 

(35) 

where da(N,y) and Pn (N,y) are given, as before, by Eqs. 
(9)-(11), but W(y,t,t/J;O) is the solution of the differential 
system [compare to Eq. (5)] 

Wit (y,t,t/J;O) + yW(y,t,t/J;O) = Fsin(cut - t/J), 

W(y,O,t/J;O) = WI (y,O,t/J;O) = O. (36) 

Solving (36) leads to 

W(y,t,t/J;O) 

= cos t/J Fsin[ "-Ytl _ cos t/J Fsin[ ("-Y - cu)t 12] 
"-Y(cu + "-Y) ("-Y - cu )/2 

X cos [ ("-Y + cu)t 12] 

("-Y+cu) 

. '" Fsin[("-Y-cu)tI2] sin[("-Y+cu)tI2] 
- sm." 

("-Y - cu)/2 ("-Y + cu) 
(37) 

with the understanding that W(cu2
, t, t/J; 0) 

= limy_co, W(y, t, t/J; 0). 
The analysis of the phase for N> 1 is divided into three 

possibilities: 

(i) f.L>f.Lc (N) except when f.L = f.Lc (N) and cu2 = 4k 1m; 

(ii) f.L = f.Lc (N) and cu2 = 4k 1m; 

(iii) 0 <f.L <f.Lc (N). 

In the first case, substitute (37) into (35) and recast 
xn (N,t,t/J) in the form 

Xn (N,t,t/J) = An (N,t)cos t/J + en (N,t)cos(cut - t/J) 

+ Sn (N,t)sin(cut - t/J), n>O, (38) 

where An (N,t), en (N,t), and Sn (N,t) are specified by Eqs. 
(17). Hence 

xn•ss (N,t,t/J) = an (N)cos t/J + Cn (N)cos(cut - t/J) 

+ Sn (N)sin(cut - t/J), n>O. (39) 

Whenf.L = f.Lc (N) and cu2 = 4k 1m, the reformulation of 
(35) is similar to the preceding case. Since the limits of 
en (N,t) and Sn (N,t) as t approaches infinity throu~h posi
tive values are infinite, the substitutions en (N,t) 

= en (N,t)l/t and Sn (N,t) = Sn (N,t)l/t are made so 
that [compare to Eq. (21)] 

Xn (N,t,t/J) = An (N,t)cos t/J + t 1I2Cn (N,t) cos (cut - t/J) 

+ t 112Sn (N,t)sin(cut - t/J), n>O, (40) 

from which it follows that 

x n•ss (N,t,t/J) = an (N)cos t/J + t 112Cn (N) cos (cut - t/J) 

+ t lI~n (N)sin(cut - t/J), n>O. (41) 
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If 0 <f.L <f.Lc (N), recall from (11) that the distribution 
da(N,y) is the sum of an absolutely continuous component 
and a Dirac delta component. In the integrand ofEq. (35), 
W(y,t,t/J;O) is mUltiplied by this sum. The parts ofxn (N,t,t/J) 
and xn•ss (N,t,t/J) associated with the absolutely continuous 
component of da(N,y) are given by (38) and (39), respec
tively. The Dirac delta component yields the term 
J(xN )Pn (N'YN) W(YN,t,t/J;O)lm, where (37) is used to 
evaluate W(y,t,t/J;O) atY=Yn' Thus, when 0<f.L <f.Lc(N), 

Xn (N,t,t/J) = An (N,t)cos t/J + en (N,t)cos(cut - t/J) 

S (N. ) . ( "') _FJ_(_x N:.:...)_P..:.:.,n _(N......:'y...:..N~) 
+ n ,t sm cut -." + 

m,Ji; (cu2 
- YN) 

X [ -,Ji; sin (cut - t/J) + cu sin(,Ji;t)cos t/J 

-,Ji; cos(,Ji;t)sint/J], n>O, (42) 

and 

xn•ss (N,t,t/J) = an (N)cos t/J + Cn (N)cos(cut - t/J) 

(N) . ( "') FJ(xN )Pn (N'YN) 
+ Sn sm cut -." + ---=.--=.---

m,Ji; (cu2 
- YN) 

X [ -,Ji; sin(cut - t/J) + cusin(,Ji;t)cos t/J 

-,Ji; cos (,Ji;t) sin t/J], n>O. (43) 

VI. COMMENTS 

In essence, the main results of the preceding analysis 
are: (a) finding the exact solution ofthe initial-value prob
lem associated with the half-infinite chain ofharrnonic oscil
lators with one isotopic defect; (b) determining the behavior 
of the displacement Xn of the nth mass for large t (steady 
state); (c) calculating the steady-state average power sup
plied to the chain by the source over one period of the source; 
and (d) determining the effect of the phase of the source 
upon the behavior of Xn for large t. In this effort, various 
derivations are truncated or omitted entirely for the sake of 
brevity. Further details are found in Ref. 10. 

Although the mathematics of this investigation is pre
sented in terms of a mechanical system of harmonic oscilla
tors (this physical system is chosen because it allows for 
good intuition), the system of ordinary differential equa
tions representing the corresponding equations of motion is 
reasonably general and satisfies the second-order vector ma
trix differential equation, XU) = AX(t) + F(t), where X is 
an infinite column vector of the displacements of the masses 
from equilibrium, F is an infinite column vector representing 
the forcing function, and A is an infinite tridiagonal matrix. 
Since the mathematical structure has some generality, the 
approach contained herein may lend itself to the under
standing and solution of problems in other areas such as 
those involving large electrical networks, defects in crystals, 
vibrational properties of disordered solids,17 and dynamics 
of atomic lattices. 18 In fact, by making the usual identifica
tion between mechanical and electrical quantities, the dis
placements of this paper are the charges across the capaci-
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tors in a half-infinite ladder network of LC circuits, where all 
the capacitances are the same and one of the inductances, the 
one corresponding to the defective mass, is different from the 
rest. 

IE. W. Montroll and R. B. Potts, Phys. Rev. 100, 525 (1955). 
2 W. P. McKibben, doctoral dissertation, Georgia Institute of Technology , 

1973, pp. 6-7. 
3 The integral representation of this solution is given by Theorem 2 in W. G. 

Christian, A. G. Law, W. F. Martens, A. L. Mullikin, and M. B. Sledd, J. 
Math. Phys. 17, 146 (1976). 

'See Ref. 3, p. 147, Eq. (8). 
5 L. Brand, Differential and Difference Equations (Wiley, New York, 

1966). 
6 One particular technique that is used is found on pp. l06ff ofH. Levy and 

F. Lessman, Finite Difference Equations (Macmillan, New York, 1961). 
7 See Ref. 3, p. 149. 
8 See Ref. 2. 
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IOE. L. Mokole, doctoral dissertation, Georgia Institute of Technology, 
1982. 

II See Ref. 10, pp. 106-118. 
12 See Ref. 10, pp. 106-118. 
IJ See Ref. 10, Appendix III. 
I'See Ref. 10, p. 126. 
15 The verification that Pay ... = Pay ... = Pay.", for N = 1 is found on pp. 64-

77 of Ref. 10. 
16 The expression TI (N,1 - mai2 - I k - I) is positive for a < ai < 4k / m as 

a result ofthe properties of SI (N,x) on pp. 98-99 of Ref. 10. 
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1975). 
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Solution of Laplace's equation in plane single-connected regions bounded by 
arbitrary single curves 

F. Minotti8 ) and C. Moreno8
) 

Laboratorio de Fisica del Plasma, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, 
Pab. L 1428 Buenos Aires, Argentina 

(Received 15 September 1989; accepted for publication 21 February 1990) 

A method is developed to solve Laplace's equation with Dirichlet's or Neumann's conditions 
in plane, single-connected regions bounded by arbitrary single curves. It is based on the 
existence of a conformal transformation that reduces the original problem to another whose 
solution is known. The main advantage of the method is that it does not require the knowledge 
of the transformation itself, so it is applicable even when no transformation is available. The 
solution and its higher-order derivatives are expressed in terms of explicit quadratures easy to 
evaluate numerically or even analytically. 

I. INTRODUCTION 

Laplace's equation appears in many physical problems: 
gravitational or electrostatic problems; the steady, irrota
tional flow of incompressible fluids; the steady-state flow of 
heat; the steady diffusion of a solute, of neutrons, and gener
ally, in steady diffusive processes. Consequently, several 
methods have been developed to solve it. There are essential
ly two different approaches: variable separation and Green 
functions (or a combination of both). 1-3 In addition, bi
dimensional problems can be treated by means of conformal 
mapping techniques that provide a powerful alternative 
method. None of these methods, of course, is always applica
ble and its success depends on the problem at hand. In fact, 
the boundary conditions and the contour itself may prevent 
the variable separation; moreover, Green's function or, in 
bidimensional problems, an appropriate conformal transfor
mation, is generally not easy to find. On the other hand, in 
very complicated cases one must resort to numerical calcula
tions.~ 

In this work we propose a method that allows the obten
tion of the general solution in bidimensional single-connect
ed regions bounded by single closed curves. In spite of the 
fact that the method is based on the conformal mapping 
technique, the explicit knowledge of the conformal transfor
mation is avoided. The solution is then expressed by explicit 
quadratures that are easy to evaluate numerically or even 
analytically. 

In addition, the same formalism allows the direct calcu
lation of certain magnitudes of interest as, for instance, the 
normal derivatives at the boundary in Dirichlet's problem, 
and higher-order derivatives of the unknown potential func
tion. 

II. METHOD 

A. Dirichlet's conditions 

In order to develop the method we use the following 
holomorphic functions: 

a) Fellow of the Consejo Nacional de Investigaciones Cientificas y Tecnicas. 

f = t/J + it/J, 

g=F+iG, 

(1a) 

(1b) 

where t/J and F are the conjugated functions of the potential 
t/J, and Green's function G, corresponding to Dirichlet's con
ditions in the region of interest, respectively. With these defi
nitions two equivalent expressions of the formal solution can 
be given as follows: 

t/J(x',y') = r t/J(x,y) dg dZ, (2) 
Ja(R) dZ 

from Green's formula, and 

t/J(x',y') = Im{~ r feZ) , dZ}, 
2m Ja(R) Z - Z 

(3) 

from Cauchy's formula, where a(R) denotes the boundary 
of the domain R (see Fig. 1). 

We can transform the region R onto the upper half
plane R ' by means of a conformal transformation ~(Z) (see 
Fig 1 ). In the transformed domain R ' the function g is given 
by 

( I- 1-' I- '. ) I In ..:::~:....----=~:....-. (I- 1-'.) 
g ~,~,~ = 21T ~ - ~' ' (4) 

where the asterisk denotes the complex conjugate. 
From Eqs. (2) and (4) the formal solution of the prob

lem is 

t/J[x' (t ',rO,y' (t ',11')] 

=_i r ( 1 __ I_)"'[Z(I-)]dl- (5) 
21T Ja(R') ~_~'. ~_~' 'f' ~ ~. 

On the other hand, by developing Eq. (3), we get, 

t/J(x',y') = _1_ r t/J cos a - t/J sin a dl, 
21T Ja(R) r 

(6) 

where a and r are those denoted in Fig. 1. 
To obtain the explicit solution from Eq. (5) or (6), the 

explicit knowledge of ~(Z) or t/J, respectively, is required. In 
fact, both problems reduce to the knowledge of ~(Z), be
cause the determination of t/J requires it. Although many 
conformal transformations that solve the problem are 
known,? this is not possible for an arbitrary region R. The 
goal of the method presented here is to show that (and how) 
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)"CZl -

R' 

x 

'" can be determined without knowing the explicit form of 
~(Z). 

Noting that 

a", ar/J 
as' = aTJ' , (7) 

and using Eq. (5), we get, 

::. = f-+ 0000 h [(5 - 5 '),TJ']r/J(5)d5, (8) 

where 

h(u,v) = (1/11') (u2 
- if)/[u2 + v2 ]2. (9) 

From this definition it follows that 

f
+ 00 

_ 00 h [(5 - 5'),TJ']d5 = 0, ( 10) 

which allows us to evaluate Eq. (8) on the boundary a(R ') 
as 

(::.t(R') 
= .,~~r::+ L+oooo h [(5-5'),TJ'][r/J(5) -r/J(5')]d5' 

(11 ) 

Assuming that r/J (5) can be developed in Taylor's series near 
5', it can be easily proved that this limit indeed exists and is 
given by 

( a",) =.!.pvf+oo r/J(5) -r/J(5') d5 (12) 
as' a(R') 11' -00 (5-5')2 ' 

where p V refers to the principal Cauchy value. 
Equation ( 12) allows the calculation of the derivative of 

'" along the boundary of the transformed region that on inte
gration yields the function "'(5 '). Once ",is known, the use of 
Eq. (6) leads to the determination of the potential r/J at any 
point inside R. 

As was pointed out by the referee, in many cases of inter
est one can avoid the intermediate step of evaluating the 
derivative a",1 as' in order to obtain ",. This is possible by 
virtue of the result derived by Sneddon 8 that states that if r/J is 
a harmonic function in the half-plane 17>0, and tends to zero 
as (52 + 172

) \12 _ 00 then the normal derivative of r/J on the 
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FIG. 1. The original region in Z plane and 
the transformated region in t plane. 

boundary 17 = ° is the Hilbert transform of the tangential 
derivative, i.e., 

( ar/J ) = .!. p V f + 00 1 ar/J d5 ( 13) 
aTJ' a(R') 11' - 00 (5 - 5') as ' 

which, since ar/J/~ = a",la5, and taking into account the 
properties of the Hilbert transform results in 

"'(5')=.!.pvf+00 r/J(5), d5. (14) 
11' - 00 (5 - 5 ) 

For this formula to hold, however, r/J and '" must tend to zero 
as (52 + 172

) 1/2 _ 00. This is possible, for instance, if the po
tential is constant (which without loss of generality can be 
taken as zero) on some finite piece of the original boundary. 
In this case, by choosing the parametrization in such a way 
that s- ± 00 corresponds to points inside the piece at con
stant potential, the potential at the transformed boundary 
will be different from zero only on a finite interval, assuring 
that r/J and "'tend to zero as (52 + 172

) \12_ 00. Formula (14) 
allows then the obtention of '" on the boundary without go
ing through the integration of expression (12). 

In order to evaluate Eq. (12) or, when possible, Eq. 
( 14), only the values of the potential r/J on the boundary are 
required, so that all we need to know is the transformation 
~(Z) restricted to that boundary. This can be easily done if 
the boundary of the original region R is given in parametric 
form. In fact, if the boundary is given by 

x = X(s), 

y = Y(s), 

(15a) 

(15b) 

where s is a real parameter which, when ranging from - 00 

to 00 counterclockwise, describes the full contour a(R), the 
restricted transformation is 

~(5) = X(5) + iY(5)' (16) 

In this manner, the potential on the boundary is given as 
a function of 5 by 

(17) 

In order to evaluate Eq. (6), the explicit form of the 
terms entering in the integrand can be expressed in terms of 
known functions as 
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tP cos a dl 
r 
= tP[X(s),Y(s)] 

x [Xes) - x'](dY Ids) - [Y(s) - y'](dX Ids) 

[xes) - x'f + [Y(s) - y'f 
xds, (18a) 

'" sin a dl 
r 
= ",[X(S),Y(S)] 

X [yeS) -y'](dYlds) + [xes) -x'](dXlds) 
[Xes) _X']2+ [yes) _y']2 

xds. (18b) 

As can be seen, we have avoided the use of the explicit 
conformal transformation, which is the major difficulty in 
actual calculations. 

B. Neumann's conditions 

Using the definitions given by Eqs. (1), G being now 
Green's function for Neumann's conditions, the formal solu
tion is given by 

tP(x',y') = 1m { f g df dZ}. 
JaCR) dZ 

(19) 

We can transform the original region R onto the upper 
half-plane R ' as in Dirichlet's case by means of a conformal 
transformation ;(Z). In R ' the function g is now given by 

g(;,;',;'*) = -K;+ (i/21T)ln[(;-;')(;-;'*)], 
(20) 

where K is a real constant. 
We can then obtain the derivative of the potential tP 

along the contour a(R ') from Eq. (19). A straightforward 
calculation leads to 

( atP ) = -~pvf+ co _1_ atP dS (21) 
as' aCRO) 1T -co 5-5' a'l] , 

whose integrand is known through the relationship 

( atP ) ds = _ (atP ) dl 
a'l] aCR 0) an aCRI . 

(22) 

On the other hand, sincefis holomorphic, 

a", atP 
as =a'l] , 

(23) 

we can obtain the values of tP and", on the boundary a(R ') 
by integration ofEqs. (21) and (23). The potential tP(x' ,y') 
can then be obtained from Eqs. (6) and (18). 

It is interesting to note that the "energy" U associated to 
the potential tP: 

(24) 

and expressed in terms of the magnitudes evaluated at the 
boundary as 

U = f tP atP dl = - f tP atP dS, (25) 
JaCR) an JacR 0) a'l] 

can be easily evaluated from Eq. (12) [or Eq. (14) ifpossi
ble] in Dirichlet's case, and from Eqs. (21) and (22) in 
Neumann's case. 

C. Determination of higher-order derivatives of cI» 

We have developed a method that allows the evaluation 
of tP from the knowledge of the function fat the boundary in 
Sees. II A and II B. From this function we can also evaluate 
the higher-order derivatives of the potential tP. In fact, by 
using the integral Cauchy formulas and taking real and 
imaginary parts, the order-p derivatives of tP can be written 
in terms of 

Re{dPLl = Re{L f feZ) dZ} 
djI 21TiJaCR) (Z - Z')P+ I 

= L f tP sinxp + "'cosxp dl, 
21T JaCR) ,.. + I 

(26a) 

Im{dPLl = Im{L f feZ) dZ} 
djI 21Ti JaCR) (Z - Z')P+ I 

= L f tP cos XP - '" sin XP dl, (26b) 
21T JaCR) ,.. + I 

where X
P 

is given in terms of the angles denoted in Fig. 1 by 
XP =a+p(J. 

As an example, developing the integrands of Eqs. (26) 
as in Sec. II A we get the analogous of Eqs. (18) for the case 
p= 1: 

[(Xes) - X')2 - (Y(s) - i)2] (dY Ids) - 2(X(s) - x')(Y(s) - y')(dX Ids) 
COSXI = 2 ' (27a) 

r 

° 2(X(s) - x')(Y(S) - y')(dY Ids) + [(XeS) - X')2 - (Y(s) - y')2](dX Id;) 
slnXI = . (27b) 

r2 

The higher-order derivatives can be easily obtained in 
the same way. The advantage ofthis method is that deriva
tives of any order can be obtained from the same data as the 
required for the potential. 
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III. APPLICATIONS 

The method outlined in Sec. II A is specially suited for 
situations in which the potential tP is piecewise constant, be
cause in those cases the evaluation of Eq. (12) and its subse-
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quent integration to obtain ¢ can be performed analytically. 
So, the general results are 

(~it(R') 
1 N [ 1 - ~j,O 1 - ~j,N ] =-.L (t/Jj+l -t/J;+l) S -s - s -s' 1r }=o j}+ 1 

1 N 
(¢)a(R') = - L {(t/Jj+ 1 - t/J;+ 1) [(1 - ~},N) 

1r }=o 

(28) 

xlnls}+ 1 - sl- (1 - ~},O )Inls) - sl n, (29) 

where the notations of Fig. 2 was used and s; < S < s; + 1 • We 
mention in passing that formula (29) could be obtained 
from the direct evaluation of Eq. (14). 

A case of practical interest is given by the electrostatic 
potential generated by conducting boundaries. In this situa
tion the inducted surface charge density per unit length, 
u = at/JI an, is given by 

u[X(s),Y(s)] = _ (a¢) ! as aIR') 
( 

dX)2 (dY)2. 
ds + ds 

(30) 

Let us consider as an example the problem of a square 
with one side at a potential assumed to be one, and the rest of 
the boundary at zero potential. The length of each side is 
normalized to one. We immediately get by using Eqs. (28) 
and (30): 

1 1/t 2 + 1/(4 - t)2 
U= -

1r 1/(4-t) -1/t+j 
(31) 

To obtain this formula we have used the following paramet
ric representation of the boundary: 

X(t) = t, Y(t) = 0, if O.-;;;t.-;;;l, 

X(t) = 1, Y(t) = t-l, if l.-;;;t.-;;;2, 

X(t) = 3 - t, Y(t) = 1, if 2.-;;;t.-;;;3, 

X(t) =0, Y(t) =4-t, if 3.-;;;t.-;;;4, 

with the potential: 1 if O.-;;;t.-;;; 1; 0 if 1 < t < 4; and with the 
relation s = 1/ (4 - t) - 1/t between t and the s parameter 
appearing in Eqs. (15). 

It is important to point out that, even in this simple case, 
the obtention of u from the expression of t/J calculated by 

)(l) .. 

x. 
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means of the usual method of variable separation, is not pos
sible due to the fact that the arising series is not derivable, a 
"blemish" commonly encountered in these methods when 
the potential on the boundary is discontinuous. 

As a second example let us consider a circle of radius one 
with boundary conditions of the Neumann type given by: 
at/Jlap = cos(O) on p = 1; where (p,O) are polar coordi
nates. Using Eq. (23), the expression of ¢ on the boundary is 
immediately found to be: ¢ = - sin (0) + const. With the 
transformation s = - cot(O 12), Eq. (21) leads to 

[ at/J ] = __ I- csc2 (0'/2)pV 
ao' p= 1 21r 

X r21T 

cos(O) dO. (32) 
Jo cot(0/2) -cot(0'/2) 

The integration can be analytically performed and the result 
is simply: at/Jlao' = - sin(O') on the boundary that on 
integration yields: t/J = cos (0') + const. With these expres
sions of t/J and ¢, Eq. (6) leads on integration to: t/J = p' 
X cos ( 0') + const, which agrees with the result obtained by 
classical methods. 

These simple examples show how the proposed method 
can be used. Analytical solutions, however, are not always 
possible and in more involved cases one must resort to nu
merical evaluation of the integrals appearing in Eqs. (6) and 
( 11) or (21). We wish to point out here that this numerical 
procedure is fast and easy to perform even in very complicat
ed problems. 

IV. FINAL REMARKS AND CONCLUSIONS 

We have developed a method that allows to obtain the 
potential satisfying Laplace's equation with Dirichlet's or 
Neumann's conditions on a plane region bounded by an arbi
trary curve. 

The potential and its derivatives of any order are ex
pressed by explicit quadratures which allows further devel
opments. The great advantage of the method presented here 
is that the explicit form of the conformal transformation is 
not required. Therefore, the potential in very complicated 
regions, for which no conformal transformations are avail
able, can be directly computed from the boundary condi
tions alone. 

FIG. 2. Sketch of a Dirichlet's problem 
with a piecewise constant potential at the 
boundary (Z and t planes). 
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From the numerical point of view, the method is ex
tremely low memory consuming and it allows the evaluation 
of the potential function t/J with any precision avoiding the 
use of grids or numerical transformations. 

Moreover, special cases of practical interest as, for in
stance, the electrostatic potential generated by conducting 
boundaries or the temperature distribution in regions whose 
boundary is composed by several constant temperature sec
tions, etc.; admits solutions given by only a quadrature easy 
to evaluate even in very complicated regions. As a bonus, 
some magnitudes of interest (viz. the induced charge or the 
heat flow through the boundary) are obtained analytically. 

Finally, for both Neumann's and Dirichlet's conditions, 
the total energy associated to the potential field can be 
straightforwardly computed from the formalism itself. 

ACKNOWLEDGMENTS 

We would like to thank Professor Constantino Ferro 
Fontan for his assistance and Professor H. J. Kelly and Pro
fessor A. R. Piriz for a critical reading of the manuscript. It is 

1918 J. Math. Phys., Vol. 31, No.8, August 1990 

a pleasure to thank the anonymous referee who suggested 
Eqs. (13) and (14). 

This work was supported by grants of the Organization 
of American States, the Consejo Nacional de Investigaciones 
Cientificas y Tecnicas, and the Universidad de Buenos 
Aires. 

I P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw
Hill, New York, 1953). 

2H. F. Weinberger, Introduction to Partial Differential Equations with 
Methods of Complex Variables and Integral Transforms (Blaisdell, New 
York, 1965). 

3 J. H. Jeans, Mathematical Theory of Electricity and Magnetism (Cam
bridge U.P., Cambridge, 1958), 5th ed. 

4R. MenikotTand C. Zemach, J. Comput. Phys. 36, 366 (1980). 
, D. I. Meiron, S. A. Orszag, and M. Israeli, J. Comput. Phys. 40, 345 

(1981). 
6R. Hostens and G. De Mey, Comput. Phys. Commun. 16, 5 (1978). 
7H. Kober, Dictionary of Conformal Representations (Dover, New York, 

1957). 
8 I. N. Sneddon, The Use of Integral Transforms (McGraw-Hill, New York, 

1972). 

F. Minotti and C. Moreno 1918 



                                                                                                                                    

Integrability condition and finite-periodic Toda lattice 
Susumu Okubo 
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 

(Received 6 February 1990; accepted for publication 21 March 1990) 

A further generalization to construct integrable dynamical systems with hierarchy has been 
developed, based upon a generalization of the zero Nijenhuis tensor condition in a symplectic 
manifold with double symplectic structures. As an example, the periodic Toda lattice 
Hamiltonian has been shown to satisfy these conditions. The case of the three-dimensional 
Coulomb potential problem has also been analyzed in a similar fashion. 

I. INTRODUCTION 

There are many works 1-6 on integrable systems, both 
finite and infinite dimensional. To be definite, we will con
sider only the finite case. Let M be a 2N-dimensional sym
plectic manifold with local coordinate xI'(f.-L = 1,2, ... ,2N). 
LetlJLv = - IVJL be the symplectic tensor field so that it satis
fies 

(Ll ) 

The Poisson bracket of two smooth functions hex) andg(x) 
in M is then defined as usual7

,8 by 

{h,g} = IJLV aJLh avg, (1.2) 

where IJLV is the inverse tensor of IJLv and repeated Greek 
indices imply automatical summations on 2N values 
1 ,2, ... ,2N. According to the well-known Darboux theorem,9 

there exists a local coordinate frame that is called the canoni
cal frame, where the tensor IJLv is constant with values 

fjk = fj + N,k + N = 0, 

fj,k + N = - t)jk' ( 1.3 ) 

for j,k = 1,2, ... ,N. In that case, the coordinate xl' may be 
explicitly written as 

xI'= {QI>Q2, ... ,qN,PI,P2,,,,,PN}' (1.4) 

in terms of N-configuration variables Qj and their canonical 
conjugate momentapj (j = 1,2, ... ,N). 

Although many finite integrable models2
,3 are now 

known, there exists no systematical method of discovering 
all of them. The most commonly used procedure is first to 
find N algebraically independent functions KI ,K2 , ... ,K N of 
the coordinate xI"s, such that they are constants of motion 
with respect to a given Hamiltonian H. Ordinarily, this may 
be accomplished by finding a suitable Lax pair. \0 Then, we 
verify the involution property {Kj,Kk } = 0 for 
j,k = 1,2, ... ,N, so that the system is integrable by Liouville's 
theorem.II,12 We now note that we can reverse the above 
procedure as follows. In contrast, we do not assume any 
particular Hamiltonian, and let Ibe an index set that ordin
arily consists of all integer values 0,1,2, .... Suppose that we 
can find a set of functions Kn (nEl) that are in involution, 
i.e., 

( 1.5) 

for n, m E 1. Moreover, we assume that we can find N alge
braically independent terms among them, which we identify 

with KI ,K2 , ... ,KN for simplicity. Now, let pEl be an arbi
trary but fixed integer and we choose Kp to be the Hamilto
nian of the system, i.e., 

( 1.6) 

For this choice of H, we designate the corresponding time 
variable as Ip with the Hamilton's equation of motion 

~h(x)={H,h}=rvaJLKpavh, (1.7) 
dIp 

for any smooth function hex). Then, in view of the involu
tion property Eq. (1.5) we see readily the validity of 

d 
-Kn =0, (1.8) 
dIp 

for any nEl, so that K n 's are constants of motion with respect 
to the Hamiltonian H = Kp. Because of our assumption of 
K I,K2 , ... ,KN being algebraically independent, then the 
Liouville theorem assures the complete integrability of the 
system. Note that Eq. (1.7) is a prototype of the hierarchy 
equation6 familiar in the K dV system. 

In summary, a problem of constructing integrable sys
tems is reduced in principle to that of finding a set of func
tions {Kn InEl} satisfying the involution property Eq. (1.5), 
provided that N terms among them are algebraically inde
pendent. Presently, there exist two semisystematic ap
proaches towards this goal. The first one is algebraic l3 in 
spirit, related to Cartan matrix of simple Lie algebras. The 
second method 14-20 that is the topic of this paper is geometri
cal in nature, involving the notion of the Nijenhuis tensor21 

(or its generalization). Let the original symplectic manifold 
M possess the second symplectic (or more generally presym
plectic) tensor field FJLv = - Fvl-" so that we have 

J;,FI-'v + aJLFVA + aVFAJL = O. (1.9) 

We can then construct the ( 1,1) tensor S; by 

SV=F rAV 
I-' 1-')../' (LlO) 

and the Nijenhuis tensor N~v by 

N~v = s~aaS~ - s~aaS~ - S~ (al-'S~ - avS~), 
(Ll1) 

We remark that N~v is a genuine (1,2) tensor under general 
coordinate transformations. Suppose now that S; satisfies 
the zero Nijenhuis tensor condition 

( 1.12) 
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In previous publications, }3'-::z. we have presented the fo([ow
ing facts. First, defining Kn's for any integer n by 

K = {( 1I2n)Tr sn = (1/2n)(sn)~ (n#O) 

" !log det S (n = 0) 
(1.13) 

they satisfy the recursion relation 

S~ JvKn = J!,Kn + I' (1.14) 

from which the involution property Eq. (1.5) can be shown 
to automatically follow. Second, we introduce the nth power 
antisymmetric tensor (Fn),w inductively by 

(Fn+ I)!,v = (F n)!'Ja{3F{3v' 

(Fo)!'v = Iw (1.15) 

Then, it has been shown in Refs. 19 and 20 that they are all 
symplectic, i.e., 

JA.(Fn)!'v +J!,(Fn)vA. + Jv(Fn)A.!, =0, ( 1.16) 

for any integer n. Moreover, the condition N;v = 0 is equiv
alent to the validity of Eq. (1.16) for the special case n = 2. 
In other words, the general result Eq. (1.16) for any integer 
n follows from its three special cases n = 0,1, and 2. 

One notable example obeying the zero Nijenhuis tensor 
condition Eq. (1.12) is the Toda lattice solution l8•

19 where 
we have 

F - I' '" qj - q. I' '" q. - qj jk -JjUj+ I,k e - JkUk+ IJe , 

FJ,k + N = - PjDjk , 

FJ+N,k+N = -€U-k), 

(1.17) 

in the canonical coordinate frame Eq. (1.3), where €(j - k) 

is the sign function 

{

I, j>k, 

€(j - k) = 0, j. = k, 
- 1, J<k, 

(1.18) 

and where jj U = 1,2, ... ,N) with IN = 0 are arbitrary real 
constants. The standard Toda Hamiltonian is identified by 
H = K 2 , i,e.,p = 2 in Eq, (1.6) with 

H=.lTrS 2=.l I (pj)2+ IjjeQj
-

q
j+l. (1.19) 

4 2 j= I j= I 

However, the case of the periodic Toda lattice with 
iN ¥=O and with identification qN 7- ~ = q~ in Eq. (1.19) can
not be covered in this way. The reason is that the sign func
tion €U - k) is not invariant under the cyclic transforma
tion 1 --+ 2 --+ 3 --> ••• --+ N --+ 1. The main purpose of this note is 
to demonstrate the fact that we must generalize our method 
in order to accomodate the case of the periodic Toda lattice. 
For the sake of simplicity, let us set 

( 1.20) 

for any antisymmetric tensor G!'v = - Gv!', and we modify 
the zero Nijenhuis tensor condition 
t::.A.!,v (F) = t::.A.!'v (F2) = 0 by 

-2 
t::.A.!'v (F) = t::.A.!'v (F ) = 0, ( 1.21 ) 

where (p2)!,v is defined by 

(p2)!,v == (F 2)!,v + I!'v BCI (KI )2 + C2K2 ], (1.22) 
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for some constants C} and C~. (n the next section, we will 
show that a weaker analog of the recursion relation Eq. 
( 1.14) holds nevertheless (see Proposition 1 in Sec. II) and 
that the involution law Eq. (1.5) for positive integers nand 
m still follows from it in general except for some special 
values of the constant C2 (see Proposition 2 in Sec. II). Us
ing these results, we will demonstrate in Sec. III and in the 
Appendix that we can accommodate the periodic Toda lat
tice and it is still integrable with some interesting properties, 
where F!'v are now given by 

I' £ qj - q" I" ~ q", - q. 
Fjk =JjUkJ+ te - JkUj,k+ t e J, 

FJ,k+N = -8jk [Pj - ~ ft/f] + ~pj' (1.23) 

Fj+N,k+N= -'EU - k)== - €U - k) + (2IN)U- k), 

for j,k = 1,2, ... ,N with understanding qN+ I = ql and 
DI,N + I = 1 instead of the usual value zero as in Eq. (1.17). 
Note that in spite of its form 'E(j - k) is invariant now under 
cyclic permutation 1-2 -+ ... --+ N -+ 1. Also, the Hamilto
nian H for the periodic Toda lattice is not exactly K 2 now but 
has a form of aK2 + b(KI )2 for some constants a and b. In 
Sec. IV, we will give some examples of systems that satisfy 
the new conditions but are not necessarily integrable, since 
K" for n;;. 3 for these models tum out to be polynomials of KI 
andK2 • 

II. MODIFIED ZERO NIJENHUIS TENSOR CONDITION 

Here, we assume only that the antisymmetric tensor 
F!'v = - Fv!, is presymplectic and satisfies condition Eq. 
(1.21), i.e., 

t::.A.!,v(F) = 0, (2.1) 
-2 

t::.A.!'v (F ) = 0, (2.2) 

where (p2)!,v is defined by 
- 2 2 2 (F )!'v = (F )!'v + I!'v BCI (KI ) + C2Kd, (2.3) 

for some constants CI and C2 • For the special case of 
CI = C2 = 0, these conditions reduce to that of the zero Ni
jenhuis tensor conditions as we have noted in Sec. I. Next, we 
first note that for n;;.1 we have 

K." = (1I2n)TrS"= (1I2n)(Fn)>J..fv!,. (2.4) 

Also, for simplicity, we will work hereafter in the canonical 
frame where i,w and I!'v are constants. MUltiplying 
(F")a{3rY{3v to Eq. (2.1), we find that 

2(S")~ J{3S~ = (snY/J J!,S~ = 2 J!,Krt+ I' 

which can be moreover rewritten as 

JA. (Srt+ I); -S~ JA.(S")! =J!'K,,+1t (2.5) 

after some calculations. Similarly, we multiply 
(F" - I )a{3.rY{3v toEq. (2.2) to find now 

2(sn-I)! JA.(S2)~ _ (sn-l)pJ!,(S2)~ 

= {2(n - 1 )Kn _ I + 2N8n,I }J!'R - 2(sn - I )~JA.R, 
(2.6) 

where we have set for simplicity 
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R = !CI (K I )2 + K 2 , 

and noted 

Tr sn = (sn)~ = 2nKn + 2N8n.o. 

We next calculate 

(2.7) 

(2.8) 

(sn - I)p al' (S2)~ = 2(sn)p al's~ = 4 al'Kn + I' 

as well as 

(sn-I)~ a,dS2)~ = a;. [(Sn+ I)~] - (S2)~ a;. (sn-I)~ 

= al'Kn+ I +s~{a;.(sn)~ 

-spa;.(sn-I)~} 

= al'Kn + I + S~ af3Kn, 

when we utilize Eq. (2.5). Inserting these relations to Eq. 
(2.6), we obtain 

s~ a;.Kn - al'Kn+ I 

= {(n - I)Kn_ 1 + N8n.JaI'R - (sn-I)~ a;.R. 
(2.9) 

If CI = C2 = ° and hence R = 0, this reproduces, of course, 
the recursion relation Eq. (1.14). 

Setting n = 1 in Eq. (2.9), we find 

S~ a;.KI = {I + (N - 1 )C2 }a1'K2 + (N - I)CI KI aI'KI , 
(2.10) 

while for n>2, it gives 

S~ a;.Kn + (sn-I)~ [CIKI a;.KI + C2 a;.Kd - al'Kn+ I 

= (n - I)Kn_ 1 {CIKI al'KI + C2 a1'K2} (n>2). 
(2.11 ) 

Now, we want to prove the following recursion relation that 
generalizes Eq. (1.14). 

Proposition 1: Let us set 

8 = {I + (n - 1) C2 

n 1 + (N - 1 )C2 = 8N (n = 0). 

(n> 1), 
(2.12 ) 

Moreover, suppose that none of 81 ,82 ,'00,8(_ I for a positive 
integer tvanishes. Then, we have 

n 

8nS~ a;.Kn -8n _ 1 al'Kn+ 1 = I Pnm al'Km, 
m=l 

(2.13 ) 

for any l<n<t. where Pnm are polynomials of KI ,K2,oo.,Kn 
of the form 

n l + 2n2 + 3n3 + ... = n - m + 1, (2.14b) 

for some constants Cn,.nz .... that may depend upon nand 
m. 

Proof of Proposition 1: We shall prove a slightly more 
general formula; 

n 

8nS~ a;.Kn - 8n _ 1 al'Kn+ I = I Pnm al'Km, 
m= 1 

(2.15a) 
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n 

8n(sn-I)~ a;.K2 = al'Kn+ I + I Qnm al'Km, 
m=l 

(2.15b) 

n 

8n (sn)~ a;.KI = 80 al'Kn+ I + I Rnm al'Km, 
m=l 

(2.15c) 

for n> 1, provided that none of 81,82 ,oo.,8n _ I does not van
ish. Here, Qnm and Rnm are polynomials of Ku K 2,oo.,Kn 
with the same structure as in Eq. (2.14), but with different 
coefficients in general. We shall now prove Eqs. (2.15) in
ductively. For n = 1, they are easily verified on the basis of 
Eq. (2.10) and (2.11) with n = 2. Suppose that they are 
valid for any n with 1 <n<tfor some integer t. We will prove 
then that they will hold also for n = t + 1, provided that 
81 ,82 ,oo.,8( are nonzero. Setting n = t+ 1>2 in Eq. (2.11), 
and multiplying by 8 f> we find that 

8(S~ a;.K(+ I - 81 aI'K(+2 + 8(Sf)~{CIKI a;.KI 

+ C2 a;.K2 } 

By the induction hypothesis, we have 

CIKI 81(S/)~ a;.KI 

= CIKI {80 al'KI + I + mtl Rim aI'Km}. 

Also, we calculate 

8(Sf); a;.K2 = 8,s~(Sf-I)~ a;.K2 

=s~{aaKf+1 + mtl Qfm aaKm} 

=S~a;.Kr+1 + ± (Qfm) 
m = I 8m 

(2.16) 

x [8m _ I al'Km + I + j~/ mj al'Kj ], 

(2.17) 

by the induction hypothesis on Eqs. (2.15a) and (2.15b). 
Inserting these equations into Eq. (2.16), we obtain 

(8f + C2 )S~ a;.Kf + I - 8f al'Kf + 2 

= trJACIKIKf al'KI + C2K f a1'K2} 

- CI {8oKI al'Kf + I + mt I KI R fm al'Km} 

- C2 mtl (~: )[ 8m-I al'Km+ I 
+ j~1 P mj al'Kj l 

Noting 8 f + C2 = 8 f + I , this proves then that Eq. (2.15a) is 
also valid for n = t + 1 with 
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f+ I 

L Pf + I,m a"Km 
m=1 

= trJACIKIKf a"KI + C2K f a"K2} 

- CI {OoKI a"Kf + I + mtl KIR fm a"Km} 

by utilizing the result we have just now proved. This shows 
the validity ofEq. (2.I5b) for n = t+ 1 with 
f+ I 

L Qf+l.m al'Km 
m=l 

=- "P a K +~" ~ 1 f+ I 0 f (Q ) 
£., f+I,m "m Ll £., Ll 

0fm=1 Uf m=1 Um 

X[Om_1 al'Km+ 1 +jtIPmja"Kj]' (2.19) 

Finally, multiplying Of+ I (Sf)~ to Eq. (2.10) and changing 
the indices suitably, it gives 

Of+ I (SI+ I)~ a).KI = OOOf+ 1 (Sf)~ a).K2 

+ (N - I)CI Of+ IKI (Sf)~ a).KI 

1 + (N-l)C10f+IK1 -
Of 

X [00 a"Kf + 1 + mtl R fm a"Km], 

again by the induction hypothesis. This proves the validity of 
Eq. (2.I5c) for n = t+ 1 with 
f+ 1 

L Rf + I,m a"Km 
m=l 

f+ I 0 
= 00 L Qf+ I,m a"Km + (N - I)CI~ 

m= 1 Of 

X [OoKI a"K1 + I + mt 1 KI R fm al'Km]. (2.20) 

which will determine Rf,m inductively. This completes the 
proof of Proposition 1. 

Proposition 2: Suppose that 00,01,02, ... ,01_1 are non
zero. Then, for any two positive integers n, and m satisfying 
l<n<tand l<m<twe have 

{Kn,Km} = O. 

Proof We first note the following identity, 

f").S~ = - r).S~, 
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(2.21) 

(2.22) 

-C2 f (Qfm)[Om_1 a"Km+ 1 
m=1 Om 

+ jtl P mj a"Kj ]. (2.18 ) 

whichdeterminesPf + I,m inductively. Then, Eq. (2.17) can 
be rewritten as 

when we note 

P).S~ =p).F).Jav. 

Then, we calculate 

pvS; a).Kn avKm = - f").S; a).Kn avKm 

- p).S; avKm a).Kn 

- pvS; a).Km avKn' 

where we interchanged indices v and A in the last step. 
Hence, we have 

(2.23) 

which is antisymmetric for interchange of nand m. Under 
these preparations, we now proceed to the proof of the Prop
osition by induction. For t= 1, there is nothing to prove. 
For t= 2, Eq. (2.10) gives 

pvS; a).KI avKI = 00{K2,KI } + (N -1)C1K1{KI,KJ 

= 00 {K2 ,K1 }· 

In view ofEq. (2.23) for n = m = 1, this leads to the desired 
result {K2 ,KI } = 0, provided 00 #0. 

Now, suppose that we have 

{Kn.Km } =0, 

for any positive integer nand m satisfying l<n, m<t; pro
vided that none of 00,01, ... ,01_1 vanishes. We shall then 
prove the same for l<n<l'+ 1 and l<m<t+ 1, assuming 
Of # 0 in addition, as follows. From Eq. (2.13), we calculate 
forn, m<t 

n 

= L Pnj{Kj,Km} = 0, 
j= 1 

by the induction hypothesis. Using Eq. (2.23), this gives 

0mOn_1 {Kn+ 1 ,Km} = - 0nOm_1 {Km+ I,Kn} 

= 0nOm_1 {Kn,Km+ I}' 

Repeating this relation successively by letting n --+ n - 1 and 
m--+m + 1, we find 
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On Om - I { } 
= -0-- -0-- Kn - I ,Km + 2 

n-2 m+ I 

0n_k 0m+k_1 

X{Kn_ k+ I,Km+ k}, 

for any integer k satisfying n>k. We may now assume n>m 
without loss of generality, since we may otherwise inter
change the role of nand m. Then, choosing k = n - m + 1, 
this gives 

{ } On Om - I { } 
Kn+I,Km =---'-- Km ,Kn + I 

Om_IOn 

= {Km,Kn+ I} = - {Kn+ I ,Km} = O. 

Also, we have {K(+ I ,K(+ I} = 0 trivially. This proves the 
validity of the induction hypothesis for tbeing replaced by 
t + 1. This completes the proof of Proposition 2. 

Remark 1: If C2 is not equal to any of the values, - 1, 
-!, - !, ... then On for n>O can never become zero. There

fore, we conclude {Kn, Km} = 0 for any positive integers n 
and m for such a case. However, in the next section, we will 
show C2 = - lI(N - 2) for the periodic Toda lattice 
(N)3), so that we find 0N_I = 0 but On #0 for 
O<.n<.N - 2. For such a case, Eq. (2.13) with n = N - 1 
gives 

N-I 
- 0N_2 apKN = I PN- I.m apKm· 

m=1 

Since PN-I,m is a polynomial of KI ,K2, ... ,KN_ I, this im
plies that KN must be a polynomial of KI ,K2, ... ,KN_ I. We 
will show in Sec. III that this is indeed the case for the peri
odic Toda lattice. However K I ,K2, ... ,K N _ I as well as one 
more quantity K N are shown to be algebracially independent 
and in involution. 

III. PERIODIC TODA LATTICE 

For simplicity, we will work again in the canonical coor
dinate frame and set 

1=j+N (j= 1,2, ... ,N), jk =11<, (3.1) 

as in Ref. 19. We seek a solution satisfying Eqs. (2.1 )-(2.3) 
with an ansatz of 

Fjk = ajk exp[ Ajk (qj - qk)] - akj exp [Akj (qk - qj)]' 
(3.2a) 

Fjk = - 8jk (Apj + sHI ) - SPj' (3.2b) 

FJic = hjk = - hkj' 

where we have set 

(3.2c) 

(3.3 ) 

and where, A,s, ajk , Ajk' and hjk are some constants to be 
determined. It is easy to verify the validity of 

llJ..pv(F) =aJ..Fpv +apFvJ.. +avFJ..p =0. (3.4) 

Next, we calculate 
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N 

(F2)jk = {A(pj + Pk) + 2SHI }Fjk + SPk I Fjm 
m=1 

(3.5a) 

N 

(F2)Jic = {A (Pj + Pk) + 2sHI }hjk + s I (hjm - hkm )Pm' 
m=1 

(3.5b) 
N 

(F2)jk = - I hkmFjm - Djk (Apj + SHI)2 
m=1 

(3.5c) 

We then compute 

KI =! Tr S = [A + (N + 1)s ]HI' (3.6a) 

1 2 1 N 
K2 =-Tr (S ) =- I hjkFjk 

4 2 j,k= I 

+ ~A(A + 25) ± (Pk)2 
2 k= I 

+ !5 [2A + (N + 3)s] (HI )2. (3.6b) 

We shall assume 

A + (N + 1)5 #0, A(A + 2s) #0, (3.7) 

so that KI and K2 are physically nontrivial. Then, when we 
choose constants CI and C2 to be 

C2 = s / (A + 25), 

CI = -s2/(A + 25) [A + (N + 1)5], 

and set 

(3.8a) 

(3.8b) 

(t 2)pv = (F2)pv + J;.v [C2 K2 + !CI (KI )2], (3.9) 

it is straightforward to find 
-2 -2 -2 

Iljk(F ) = IlJk](F ) = IlJic(F ) = 0, (3.lOa) 

but 

+ 25Fjk + (hfj - hfk )Fjk' 

where we have set 

Fjk =ajkAjk exp[Ajdqj -qk)] 

+ akjA kj exp[ Akj (qk - qj)]. 

Suppose that Fjk satisfies a differential equation 

(3. lOb) 

(3.11 ) 

(hfj - hfk )F;k. + 25Fjk + A (Dfj + Dfk )Fjk = O. (3.12) 

Then, summing Eq. (3.12) for k with t= k, and noting Eq. 
(3.8a), it is easy to find 

N N 

5 I Fmj + C2 I hjmFjm =0. 
m=J m=1 

Therefore, Eq. (3. lOb) leads to Iljk;r(P2) = 0 and hence we 
will have Eq. (2.2), i.e., 

(3.13) 

in viewofEq. (3.lOa). UsingEqs. (3.2a) and (3.11), we can 
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rewriteEq. (3.12) as 

{(hI] - hflJAjk + 2S" + A (01] + OflJ }Ojk = O. (3.14) 

In conclusion, if the constants A, S", Ajk , hjk , and 0jk satisfy 
the condition Eq. (3.14), then we have the desired relation 
Eq. (3.13). Equation (3.14) implies that whenever we have 
0jk #0, we must have 

(hI] - hfdAjk + 2S" + A(0l] + 0lk) = 0, (3.15) 

for arbitrary values of t= 1,2, ... ;N. This condition is very 
strong and essentially determines all these constants as we 
will see in the Appendix. For this purpose, it is convenient to 
use the diagrammatic approach familiar in the theory of 
Dynkin diagrams22 of simple Lie algebras. When we have 
0jk #0, then we draw the diagram, Fig. 1, for a straight line 
joining two pointsj and k with the arrow direction from the 
pointj to the point k. As we see from Eq. (3.14), both 0jk # 0, 
and 0kj #0 are not in general possible. However, we can al
ways reverse the direction of the arrow by using the new 
quantities 0kj and lkj defined by 

0kj = -Ojk' lkj = -Ajk , (3.16) 

since the numerical expression for Fjk remains unchanged 
under this transformation. Assuming A #0 and excluding 
the trivial case of all Ajk being zero, we will show in the 
Appendix that the solution of the problem allows only two 
possibilities of either the straight line joining 1,2, ... ,N succes
sively or the circle joining 1,2,3, ... ,N as in Figs. 2 and 3. 

Moreover, keeping the directions of the arrows continu
ously in the same direction, the solution for Fig. 2 corre
sponding to the simple Toda lattice will be shown in the 
Appendix to be given by 

Fjk =fjOkJ+ I exp{A(qj - qd} 

- ikOj,k + I exp{A (qk - %)}, 

Fj"k = - Ojk (Apj + S"HI ) - S"Pj' 

Fj" = (l!A){A€(k-j) +2S"(k-j)}, 

(3.17) 

wheru(k - j) is the sign function Eq. (1.18), andfj, A,A, S" 
are arbitrary constants. Since A and S" are arbitrary, it is more 
advantageous to assume S" = 0, and A = A = 1. Then, this 
solution reduces to the standard Toda lattice solution Eq. 
(1.17) with CI = C2 = O. 

However, for the circular case of Fig. 3 corresponding to 
the periodic Toda lattice, the situation is slightly more strin
gent. We must first reinterpret OJ,k + I in Eq. (3.17) to imply 
(also with qN + I = ql ) 

{

I, ~f~ = k + 1 for l<k<N - 1, 

OJ,k + I = 1, tf} = 1 and k = N, 
0, otherwise. 

(3.18 ) 

Second, A and S" are no longer arbitrary, but we must have 

S"= - (l!N)A, (3.19 ) 

assuming A #0. If we set A = A = 1, then it reduces to the 
solution Eq. (1.23). 

O----l,_-O 

f " 

FIG. 1. The assignment of the line with the ar
row when we have ajk ;60. The open circles at 
the ends imply that the line may continue. 
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)( , M' M ------- M • K 
J 2 3 N-J N 

FIG. 2. The diagram corresponding to the situation when we have ajJ + I ;60 
for allj = 1,2, ... ,N - 1. The cross symbols at the end oflines imply that no 
other line can be joined to them. 

We note that E( j - k) defined by 

E(j - k) = €(j - k) - (2/N)(j - k), (3.20) 

is invariant under cyclic permutation. To see it more clearly, 
let us define 

': t+ I, J= 
1, 

iflq<N -I, 

ifj= N. 
Then, it is not difficult to verify the identify 

E<l-k) =E(j-k), 

(3.21 ) 

(3.22) 

for 1 q,k<N, proving its cyclic invariance. We also note 
N 

L E(j-k) =0. (3.23 ) 
k=1 

Returning to the general case, we will give explicit forms 
for KI , K 2, and K 3, 

N 

KI = [A + (N + 1)S"] L Pj' (3.24a) 
j= I 

K2 = J.- (A + 2S"){A f (p)2 + ~ f fjl<qj-qj+ III 
2 j= I A j= I 

+ 1S" [2A + (N + 3)S"] (HI f, (3.24b) 

K3 = + (A + 3S") {A 2 jtl (pj)3 + 3AS"HI itl (Pi)2 

+ ~ itl [A (Pi + Pj+ I) + 2S"HI ]fjl<qj-qj+ III 
+ !S"2[3A + (N + 7)S"] (HI )3. (3.24c) 

Hereafter, we will concentrate our attention only to the 
case of the periodic Toda lattice solution (N;;.3). Because of 
Eqs. (3.8) and (3.19), we have 

- CI = C2 = - l!(N - 2), (3.25) 

so that (In defined by Eq. (2.12) has the value 

(In = (N-n-l)/(N-2). (3.26) 

Especially, we see that 

(IN_ I = 0, (3.27) 

while all other (In (n;;.O) are nonzero. Because of the Propo
sition 2 of Sec. II, this implies then 

{Kn,Km} = 0, (3.28) 

for any nand m satisfying l<n, m<N - 1. Moreover, Re
mark 1 of the same section suggests that K N will be a polyno-

N-I N 

FIG. 3. The diagram corresponding to the case in which we have ajj + 1;60 
for j = 1,2,oO.,N - 1 and aN•1 ;60. 
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mial of K p K 2 , ••• , K N_ I . Here, we will show first that 
KI .K2 , ••• , K N_ I are algebracially independent, while KN is 
indeed a polynomial of these N - 1 quantities for the period
ic Toda lattice. To prove the algebraic independence. it suf
fices to regard K" 's as a polynomial of momentum variables 
Pi' discarding the qj dependent terms. By induction, we can 
show easily that 

n 

(Fn)Ik = - OjkA "(Pj)" - sA n - I L (Pj )m(Pk)n - m + "', 
m=1 

for n> 1 where terms neglected are either lower-polynomials 
of p/s or terms containing HI = I.J"= I Pj' as well as qrde
pendent quantities. Therefore, we calculate 

for n> I, where terms neglected are those which contain 
functions only of lower-order polynmial I.J"= I (Pj) m with 
m <,n - 1. For the periodic Toda lattice, we have A = - Ns, 
so that the coefficients of I.J"= I (pj)n is nonzero for 
n = 1,2, ...• N - I but vanishes for n = N. This proves the al
gebraic independence of KI ,K2 , ••• , K N _ I . In order to prove 
that KN is a polynomial of KI ,K2 , ••• , K N_ I' we regard S;, 
Ff.lv' and If.l>' for p, v = 1,2, ... ,2N be 2N X 2N matrices, and 
consider the secular equation 

det(S - AI) = 0, 

where I is the 2N X 2N unit matrix. However, since 

det(S - AI) = det(FI- 1 
- AI) = det(F - Aj), 

and 2N X 2N matrix F - Alis now antisymmetric, its deter
minant is a square of its phaffian. Therefore, we conclude 
that eigenvalue A must always appear in the pairs. Labelling 
them as (AI,AI ), (A2,A2 ), ... ,(AN,AN)' then we have 

Kit = _1_ Tr(S") = ~ ± (Aj )", (3.29) 
2n n j= I 

for n> 1. Next, we shall prove that AI = sH) = K J is an 
eigenvalue of S; for the periodic Toda lattice. Indeed, con
sider the eigenvalue problem 

S;tPv = sH) tPf.l' 

whose nontrivial solution is indeed given by 

¢j = I, th = 0, 

for all j= 1,2, ... ,N, when we note Eq. (3.23). Because 
A) = K 1 , and K) = I.J"= I Aj , we are forced to conclude that 

A2 +A3 + ... +AN =0, (3.30) 

so that KN must be a polynomial of K) ,K2 , ••• , K N_). For 
N = 3, Eq. (3.24c) with A = - 3s indeed leads to 

K3 = jS3(Ht )3 = j(K1 )3. 

Similarly, for N = 4, we can verify 

K4 =!(K2 )2_!KiK2 +j(Kt>4. 

Since we have only N - 1 algebraically independent 
functions KI ,K2 , ••• , KN _ I in involution, we must find addi
tional term K N that is algebracially independent of and in 
involution with, all these N - I terms, if the periodic Toda 
lattice is integrable. We can fortunately find such an extra 
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term as follows. Let us suppose for a moment that we have 
IN = 0. Then, since we have FN,) = 0, it corresponds to the 
straight chain diagram Fig. 2 rather than Fig. 3. In that case, 
there is no reason to set A = - Ns. However, in order to 
avoid confusion, let us write Kn explicitly as K" (s,A) as 
functions of two unconstrained variables S and A. We know 
then we have 

(3.31) 

foralln = 1,2, ... ,N - 1. Moreover, if we set A = - Ns, then 
KN(S,A) reduces to a polynomial 
P(KI ,K2 ,···, K N_ I ) =P(s,A). Therefore, we may set 

KN(S,A) = (A + Ns) KN(S,A) + P(s,A). (3.32) 

We note that KN(S,A) contains a term proportional to 
Y"= I (pj)N and does not vanish for A = - Ns. Therefore, 
KN{S,A) is algebraically independent of K1.K1, ... ,KN_ 1 

even in the limit A = - Ns. Moreover, since P(s.A) is a 
polynomial of KI ,K2 , ... , K N _ I' we must have 

{P(s,A), K" (s.A)} = 0, 

for all n = 1,2, ... ,N - 1. Hence Eqs. (3.31) and (3.32) re
quire the validity of 

{KN(s,A), Kn (s,A)} 0. 

Now setting A = - Ns, and dropping the s-dependence of 
functions, this leads to 

{KN,K"} =0, 

for all n = 1,2, ... ,N - 1. However, as we noted in the begin
ning of the argument, this presupposes IN = 0. Hence, if 
IN #0, we conclude that {KN,Kn} must be proportional to 
IN for the original periodic Toda lattice. We now note that 
the periodic Toda lattice is cyclic invariant. Hence, replacing 
1-2 ..... 3 ..... ··· ..... N-I, and so on successively, we conclude 
that {KN,K,,} must be proportional to the product'/;}; .. IN 
of all coupling parameters. On the other hand, it is easy to see 
that K" as a function of,/; Ji , ... ,jN is a polynomial of degree 
[nI2], where [n/2] is the largest integer contained in n/2. 
Hence, {KN,K"} for n = 1,2, ... ,N - 1 is a function of 
,/; Ji ,···,jN with the degree less than Nbut never equal to N. 
Therefore, we conclude that we must have {K N,K n} = 0 for 
all n = 1,2, ... ,N - 1. Hence, we have found N algebraically 
independent functions Kl ,K2 , ••• , K N_ 1 and KN that are in 
involution, and hence the periodic Toda lattice is integrable. 

In ending this section, we note the following. First, we 
set 

K2 = [lI(N - 2) ]{K2 - !(KI )2}, (3.33a) 

K3 = [1/(N-3)]{K3 -j(K1)3}, (3.33b) 

K4 = [lI(N - 4)]{K4 + ~Kz[ (K t f - K 2 ] - j(KI )4}. 
(3.33c) 

Then, the recursion relations Eq. (2.13) for n = 1,2, and 3 
can be simplified to become 

S;aAKI = af.l {!(K1)2 K 2 }, 

A - -
Sf.laAK 2 = af.lK3 , 

S;aA.K3 = af.l {K4 + !(N - 2)(K2 )2}, 

(3.34a) 

(3.34b) 

(3.34c) 

which are reminiscent of Eq. (1.14). Note that each of 
(N - 2)K2 , (N - 3)K3 and (N - 4)K4 vanishes for 
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N = 2,3, and 4, respectively. The validity ofEqs. (3.34) im
plies that the Lax equation can be derived from these as their 
integrability conditions. Moreover, we can find more than 
two algebraically independent Lagrangians which neverthe
less lead to the same equations of motion. For details, see 
Refs. 18 and 19. 

Secondly, we can also find an analog ofEq. (1.16) for 
the periodic Toda lattice solution at least for n = 1,2,3, and 4 
as follows. We set 

(p2)/LV = (F 2)/Lv - KJ/Lv, 

(F'3)/LV = (F 3)/Lv - 2K2F/LV - K:J;.v, 
-4 4 - 2 -

(F )/LV = (F )/LV - 3K2 (F )/LV - 2K3F/Lv 

- {K4 + ~(N - 5) (K2 )2}.t;.v. 

(3.35a) 

(3.35b) 

(3.35c) 

Then, modifying the proof of Eq. (1.16) in Refs. 19 and 20, 
we can prove the validity of 

-2 -3 -4 
D.A/LV (F) = D.A/LV (F ) = D.A/LV (F ) = D.A/LV (F ) = 0, 

(3.36) 

which now replace Eq. (1.16). Although we suspect that 
Eqs. (3.34) and (3.36) will hold for more general cases, we 
could not prove the conjecture. 

Lastly, for the special case of N = 3, we can verify the 
validity of 

(F 3 )/Lv - KI (F2)/LV - [K2 - !(KI )2] (F/LV - Ktf;LV) = 0, 
(3.37) 

which is equivalent to a statement that the 6 X 6 matrix S; is 
completely diagonalizeable. Presumably, we may also find 
analogous formulas for general N. 

IV. OTHER EXAMPLES 

We will now give a few examples that satisfy the condi
tion Eq. (1.21) but are not necessarily integrable neverthe
less since Kn for n;;;,3 turn out to polynomials of KI and K2. 

A. Model A 

Let 5, t, TJ, bj, and Cjk = - Ckj be arbitrary constants, 
and set 

FJk = bj - bk , 

Fj" = - {jjk5H I - 5Pj - tPk - TJHI' 

Fjk = tPj - tPk' 

where HI and tPj are given by 
N 

HI = I Pk, 
k=1 

with 

( 4.1a) 

( 4.1b) 

( 4.1c) 

(4.2a) 

b=iN(N+ l)52+1J[(N-l)5+tN] +~t2+iTJ2N2. 
(4.3b) 

Then, after some calculations, we can verify the validity of 
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(4.4) 

Moreover, if we choose constants to satisfy t + NTJ = 0, 
then (F'2)/LV has the same form as Eq. (1.22). However, the 
present model may not necessarily be integrable for the fol
lowing reason. We can verify the validity of a cubic identity 

(F 3 )/Lv = (45 + t + TJN)HI (F 2 )/LV + H2F/Lv + HJ/Lv, 
(4.5) 

by a straightforward but tedious calculation, where H2 and 
H3 are defined by 

and 

H2 = K2 - !(HI )2[ (N + 13)5 2 + t2 + 85t 

+ 2(45 + t)TJN + TJ2N 2] 
N N 

= N I bjtPj + N5t I (pj)2 
j= I j= I 

H3 = -5HIKz +!5[(N+7)5 2+t2+65t 

(4.6) 

+ 2(35 + t)TJN + TJ2N 2] (HI )3. (4.7) 

Multiplyingj"/L to Eq. (4.5), we find then 

K3 =f, TrS 3 

= (35 + t + NTJ)HIKz - i{(35 + t + NTJ)3 

+ (N - 2)5 2[75 + 3t + 3NTJ]}(HI )3, (4.8) 

so that it is a polynomial ofKI = (25+t+TJ)H1 andK2. 
Moreover, by repeated use of Eq. (4.5), we can similarly 
conclude that all Kn (n;;;,3) are polynomials of KI and K2. 
Especially, the involution property {Kn,Km} = 0 guaran
teed by Proposition 2 (with C2 = ! and hence 0" =1=0) israth
er trivial. Especially, the present model is not necessarily 
integrable except for the simple case of N = 2. 

B. Model B: Coulomb potential In three dimensions 

The Hamiltonian of the three dimensional Coulomb po
tential is as usual given by 

H = (112m )p2 + air, (4.9) 

for mass m and coupling parameter a, where we have set 

p2 = pi + p~ + pL 
r = [q~ + q~ + qn 112. 

Now, define F/Lv (j.t,v = 1,2, ... ,6) by 

3 qf 
Fjk = ma I €jkf - , 

f=1 ~ 
3 

Fj" = I €jkfP f> 
f= I 

3 

FJr, = - 2 I €jk~f> 
f= I 

(4.10a) 

(4. lOb) 

(4.11a) 

(4.llb) 

(4.11c) 

where €jkf is the three-dimensional Levi-Civita symbol. 
Then, we find first D.A/LV (F) = 0 when we note the following 
identity valid only for N = 3, 

€jkmqr + €kfmqj + €ljmqk = €jk~m' 

Moreover, we have 
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K) =~TrS=O, 

K2 =!TrS2= -l-2ma/r= -2mB. 

Setting further 

(j2),.,v = (F 2),.,v - !KJ,.,v' 

we can verify the validity of 
-2 

A;.pv (F) = A;.,.,v (F ) = 0, 

( 4.12a) 

(4.12b) 

(4.13) 

(4.14) 

with C2 = -!, C) = 0, N = 3, and 00 = 03 = 0. Then, 
from the results of Sec. II, K3 must be proportional to K) K2 
so that it must be identically zero. More generally, we find 
the validity of a special third-order polynomial identity 

(F 3),.,v - K2 F,.,v = 0, (4.15) 

and hence all K n (n;;. 3 ) are functions of K2 . For example, we 
have 

K3 = 0, K4 = !(K2 )2, 

from Eq. (4.15). Then, the recursion relation Eq. (2.11) for 
n = 2 becomes 

S~ a;.K2 =0, 

while Eq. (2.10) is trivially satisfied. 
Further, if we set 

L2 = (qXp)2 = r2p2 _ (qop)2, 

we find also a rather peculiar relation 

(S2)~ a;.L2 = a,., (K2oL2), 

( 4.16) 

( 4.17) 

(4.1S) 

whose implication is, however, obscure at the moment. This 
model is, nevertheless, integrable since B, L2, and 
L3 = q)P2 - q2P) are algebracially independent and in in
volution. 

C. Model C: Harmonic oscillator 

Returning to the original N-dimensional case, we now 
consider 

Fjk = A (qjh - q kPj ), 

Fj" = B(qjh - qkPj)' 

Fj" = Aqjqk + Bpjh, 

(4.19a) 

(4.19b) 

( 4.19c) 

for j,k = 1 ,2, ... ,N, where A and B are some constants. Then, 

K) = ~ Tr S= - [Aq2 + Bp2] (4.20a) 

K2 =!TrS2=!(K)2. (4.20b) 

Moreover, we have a simple quadratic equation 

(F2)pv =K)F,.,v' (4.21) 

so that all Kn (n;;.2) are polynomials of K). We can verify 
the presymplectic tensor condition, 

A;',.,v(F) =0, (4.22) 

Also, if we set 

(F'2),.,v = (F 2),.,v - K)F,.,v' (4.23) 

it is identically zero by Eq. (4.21) so that we have trivially 

A;.,.,v(j2) = 0, (4.24) 

also. Therefore, this case satisfies conditions 
Ayv (F) = A;.pv (F'2) = 0. Although the explicit form of 
(F 2 ),.,v given by Eq. (4.23) is slightly different from that 
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discussed in Sec. II, we can proceed in essentially the same 
way. In this case, we find 

(S2)~ a;.K) =K)S~ a;.K) , (4.25) 

which can be split into 

S~ a;.L2 = 0, 

S~ a;.K) = ap H(K)2 - 2ABL2}, 

when we set 

L2 = q2op2 _ (qop)2. 

(4.26a) 

(4.26b) 

(4.27) 

Again, the reason for the validity of Eqs. (4.26) is not so 
clear at the present. Also, instead of Eqs. (4.19), we may 
consider 

Fjk = A (qjh - q kPj ), 

Fj" = B(qjh - qkPj)' 

( 4.2Sa) 

(4.2Sb) 

Fj" = -A(qjqk +8jkq2) -B(Pjh +8jk P2), (4.2Sc) 

which satisfy now 

(4.29) 

as well as a modified quadratic equation 

(F 2),.,v = [3/(N + 1) ]K)F,.,v - [2I(N + 1)2](K) )'i,.,v' 
(4.30) 

with 

K) =!TrS= (N+ 1) [Aq2 + Bp2]. (4.31) 

There are a few other choices in which we can have zero 
Nijenhuis tensor itself. 

1. Choice (i) 

Fjk = 0, FJr,. = qjh - qkPj' Fj" = Pjh, 

where we have 

A;.,.,v (F) = A;.,.,v (F2) = 0, 

with a quadratic equation 

(F 2),.,v = - p2F,.,v, 

as well as 

s~a;.L2 =0. 

2. Case (ii) 

(4.32) 

Fjk = 0, FJk = - 2(qjh - qkPj)' Fj" = 8jkp2, 
(4.33) 

where we have 

A;.,.,v (F) = A;.pv (F2) = 0, 

now with a cubic equation 

(F 3),.,v = (p2)2F,.,v. 
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APPENDIX: SOLUTIONS OF EO. (3.14) 

We shall prove that only solutions of Eq. (3.14) are 
limited to those corresponding to Figs. 2 and 3. First, we 
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recall our convention that we draw a directed arrow from the 
point j to the point k as in Fig. I, only when we have 
ajk =/:0U=/:k). Now, suppose that we have a\2a23 =/:0 corre
sponding to Fig. 4. Then, first settingj = 1 and k = 2 in Eq. 
(3.14), we find 

(h ll -h12 )A\2 +A(ol1 +012 ) +2t=0. (AI) 

Choosing E = 1 and E = 3, this gives 

h\2A\2 = A + 2t, 

(h\3 - h23 ),,1\2 = 2t, 

respectively. Similarly, a23 =/:0 in Eq. (3.14) leads to 

(hl2 ..:.. h(3 ),,123 + A(OI2 + 0(3) + 2t = 0, 
which gives 

h23A23 = A + 2t, 

(h\2 - h13 ),,123 + 2t = 0, 

(A2) 

(A3) 

for E= 2 and E= I, respectively. Since we are assuming 
Ajk =/:0 always, it is easy to find that Eqs. (A2) and (A3) 
lead to 

,,1\2=,,123, 

as well as 

(A4) 

h\2 = h23 = (A + 2t)/A I2 , h\3 = O/A\2)(A + 4t). 
(AS) 

It is also evident that we cannot have in general both a\2 =/:0 
and a21 =/:0. 

We shall now show that any diagram cannot contain a 
branch line. Suppose that we have a diagram corresponding 
to Fig. S. 

Then, considering two chains 1 -+ 2 -+ 3 and 1 -+ 2 -+ 4, we 
concludeA\2 =,,123 = .124 from Eq. (A4). Next, we reverse 
the direction from the point 2 to 4 by setting A42 = - ,,124 as 
has been explained in Eq. (3.16). Then, applying Eq. (A4) 
to the chain 4 -+ 2 -+ 3, it gives A42 = ,,123 so that ,,124 = - ,,123 . 
Comparing this to the previous result, we fine 
Au = ,,123 = ,,124 = 0 identically in contradiction to our hy
pothesis. Therefore, we conclude that only possible dia
grams should not contain any branch and hence only Figs. 2 
and 3 are possible by relabelling indices suitably. 

Next, suppose that we have the Fig. 2, i.e., the chain 
1 -+ 2 -+ 3 -+ •.. -+ N. Then, starting with our result of Eqs. 
(A4) and (AS), it is not difficult to show by induction on 
Eq. (3.14) that we have 

Au =,,123 = ... =AN_1,N=A, 

and 

(A6) 

hjk = (lIA){AE(k-j) + 25"(k-j)}, (A7) 

o • 0)-----0 
I 2 3 

FIG. 4. The diagram when we have 
a 12 #0 an a23 #0. The open circles im
ply that the end may be joined by other 
lines. 

1928 J. Math. Phys., Vol. 31, No.8, August 1990 

FIG. S. The diagram when we have 
a12 #0, a23 #0, and a24 #0. This dia
gram is not possible as is explained in the 
text. 

for any j, and k satisfying l<J,k<.N, where E(k - j) is the 
sign function defined by Eq. (1.18). 

When we are considering the cyclic case of Fig. 3, then 
we have additional condition aNI =/: 0, Applying Eqs. (A4) 
and (AS), to the chain N -+ 1-+ 2, we obtain ANI = ,,1\2 = A 
as well as 

hNI = (lIA)[A+2t]· 

However, from Eq. (A7), we know 

hNI = - hlN = - (lIA){A + 2t(N - I)}. 

Both are consistent only if A = - tN. We can verify that 
this is the only additional condition. Therefore, for the cyclic 
case corresponding to Fig. 3, we have 

,,1\2 =.123 = ... =AN_1,N =AN,I =.1, 

A= -Nt, 

hjk = (t /A){2(k - j) - NE(k -j)}, 

for 1 <J,k<.N. 

(A8) 

(A9) 

(AlO) 

This completes the proof of the results stated in Sec. III. 
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For a single-time approximation of the type discussed by Woodcock and Havas [Phys. Rev. D 
6, 3422 (1972)] applied to particle-asymmetric Poincare-invariant variational principles 
(VPs) of the Fokker type, a method is presented for expressing approximately relativistic 
Lagrangians (ARLs) to any order in c - I in a form such that coefficients off unctions of the 
instantaneous three-separation rij are either particle symmetric or antisymmetric. These 
functions of rij are determined solely by the corresponding particle symmetric or 
antisymmetric parts of the exactly relativistic kernel of the VP describing two-body 
interactions of N classical point particles. While the exact kernel involving the particles' four
separations and four-velocities is particle asymmetric, the built-in static Newtonian limit is 
particle symmetric. Using this method to reformulate previously published ARLs to order c - 3 

makes it obvious that a sufficient condition for acceleration-free ARLs to order c - 3 is that the 
kernel of the exact non-time-reversal-invariant interaction be particle symmetric. 

I. INTRODUCTION 

In a series of papers addressing the problem of obtaining 
approximately relativistic equations of motion for a system 
of N classical interacting point particles, the approach taken 
was to obtain an approximately relativistic Lagrangian 
(ARL) by direct expansion of the exactly relativistic vari
ational principle (VP). In part I (herein referred to as 
WH), I a general form to order c - 2 was established for 
ARLs obtained by making a single-time approximation of 
Poincare-invariant2 VPS3 of the Fokker type4 describing N 
point particles with two-body interactions depending on the 
particles' four-separations and four-velocities. Only interac
tions with a static Newtonian limit [i.e., a potential Vij (rij) 
describing the instantaneous interaction of particles i and j 
separated by the distance r ij] were considered. While the 
static Newtonian limit is symmetric in the particles' vari
ables, the relativistic interactions considered were not so re
stricted. 

Part lIs extended these results to order c - 3 for non
time-reversal invariant relativistic VPs and gave examples 
that could be easily integrated and used to compound accel
eration-free ARLs and Hamiltonians with 6N canonical 
variables. However, no general conditions for acceleration
free ARLs were found. 

In part III,6 ARLs to order c - 2 were computed by the 
method ofWH and II for relativistic VPs involving classical 

.) A preliminary report on the results of this paper was given at the Spring 
Meeting of The American Physical Society [Bull. Am. Phys. Soc. 32, 
1022 ( 1987) J. 

b) Permanent address. 
c) Present address: Naval Air Development Center, Code 5052, Warmin

ster. PA 18976. 

isospin. However, it should be noted that isospin is not treat
ed in the present paper. 

Each of the ARLs derived in the above-mentioned pa
pers 7 lacked a certain elegance of form in that the coeffi
cients of most functions of r ij were either particle symmetric 
or particle antisymmetric, but some failed to have either 
character. One of our objectives had been to see if particle 
nonsymmetry in the relativistic progenitor has observable 
consequences in the ARL; in order c - 2, as noted in the dis
cussion ofWH, this consequence turned out to be realized in 
the function W, which from its definition [Eq. (WH67b)] 
can be seen to vanish for particle-symmetric relativistic in
teractions. Its coefficients happened to be asymmetric. 
Therefore, the particle asymmetry of the coefficients of some 
of the functions of r ij in the ARL was accepted. 

In order c - 3, the final form 7 of the interaction terms of 
the ARL was characterized by the coefficients of two of the 
four terms being particle symmetric with the remaining ones 
asymmetric. However, in II there were no functions analo
gous to the W function of WH that allowed one to see from 
the final form of the ARL where particle asymmetry in the 
exact interaction manifested itself in order c - 3. Further
more, to be able to write acceleration-free ARLs and Hamil
tonians with only 6N canonical variables to order c - 3, the 
device used in II was to compound particular examples of 
ARLs so as to eliminate the acceleration-dependent terms. 
Indeed, it was specifically noted in the Discussion of II that: 
"The general form of relativistic kernels (or their linear 
combinations) for which the approximate Lagrangian is ac
celeration-free still remains to be determined" (in order 
c- 3). 

We will show here that a sufficient condition on the 
relativistic kernel that results in the ARL being acceleration 
free in order c - 3 can be inferred from a linear combination 
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ARL calculated by adding one-half of the ARL computed 
by integrating first on the world line of particle i to one-half 
of the ARL computed with the order of integrations re
versed. The resulting ARL, called 1, can be written (to all 
existing orders as shown in the Discussion) so that the coef
ficient of each function of r ij is either particle symmetric or 
particle antisymmetric. Furthermore, the functions of rij 
having particle-symmetric ( -antisymmetric ) coefficients 
can be defined in such a way that they are determined by the 
corresponding particle-symmetric (-antisymmetric) part of 
the exactly relativistic interaction kernel. To order c - 2, 1 is 
just a physically equivalent but more elegant form than that 
of WHo In order c - 3, however, 1 makes it not only possible 
to trace the effects of asymmetry in the relativistic kernel but 
also easy to see that acceleration-free ARLs and their corre
sponding Hamiltonians follow from relativistic kernels that 
are particle symmetric but not time-reversal invariant; the 
latter condition is needed for non vanishing contributions in 
that order. 

In addition, the derivations of the ARLs in the first 
three papers of this series involved judicious use of integra
tion by parts on the single time variable and (except for pa
per II) on the variable~, an integration variable appearing in 
the definitions of the functions of rij. The integrated terms 
then were assumed to vanish.8 The vanishing of these terms 
had the redeeming value of leading to final expressions that 
could be connected to well-known forms of ARLs as well as 
to specially contrived easily integrated examples, but had no 
obvious motivation. 

Here we supply a superior justification. Initially in this 
paper, we will retain all terms in the ARL except for the total 
time derivative terms, which make no contribution to the 
approximate equations of motion. Then we will show that if 
the exact nondependence of the results on the order of inte
grations is required of the order-by-order Taylor and La
grange expansions, this leads to conditions allowing the dele
tion of the d / d~ terms thereby justifying the assumptions of 
WHo In order c - 3, the conditions suggested by this require
ment dramatically simplify the form of the W functions and 
lead to the sufficient condition for acceleration-free ARLs 
already noted. 

It should be emphasized that this paper does not contra
dict the results ofWH, II, and III. We present a method that 
gives justification for simplifications, conditions that must 
be satisfied by the relativistic kernel for the expansions to be 
meaningful, and a technique for expressing results in a form 
that better lends itself to interpretation. Alternative deriva
tions verifying the final form for the ARLs had been made in 
the theses9

•
1o on which WH and III were based; Ref. 10 

showed to order c - 2 that the final form did not depend on 
the order of integrations under assumptions that are justified 
here. 

In Sec. II we give the exact relativistic VP, its relation
ship to ARLs, and establish the notation. The resulting 
terms to orders CO and c - 2 are noted here. Simplification of 
the ARL by deleting d / dt and d / d~ terms and the calcula
tion of I are carried out in detail in order c - 3 in Sec. III, 
where acceleration-free ARLs (to order c - 3) are also con
sidered. The results are discussed in Sec. IV. 
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II. POINCARE-INVARIANT VPS AND ARLS 

Poincare-invariant equations of motion for a system of 
N point particles interacting through two-body forces can be 
obtained from a parameter-invariant Vp:3

,11 

6f = 0, f = f K + fl' (la) 

where the kinetic term f K is 

fK= - 2 ~ J: 00 dT; m; (7J/lvOfbn 112, (lb) 

with 

7J/lV =0 if J.L t=v, 7J00 = 1, 7JII = 7J22 = 7J33 = - C - 2 

(lc) 

as the metric of the four-space, and the interaction term f I 

is 

f OO foo ( tY,' bl:') f l = - ~ I dT; d1j b;bjAij sij,""':" ,..!... , 
'<j - 00 - 00 b; bj 

sij =Z;'( T;) - zIj( 1j), tY,'( T.) = dZ;'( T;) (ld) 
" dT; 

The coordinates Z;'( T;) of the world line of the ith particle 
(of inertial mass m;) are defined as 

and their derivatives are Of. The interaction is characterized 
by N(N - 1 )/2 possibly distinct functions Aij (not neces
sarily symmetric in i andj). Each Aij is assumed to be invar
iant under the infinitesimal transformations of the Poincare 
group and to depend only on the positions and velocities of 
the particles. Thus it can be a function only of the two-body 
invariants ofthe group, given below. 

If T; is chosen to be a Poincare-invariant parameter, 
then Of is a four velocity. The magnitude of Of 

b. = (bl:'b. )112 (3) 
,- J 'I' 

is constrained to be equal to 1 if the arbitrary parameter T; is 
chosen to be the proper time T;, i.e., such that 

dT;-dT;=(7J/lvdZ;'dznIl2, b;-l. (4) 

Denoting the proper-time four-velocity by uf, it follows that 

dzl: bl:' dT; 
uf(T;)=-' =.....:.., b· =-- (5) 

dT; b; , dT; 

Choosing the parameter to be the proper time involves the 
constraint (4) but has the redeeming feature of a known 
connection to the particle's three coordinates and the time 
through 

dT; = dt; [ 1 - V; (t;) ·V; (t; )1c2] 112, 

dr;(t;) 
v;(t;)= ---. 

dt; 
(6) 

Thus the four-dimensional formulation can be connected to 
a three-plus-one formulation either by going T; - T; - t; as in 
WH and II or by going T; - t; directly, as in III. [The latter 
is particularly useful in approximating the ten exactly con-

H. W. Woodcock and W. N. Herman 1930 



                                                                                                                                    

served quantities3,6,9,10 that follow from the Poincare invar
iance of Eqs. (1).] 

VariationofEq. (la) results l ,3,6,9,10 in parameter-invar
iant Poincare-invariant equations of motion: 

d 

dT; 
(7a) 

where.!£';1' is the four-dimensional Lagrangian derivative 

a d a 
.!£'. = ---- (7b) 

'I' azlt dT; au~ 

and 

( Of) fao fao V; zit, ~ = L d1j 'ojAij + L d1j 'ojAji 
b; j>i -00 j<i -00 

(7c) 

is the generalized potential. 12 Then taking the Newtonian 
limit (c - I -+ 0) changes the description from one involving 
4N coordinates and N parameters in a four-dimensional 
space to one involving 3N coordinates and one parameter in 
a three-dimensional space. As defined in WH, the static 
Newtonian limit chosen 13 for Eqs. (1) is 

8fo =0, 

fo= f:ao dtL(o) [r;(t),v;(t», i= 1, ... ,N, (8) 

which is invariant up to a divergence, i.e., a total time deriva
tive, under the infinitesimal transformations of the Galilei 
group. The VP (8) was found by putting the Poincare-invar
iant VP (1) into the form of an integral over a single time 
and taking the limit c - 1-+0. But as in WH, II, and III, our 
interest is in expanding Eqs. (1) in powers of c - I yielding 

8f=0, 

f::::; f:ao dtL(n) [r; (t),v; (t),a; (t), ... ], i= 1, ... ,N, (9a) 

where 

L(n) =K(n) + I(n)' 

K(n) = - Lm;c2 +Ko +c- 2K 2 
; 

1 
10= - L L Vij(rij)' Ko= L -m;v/(t). (9b) 

i<j ; 2 
The case n = 0 is Eq. (8). It will be convenient here to refine 
the notation and define 

K(n) was calculated in WH [Eq. (WH35)] and involves 
only even powers of c - I. [If n is odd, up to the (n - 1 )th 
term of K(n) is kept in the ARL.] II (for isospin-indepen
dent interactions) was shown in WH [Eq. (WH61)] to be a 
total time derivative having no effect on the approximate 
equations of motion and is thus deleted from the ARL to any 
order. 
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As shown in WH [Eq. (WH32)-(WH38)], the Poin
care invariance and the choice of a static Newtonian limit for 
Eq. (ld) is ensured by setting Aij = cUij and choosing the 
arguments of Uij to be 

Uij=C2st =~(t; -tj )2-lr;(t;) -rj(tjW 

=c
2
t ~ - ru (totj)' 

liJij = ('0;- l'oj- I )~'ojl' = r;rj [1 - c - 2v; (t;) 'vj (tj) ], (11) 

Xij=C'o;-I~Sj;1' = - r; [ctij - c-Iv; (t;) 'rij(t;,tj >], 
tij=C'oj-I'lYjSijl' = rj [ctij - c-Ivj(tj) 'rij(totj )], 

where Uij(uij,liJij,Xij,tij) does not involve c except through 
the invariants noted in Eq. (11), and where 

r;= [1-c- 2v;(t;)'v;(t;)] -1/2. (12) 

In this paper it is necessary to distinguish between the 
variable changes (totj) -+ (tij,tj ) in the double integral of 
( 1 d) (in order to get a single time) and the variable change 
(totj) -+ (t;,X ij ). The former variable change (used in WH) 
is designated 

fr= - ~.Lfao dtj[rj-Ifao dt; r;-ICUij] 
1<) -00 -00 

= - ~. L fao dtj [rj- I fao dtij 
1<] - 00 - 00 

A -If' + -I ( ) Xij= - r;rj ':tij c r; V; - Vj ·rij' 

and I + means the expression is evaluated with 

t; = tj + c-I[tijrj-I + c-Ivj·rij(totj )], 

(13a) 

(13b) 

(14) 

which results in uij -+(;ij and Xij -+Xij on substitution for ex
plicit t; 's; Eq. (14) follows from the definition of t ij in Eq. 
( 11 ). The latter variable changelO is designated 

f1= - ~.L fao dt;[r;-I fao dtj rj-IcUij] 
,<} -00 -00 

= - ~. L fao dt; [r;- I fao dXij 
'<J -00 -00 

where 
v _ ( _ I - I )2 2 
uij=Xijr; -c v;·rij -rij' 

'tij = - rjr;-IXij + C-Irj(V; - vj)·rij' 

the I _ means evaluated with 

( 13b') 

tj = t; + c- I [Xijr;-I - c-Iv;.rij(t;,tj )], (14') 

which came from the definition of X ij in Eqs. (11); the s~b
stitution for explicit tj's has resulted in U ij -+ U ij and t ij -+ t ij' 
The arbitrary parameters T; and 1j have been chosen to be 
the coordinate times t; and tj • This choice means that 
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(15) 

using Eqs. (2), (3), and (5). 
The implicit-function difficulty indicated in Eqs. (14) 

was handled in WH, II, and III by a Lagrange expansion. 14 

The details of doing the Lagrange and Taylor expansions of 
Eq. (13) using (14) in powers of c - 1 were covered in WH, 
II, and III and will not be reiterated here. The details ofEqs. 
( 13') and ( 14') to order c - 2 were given in Ref. 10. However, 
as pointed out there, the results of the starred expansion can 
be obtained easily from the unstarred one. 

This can be understood by noting that formally inter
changing particle variables together with an interchange of 
the third and fourth arguments of the function Uij and its 
derivatives turns Eqs. (13) with (14) into (13') with (14') 
and vice versa. [Note that tjj = Xij and Xji = tij' which fol
lows from the definitions (11), that the ij subscripts on Uij 
are not reversed because they are part of the name of the 
function, and that the order of the particle double sum re
mains the same with i <j.] Then, since we are interested in 
the results of an expansion in powers of c - 1 and since the 
variable change tj --+ t in (13) results in the limit c - 1 --+ 0 in 
the arguments of Uij being Uij(t 2 

- r 2
ij ,l, - t,t) whereas 

the tj --+ X variable change in ( 13') results (in the same limit) 
in Uij(X2 

- r\,I,x, - X), it is convenient for the purposes 
of comparison to make the trivial transformation X --+ - ton 
the dummy integration variable X in Eq. (13') and (14'). 
Then the expansions of Eqs. (13) and (13') can be fairly 
compared, since in ( 13 ) the variable changes 
(totj) --+ (tij,tj ) --+ (t,t) and in (13') the variable changes 
(totj) --+ (toX ij ) --+ (t,X) --+ (t,t) result both ways in equa
tions involving a single time variable and another integration 
variable t. Thus to obtain from the already known expansion 
of (13) the expansion that results from (13' ) (after 
X --+ - t), we perform the operations 

.. ,. ,. a a 
I+-+J, !> --+ -!>' -- +-+ --, 

aXij atij 
(16) 

and interchange the third and fourth arguments of U ij and its 
derivatives; we shall refer to this as the "star operation. " The 
star operation can also be used to take the result of (13') 
(after X--+ - t) into the expansion that results from (13) so 
that two consecutive applications of the star operation are 
equivalent to an identity operation. Notationally, when Eq. 
(13) is expanded using Eqs. (9) and (10) we get 

= Joo dt I(n) = ? 2: Joo dt I(n)ij 
-00 1<)-00 

= ?2:Joo dt[ - Vij 
I<J - 00 

+~C-212" -~c-313" + ... ], 
2 I} 2 I} 

(17) 

while (13') gives 
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4"* ~ -n 4"* 
of I ::::;~c of In 

n 

- ~ c-3Itij + .. -]. (17') 

An obvious identity involving Eqs. (13) and (13') is 

/1=(1/2)(/1 +/*1) + (1/2)(/1 -/*1) 

=,fl + (1!2)lP I' (18a) 

where 

,fl= (1!2) (/1 +/*/)' (18b) 

lPI=/I-/*I' (18c) 

Of course, Eqs. (13) and (13') represent the same numerical 
value, a definite (double) integral; the distinction between 
them is the order of integration. But, in the variations lead
ing to the exact equations of motion, 1,3,6 nondependence of 
the results on the order of integration was used and thus 
implicitly assumed, implying that the difference lP I of the 
Poincare invariant Eqs. (13) and (13') is 

lP 1= 0, 

yielding from (18a) 

/1 =,fl' 

Equation (18b) shows that 

(19) 

(20) 

(21) 

However, after Lagrange and Taylor expansions, Eqs. (13) 
and ( 13') become (17) and (17'); there is no guarantee that 
the order-by-order differences 

lP In =/ In - /* In (22) 

vanish without introducing restrictions in some (or even all) 
orders of the expansion. Thus, for mathematical consisten
cy, Eq. (19) yields 

lP In = 0 (23) 

for each n. 
The case n = 0 from Eqs. (8) and (9) turns out to satis

fy Eq. (23) automatically. The expression for the Newtoni
an potential (WH66) is 

(24a) 

where the bar over a letter means that (1) the substitution 
( 14) has been made, (2) all explicit c - 1 = 0 so that 
tj = tj = t, and (3) e.g., [cf. Eq. (11)], 

(24b) 
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Note that the ij sUbscripts have been deleted from Uij for 
simplicity and from ~ij because it is now a dummy integra
tion variable; also, it often will be convenient to delete the ij 
subscripts from r ij to simplify the notation. It should be un
derstood that all expressions that are coefficients of a barred 
quantity are now (after Lagrange and Taylor expansion 
around c - I = 0 in powers of c - I) functions of the one time 
t. Use ofthe star operation (16) on Eq. (24) yields 

V*ij= Vij' (25a) 

so that (23) with n = 0 gives 

~IO =0. (25b) 

The case n = 2 leads to no new physical results. Conse
quently, only the results will be summarized. Demanding 
that ~ 12 = 0 yields the condition on U and its derivatives 
that had been assumed in WH.Is Then using Eq. (18b) on 
12ij [defined in (10)] to calculate 

I 2ij = (1!2)(l2ij +I*2ij)' (26a) 

where 12ij is the main result ofWH (WH75c), yields 

- 1 dV.. 
12ij = VjOVj Vij - vjorvjOr--d lJ 

r r 
2 -+ (V j -vj ) (V;j +Xij) 

2- 2 2-+ [(Vj -vj)or] Yij + (Vj -vj)Wij 

1 dW .. + [(vjor)2 _ (vj or)2] _ __ lJ , 

r dr 

where Vij is given by Eq. (24) and 

Xij=- J:a> d~[Uw++(~U;-~Ux)]' 
- 1 fa> - -
Yij= -- d~(Uxx + U;;), 

2 -a> 

- 1 1 fa> --
Wij=- Wij=- d~~(Ux + U~). 

2 2 - a> 

(26b) 

(26c) 

A Poincare invariant used as a subscript implies partial dif
ferentiation with respect to that invariant (before it is 
barred), e.g., 

(26d) 

The only noteworthy change in form from (WH75c) occurs 
in the terms involving the W functions. Their form in (26b) 
isjust the form examined by Nordtvedt when he investigated 
the gravitational consequences of such terms for celestial 
body dynamics,16 while (WH75c) found these terms to be 

2 [ 2 1 dWij 
(vj - VjOVj ) W;/rij) + vjOrijvjOrij - (v/rij) ] - -d ' 

rij rij 

(26e) 

I 2ij in (26b) is not particle symmetric, but it does have the 
property 

I*2ij =I2ij , (27) 

which is consistent with (21). 
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1110 TO ORDER c~ 

The final result in 115 for 13ij [defined in Eq. (10)] 
(called I'3ijW here) was given in Eq. (1I25a') as l7 

Ij jjw = (Vi - V)2(V; - v)orWiij 

+ [(v j - vj )or] 3Wiij 

+8i
o (Vj -vj)Wjij +8i

or(vj -vj)orW~ij' (28a) 

where 

W;ij = J: a> d~ [ 4~ 3Uuu - 4~ 2UuX + ~Uxx 
+ 6~Uu - 2Ux - 2~Uuw + Uwx ], 

Wiij = J: a> d~ [ : ~3UUCTCT + ~2UuUX - 2~Uuxx 

+ + Uxxx + 2Uxu - ~Uuu ]. 

Wjij= f: a> d~ [2~Uw - 2~U - : ~3Uu]. 

(28b) 

and the primes on these functions, necessary in II, have been 
retained for the moment. A total time derivative 

(29) 

was omitted from Eq. (28) as irrelevant to a variational prin
ciple. The expressions (28b) can be rearranged to exhibit 
d / d~ terms as 

W;ij = f: a> d~ [(Uw; + ~U;;) 

+ ~ (21- 2U - I-U - I-U?- + U - U )] 
d~ ~ u ~ X ~. w , 

Wjij = ~ f: a> d~ [(3~Uw - ~U + ~2U; - ~2UX) 

+ ~ (_~2U)], 

W~ij = ~fa> d~ [~(Uxx + Ux; + U;~) 
3 -a> 

+~ (2~2Uu - 2~Ux - ~U; + U)]. 
d~ 
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The route from Eq. (28b) to (30) is not obvious; what one 
does is systematically eliminate upartial derivatives in favor 
of t partial derivatives using expressions analogous to the 
"chain-rule" differentiations 

dIi -
-= -2rU". 
dr 

(31) 

A series of equally tedious calculations using the star 
operation (16) on Eqs. (28a) and (30) gives 

Irij = Ijtw = (v; - Vj )2(V; - vj)·rW;t 

+ [(v; - vj).rrw~t - a/(v; - vj ) Wjt 

(28a') 

where the omitted total time derivative is 

and where 

WI'~ = W'I" -.!.~ W 3'·· - W 4'·· -Joo dr~ 
'J I} 2r dr I} 'J _ 00 ~ dt 

X [ - Ii", + Ii + 2t 2Ii" + tIix + tIi,], 

W2'~ = W 2'·· - .!.~ W 4'·· 
I} I} 2r dr I} 

+.!. Joo dt ~ (4t2IiCTCT + 4tIiq, 
3 - 00 dt 

+ 2tIiux + 2Ii" + Iixx + Iix, + Ii,,), 

W~t = - W~ij - f: 00 dt :t (2tIix + 2tIi,). 

(29') 

(30') 

Then, using Eq. (28a) with (30) along with (28a') and 
(30') in (22) with n = 3, we obtain for ~ 13 the expression 

~ 13 = - ~ L L Joo dt [~{.!. (v; - Vj )2Wj +.!. [(v; - vj ) 'r]2w~} + (v; - Vj )2(V; - vj)'r 
2c i<j - 00 dt 2 2 

xJoo dt ~ ( - Ii", + Ii + 2t 2Ii" + tIix + tIi,) -.!. [(v; - vj ) ·r]3 Joo dt ~ (4t 2Ii"" + 4tU", 
- 00 dt 3 - 00 dt 

The d / dt terms are of no consequence for the VP, but the 
d /dt terms in Eq. (32) are required to vanish so that 
~ 13 = 0, i.e., 

(- Ii", + Ii+2t 2Ii" +tIix +tIi,)loo,= -00 =0, 

(4t
2
Ii"" + 4tIi", + 2tIi"x + 2Ii" + Iixx 

+ Iixr; + Ii,,)loor;= -00 =0, 

(tIi, + tIix) I 00 ,= _ 00 = 0; 

(33) 

this requirement is consistent with the assumption 15 made in 
WH "that U and its derivatives vanish sufficiently rapidly at 
infinity. " 

Using the above-mentioned assumption in Eqs. (28a) 
and (30) we find the simplified forms of I3ij (deleting the 
prime along with the d / dt terms) 

I3ij = (v; -Vj )2(V; -vj)'rWlij 

rt- [(v; -vj )·r]3W2ij +a;'(v; -vj )W3ij 

+ a; 'r(v; - vj ) 'rW4ij , (34a) 

where 
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W4ij=~JOO dtt(Iixx + Iix, + Ii,,). 
3 -00 

(32) 

Similarly, the use of the assumption turns Eq. (28a') and 
(30') into 

= (v; -Vj )2(V; -vj)'rWTij + [(v; -vj)·r]3Wrij 

-Sj'(v; -vj)Wrij -aj·r(v; -vj)'rW:'ij' (34a') 

where 

W • - W 1 dW4ij W. - W 2ij - 2ij - 2r~' 4ij - - 4ij' (34b') 

Then use of Eqs. (34) and (34') in (22) with n = 3 gives 
only total time derivative terms, viz., 
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which are irrelevant to a VP. 
Using Eqs. (34) and (34'), the consequence of Eq. 

(I8b) in orderc - 3 is 

13ij = ! (/3ij + I tij ) 
2 -=(vj-vj ) (Vj-Vj)'rWlij 

3- -
+ [(Vj -vj)'r] W2ij + (aj +aj)'(Vj -vj )W3ij 

(36a) 

where 

= ~ f: OD dt [t(IT~~ - Uxx ) + (Uwx + Uw~)], 
- _ 1 dW4ij 1 fOD - -W2ij =W2ij ----=- dt(Uxxx + Um ),(36b) 

4r dr 6 - OD 

W3ij=~ W3ij = ~ f: OD dt(3tUw - tu + t2U~ - t 2U
X )' 

- 1 1 fOD - - -W4ij=- W4ij =- dtt(Uxx + Ux~ + U~~). 
2 3 - OD 

Equations (36) likewise have the property that 

1*3ij = 13ij , (37a) 

where 

W*lij = Wlij , W*2ij = W2ij , 

W*3ij = - W3ij , W*4ij = - W4ij . (37b) 

Each term of 12ij and 13ij has the property that if the 
coefficient of a function of r ij is particle symmetric (antisym
metric), then that function of r ij is determined solely by the 
particle-symmetric ( -antisymmetric) part of the exactly rel
ativistic kernel. This can be seen by defining a particle-ex
change operator Rij by its effect on Uij: 

Rij Uij (uij,wij,Xij,tij) 

= Uij (ujj>wji,Xjj,tjj) 

= Uij(uij,wij,tij,Xij), 

where we have used 

(38a) 

RijXij = tij,Rijtij = Xij' (38b) 

uij and wij are particle symmetric by their definitions in Eq. 
( 11 ), and the ij SUbscripts on Uij' as noted in Sec. II, are part 
ofthe name ofthe function and are not reversed by Rij' As 
Eq. (38a) shows, the effect of Rij on Uij is to exchange Xij 
and tij' Then Uij then can be written as the sum of a particle
symmetric term U S ij and a particle-antisymmetric term 
U A ij as follows: 

1935 

Uij = U S ij + U Aij , 

USij =!Uij + (!)Rij Uij' 

UAij=!Uij - (!)RijUjj , 
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(39a) 

where 

RijUsij = U sij , RijUAij = (- I)UAij , (39b) 

i.e., U Sij is even on particle exchange while U A
r is odd on 

particle exchange. When the functions of r·· in I 2 ··

Y

and 13 " are 
" " " written as integrals of a "barred U i...' [recall Eqs. (24b), 

(26c), and (2!b)], it turns out that U S ij is even in its argu
ment t while U A ij is odd in the integration variable t. This 
becomes obvious from 

U Sij = !Uij(t 2 - r2,1, - t,t) 

+ ~Uij(t2 - r 2,I,t, - t), 

U Aij = !Uij(t Z - r2,1, - t,t) 

- !Uij(t Z - r 2,I,t, - t), 

(40) 

using Eqs. (39) and (24b). The only mild complication oc
curs when a partial derivative with respect to either X or t is 
involved. For these cases it can be shown that 

a a 
R .. -U··=-R··U.. 
"aX" at IJI)' 

a a 
R··-U.·=-R··U·· 
"at " ax I) ", 

(41) 

We can use these properties to show that, for example, 
W3ij , whose coefficient in Eq. (36a) is particle antisymme
tric, is determined solely by U A ij . Its integrand, from Eq. 
(36b), is ![3tU - tu + tZ(U~ - Ux )]. Using the first of 
Eqs. (39a), the integrand can be separated into 

![3tU! - tUS + t2(U~ - U~)] 

+ ![3tu~ - tUA + tZ(ut - U:)]. (42) 

But from Eqs. (40) and (41), we have 

R .. (U~ - Us) =R .. (~ Us_~ Us) 
I). X "at ax 

=~R .. Us-~R .. Us 
ax" at I) 

= ~ US _ ~ US = _ (Us _ Us) 
ax at ~ x' 

(43) 

which shows thatthe terms involving USinEq. (42) are odd 
in t and consequently these terms will vanish when integrat
ed on t from - 00 to + 00. From a similar calculation, the 
terms involving U A in Eq. (42) are even in t and can give a 
nonzero contribution_to the integral. Thus, we see that W3ij , 
whose coefficient in 13ij is particle antisymmetric, is deter
mined only by the particle-antisymmetric part of the relativ
istic kernel. From such considerations, it can be shown that 

S - - - -only U ij contributes to Vij' Xij' Yij' Wlij , and WZij ' while 
A - - -only U ij contributes to W, W3ij , and W4ij . The immediate 

consequence is that if Uij = US ij' then W3 and W4 are zero, 
which kills the acceleration dependence ofl3ij . Thus, to or
der c - 3, a sufficient condition for acceleration-free ARLs 
and their associated Hamiltonians is that the relativistic ker
nel be particle symmetric and non-time-reversal invariant. 18 

Of course, relativistic interactions that are time-reversal in
variant have no terms of odd powers in c - I in their ARLs 
making them trivially acceleration free to order c - 3. 
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IV. DISCUSSION 

We have presented a method for writing ARLs that are 
physically equivalent to those derived in WH (to order C - 2) 

and in II (in order C - 3) but which have the property that 
coefficients of functions of r ij are either particle symmetric 
or particle antisymmetic, and these functions of r ij are deter
mined solely by the corresponding particle-symmetric or -
antisymmetric part of the relativistic kernel. To order C - 2 

this form differs only slightly from the one derived in WH 
and leads to no further insights. To order C - 3, however, it 
makes it obvious that a sufficient condition for acceleration
free ARLs is that the kernel of the exact non-time-reversal
invariant interaction be particle symmetric. For such inter
actions the functions W3ij and W4ij given in Eq. (36b) vanish 
since their integrands are then odd in the integration variable 
t. The prescription 19 given in paper II to calculate the third
order approximately relativistic Hamiltonian corresponding 
to the ARL gives, using Vi -:::;pJmi in /3ij' 

(44) 

with the usual 6N canonical variables for an N particle sys
tem. The corresponding results in II involved particular ex
amples only and far less generality. 

We have also indicated that terms to order C - 2 in the 
ARL that previously were deleted by assuming conditions 
(guided by known examples) on the relativistic kernel now 
necessarily vanish when we demand in each order that the 
results do not depend on the order of the double integration 
in the method used to obtain the ARL from the exact VP. 
This requirement in order C - 3 suggests the same condition 
on the relativistic interaction; invoking it dramatically sim
plifies the definitions of the functions of rij appearin~ in the 
ARL and aids greatly in obtaining the form (36) of I3ij . 

The prescription for calculating an ARL having coeffi
cients off unctions of rij that are particle symmetric or anti
symmetric was given in Eq. (ISb). To order C - 2 this gives 
Eq. (26) and in order c- 3 Eq. (36). We now will demon
strate that it would work to all existing orders. It should be 
noted, however, that the applicability of our prescription to 
higher-order approximations does not imply that all such 
higher orders exist, nor that they are acceleration free. Mar
tin and Sanz have shown20 that in predictive relativistic me
chanics (a subset ofrelativistic mechanics) a canonical ap
proach21 constrains a system of particles to be free particles 
only "from order C - 6 .. on, i.e., the no-interaction theorem22 

begins its effect in order C - 6. Whether the same is true for 
approximations following from Poincare-invariant action 
principles is not as yet known, but we are exploring this alter
native. With this caveat in mind, we suppose that a term T of 
.f involves a coefficient cij of a function Fij (rij) in the form 

T = cijFij. (45a) 
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Then, by Eq. (ISb), f will have a term 

T=HcijFij +cijF*ij]. (45b) 

This is identical to 

T =H!(cij +cji)(Fij +F*ij)] 

+H!(cij -cji)(Fij -F*ij)]' (45c) 
which has particle symmetry in the coefficient of the first 
term and particle antisymmetry in the coefficient of the sec
ond. It is clear from Eq. (45c) that T * = T. 

An alternative way to construct fJ is to use Eq. (ISa) 
to obtain 

fJ =.f*J +!iPJ =.fJ -!iPJ. (46) 

Equation (46) shows that an expansion of f J differs from 
either .f J or .fI * only by terms that are time derivatives, 
which are irrelevant to a VP, and/or t derivatives, which we 
have demanded to be zero for consistency to the exact 
expression. Equation (46) is useful in calculating approxi
mately conserved quantities from exact ones. While in II the 
explicit forms of approximate conservation laws were not 
written out because the form given in II led to long and 
noninstructive forms for the conserved quantities, the form 
/3ij shortens the calculations greatly. These are not included 
here because they still would significantly lengthen this pa
per. 

A third alternative method for obtaining /nij from an 
already calculated Inij is to write any asymmetric coefficients 
as sums of particle-symmetric and particle-antisymmetric 
coefficients, combine like terms, and e.g., in order C - 3, per
form an integration by parts on the time variable. This meth
od has the advantage that /nij seems to follow directly from 
either Inij (or I * nij) rather than from a linear combination. 
However, simplification of the forms of the definitions of the 
functions of r ij would still require subjecting I * nij to a simi
lar procedure and then requiring the vanishing of the differ
ence Inij - I * nij; the vanishing of d / dt terms would follow 
from requiring, e.g., that W1ij - W*lij be zero. 

It is possible to approximate the exact equations of mo
tion (7) and get the same post-Newtonian corrections to the 
equations of motion as follow from /2ij and /3ij. But Eq. (7c) 
shows that both the variable changes (17) and (17') would 
be required, and consequently this is no advantage over the 
alternative approaches discussed above. Furthermore, both 
are also required in calculating approximate conservation 
laws from exact ones, as noted in the second alternative 
above. 

It should be noted that /3ij could be written so that every 
term is acceleration dependent. This is possible because both 
of the first two terms have (Vi - Vj )·rij = r dr/dt multiplied 
by a function of r as a factor and thus an integration by parts 
on the time results in acceleration-dependent terms. How
ever, this would seem to introduce higher derivatives artifi
cially. 

An easily integrated example of a particle-nonsymme
tric interaction that is not time-reversal invariant and leads 
to arbitrary functions of rij in the ARL (as opposed to the 
example in II that led to powers of r ij only) is 

(47a) 
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where I' is a constant, D is the Dirac delta function, and23 

{
I, 

O(x) = 0, 
x>O, 

x<O. 
(47b) 

For this interaction, using Eqs. (24a), (26c), and (36b) to 
find the functions appearing in I 2ij and I3ij results in 

Vij(rij) =fij(rij)/rij' Xij = - t'Vij -!f'ij(rij)' 

-y - If"/ 
ij - -2 ij rij' 

Wlij = Hiij + tf'ij/rij)' W2ij = fJij'/rij' (48) 

W3ij = H (31'- l)fij + rJij], W4ij = !fij, 

d/'.. 
f'=~ ij-d ' rij 

enabling one to trace the effects of hj in each order. The 
example (47) can be modified to be particle symmetric but 
still not time-reversal invariant in the form 

Uij = Q)~D(aij) [fij(;ij)O(;ij) + hj(Xij)O(Xij)]' (49) 

Thus, Eq. (49) is an example involving an arbitrary function 
hj but yielding an acceleration-free ARL to order c - 3. 

Since the form of ARL given in WH has been verified to 
order c - 2 by other approaches in other papers and we have 
presented another form shown to be equivalent to WH, we 
should comment on ways in which the other approaches 
could obtain I 2ij . 

Starting from a Newtonian theory characterized by in
teractions Vij (rij) and by the ten constants of the motion 
satisfying the Lie-bracket relations of the Galilei group, Sta
chel and Havas24 looked for corrections to order c - 2 of 
these ten quantities such that the new quantities satisfied the 
Lie-bracket relations of the Poincare group to that order. 
They found that requiring the corrections to be consistent 
with the expansion of an exact relativistic expression in pow
ers of c - 2 resulted in a Hamiltonian of the form obtained 
from the ARL in WHo By choosing a different particular 
solution to one of their equations and then redefining the 
form of some arbitrary functions, it can be shown25 that our 
form (26b) just as easily could have been obtained as the 
original WH form. 

In another approach, Coester and Havas26 started from 
the exact relativistic quantum mechanical canonical formal
ism of Bakamjian and Thomas and expanded in powers of 
c - 2 to obtain an approximately relativistic Hamiltonian in 
agreement with the post-Newtonian interactions of WHo 
Again it can be shown27 that their derivation can lead just as 
naturally to the form given here by choosing alternate repre
sentations of arbitrary functions. 

As noted in the Introduction, isospin is not treated in 
this paper. However, it easily can be shown that the isospin
dependent ARL given to order c - 2 in III has the property 
that it is invariant under application of the star operation. 
No results on expansions to order c - 3 of isospin-dependent 
relativistic interactions have been published. 

Although the recent theoretical literature of particle 
physics is dominated by gauge field theories, an approach 
starting from classical direct-particle interactions is not only 
interesting in itself, but occasionally such approaches are 
found useful by those working in QCD.28 
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ERRATA TO II 

Equation (1I36c) should have tdt' on the right-hand side. 
In Eq. (1146), replace 8/3 by 4/3. InEq. (1I59),A /2 should 
read - A /2 and the coefficient of (7/2 + t) should be 
(p;lmi - p/mj )2. The * on the author's first address indi
cates his permanent address. 

I H. W. Woodcock and P. Havas, Phys. Rev. D 6, 3422 ( 1972). Referred to 
here both as part I and as WH, the latter to avoid confusion with interac
tion terms denoted by I. 

2 Invariance under the proper orthochronous subgroup of the full inhomo
geneous Lorentz group (called the Poincare group) is the physically im
portant invariance group and it is this subgroup which is meant here. 

J P. Havas, in Problems in the Foundations of Physics, edited by M. Bunge 
(Springer, Berlin, 1971), p. 31; errata are in footnote 37 ofWH. 

4 A. D. Fokker, Z. Physik 58,386 (1929). 
'H. W. Woodcock, Phys. Rev. D 17,1539 (1978), referred to as II; errata 
to I are in II. Errata to II precede these footnotes. 

6W. N. Herman and P. Havas, Phys. Rev. D 17,1985 (1978), referred to as 
Ill. 

7 Equations (WH75c), (1125a'), and (III49d). 
8 Reference I, immediately below Eq. (WH62). In II, it adds: "at most a 
constant to the action principle," immediately below Eq. (II24), while in 
Ill, it is: "omitting the irrelevant integrated term," below Eq. (IIIAI4). 

9H. W. Woodcock, Temple University thesis, 1972 (unpublished), Appen-
dix B. This alternative calculation of the ARL was done not by t} - X but 
by t} _;, which is a monotonic variable change only to order c - 2. 

lOW. N. Herman, Temple University thesis, 1976 (unpublished), Appen
dix B. 1. 

II The notations of WH, II, and III were slightly different, adapted to their 
purposes. Here we use mainly the notations ofII, where, e.g., the coupling 
constants g,g} used in WH have been absorbed into Uij' 

12 The notation of III is chosen for V,; it is slightly different in WH and II. 
IJ Nonstatic limits are also possible and were discussed in WHo 
14 K. G. Dedrick and E. L. Chu, Arch. Ration. Mech. Anal. 16, 385 ( 1964 ). 
I'Reference I, p. 3431, immediately below Eq. (WH62). 
16K. Nordtvedt, Astrophys. J. 297, 390 (1985). 
17 Equation (25a') is found in Ref. 5 in the "NotesaddedinprooP'; thed Idt 

term there is omitted here and the names of the functions have been simpli
fied, e.g., W'lij replaces (Wlij + W'ij - 2Fij), etc. 

18In four-dimensional form, z;"( T',) = zf( T,) and T', = k - T" or 
dT', = - dT, expresses reversal oftime. Since only Xij or;ij of the four 
Poincare invariants are odd in dT, and dT} [Eqs. (11) 1, only U ij 's that are 
odd in the pair of variables X ij and ;ij are non-time-reversal invariant. 

19Equations (II56) and (II57). 
20 J. Martin and J. L. Sanz, J. Math. Phys. 19, 780 (1978). 
21 For an alternative canonical approach, see M. Pauri and G. M. Prosperi, 

J. Math. Phys. 17, 1468 (1976). 
22D. G. Currie, T. F. Jordan, and E. C. G. Sudarshan, Rev. Mod. Phys. 35, 

350 (1963). 
23 See, e.g., I. M. Gel'fand and G. E. Shilov, Generalized Functions (Aca

demic, New York, 1964), Vol. I, p. 21. 
24 J. Stachel and P. Havas, Phys. Rev. D 12, 1598 (1976). 
2' The method of Ref. 24 yields our form when instead of the choice of par

ticular solution given in their Eq. (AI7), one chooses (in their notation 
with 1rRS = PRlmR - pslms) 
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together with 

in place of their Eq. (69). [Note thatthe factor of - 2 in their Eq. (69) 
should be a - 1/2]. Finally, letting WIJ = 2 WIJ yields our result. 
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2°F. Coester and P. Havas, Phys. Rev. D 14, 2556 (1976). 
27To obtain our form via the derivation in Ref. 26, simply replace theil 

definitions (106) of the arbitrary functions X and Yby 

X=A-!!!. V+Z- m2 -m, W. 
M M' 

Y = B _ m J.. dV + J.. dZ _ m2 - m, dW 
M r dr r dr M r dr' 

and use these in their Eqs. (85), (87), and (104) together with W = 2W. 
2sR. W. Childers, Phys. Rev. D 36,606,3813 (1987). 
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The Goursat problem for the homogeneous wave equation 
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The Goursat problem for the 3-D homogeneous wave equation is presented and some methods 
to solve it are discussed. 

I. INTRODUCTION 

The Goursat problem I is a boundary value problem 
with data given on the characteristics S = z - x o, 1/ = z + Xo 

(xo = et) of the I-D wave equation a;t/J - a~"t/J = 0. Some 
authors speak of boundary value problems of the first kindz

,3 

or of characteristic initial value problems.4 

The Goursat problem may be generalized to the 3-D 
wave equation: 

(a - a~) t/J = 0, a = a ~ + a ~ + a;, 

which becomes with the variables S, 1/: 

4asaTJ t/J+a1t/J=0, a1 =a~ +a~, 

(1) 

(2) 

by considering the transverse variables x, y, as some param
eters. 

Then the Goursat problem is defined by Eq. (2) togeth
er with the boundary conditions on S = ° and 1/ = 0: 

t/J(x,y,S,O) = q:;1 (x,y,s) , t/J(x,y,O,1/) = q:;Z(x,y,1/) , (3) 

satisfying the compatibility condition: 

q:;1 (x,y,O) = q:;z(x,y,O) = q:;(x,y). (3') 

We do not discuss here the existence and the uniqueness of 
solutions for the Goursat problem. We first present the mod
al waves that seem to be most natural solutions and we dis
cuss some methods to solve the Goursat problem when solu
tions exist. 

II. MODAL WAVES 

Introducing the variables t=x-iy, t=x 

+ iy(i = ..r=T), Eq. (2) becomes: 

aSaTJt/J + a{;a~t/J = 0, (4) 

which is invariant under the transformations: 

(4') 

This suggests that we introduce the variable u with some 
similar symmetry: 

u = (a + S)(b + 1/) + (e + t)(d + t), (5) 

where a, b, e, d are arbitrary constants. We note 
1'JI.' J.L = 1,2,3,4, the monomials 

1'1 = a + S, 1'z = b + 1/, 1'3 = e + t, 1'4 = d + t· 
(5') 

Let .7 be an arbitrary function with sufficient derivatives. 
One checks easily by a direct calculation that for any 1'JI. 

t/J0 = (1lrJl. ).7«w/1'JI. )u), (6) 

where w is some parameter is the solution of Eq. (4) that we 
call the fundamental mode since there exists higher-order 

modes obtained by successive derivatives of (6) with respect 
to S, 1/, t, t: 

.,.0 a i a i aka 1.,,0 .. k I ° 1 2 'f'iJ,k,1 = s TJ (; !;'f" IJ" = , , '00 •• (6') 

The solutions {t/J~J,k,/} constitute the first set of modal solu
tions of Eq. (4) the most famous being the focus wave 
modes5 obtained when .7 is an exponential function and 
1'JI. = 1'1 or 1'z· 

To obtain a second set, we start with the particular solu-
tions 

1 0 r;~~1'~ 
~ = -, ¢iJ,k,1 = i+j+ k + 1+ I (7) 

u u 

Now let the function I be analytical, then using the Ma
claurin series for J, one checks easily that 

t/JI = (1lrJl.)/(1'JI./wu) (8) 

is a solution of Eq. (4) since each term in the expansion of 
(8) is of the form (7). The analyticity condition imposed on 
I is unduly restrictive, only sufficient derivatives are re
quired. Of course one can also check by a direct calculation 
that t/JI is a solution of Eq. (4). 

The higher modes t/J!J,k,1 are defined as in (6'). So the 
solutions {t/J!J,k,J obtained by changing wulrJl. into 1'JI./wu 
in t/J0 constitute the second set of modal waves, 

One verifies easily that both sets of modal solutions sat
isfy boundary conditions of the type (3), (3') so that they 
may be considered as solutions of a Goursat problem. 

III. SEPARABLE GOURSAT PROBLEMS 

The Goursat problem is called separable if the boundary 
conditions (3), (3') are of the form 

q:;1 (x,y,S) =11 (s)q:;(x,y) , 

q:;z(x,y,1/) =/z(1/)q:;(x,y), 1.(0) =/z(0). (9) 

We start with the particular case where the data (9) do not 
depend upon Sand 1/, that is, 

q:;z(x,y,S) = q:;z(x,y,1/) = q:;(x,y). (10) 

This suggests that we look for the solution of Eq. (2) in the 
form 

t/J(x,y,S,1/) = h(v)g(x,y), v = (S1/) I/z. (11) 

Substituting (11) into (2) leads to the system of equations: 

a~h + (1/v)avh - k zh = 0, (12a) 

a1g + k Zg = 0. (12b) 

The solution ofEq. (12a) is 

h=Io(k~), (13) 
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where /0 is the modified Bessel function of the first kind of 
order zero. For a l = a~ + a; or a l = a; + (1/r)a r the 
solution of (12b) is 

(14a) 

(14b) 

whereJois the Bessel function of the first kind of order zero. 
Consequently, if lP(x,y) in (10) has the Fourier expansion 

+00 

lP(x,y) = L Olmei(/x+my >, (15a) 
I,m = - 00 

or the Fourier-Bessel expansion6 

00 

lP(r) = L omJo(kjm r ), (15b) 
m=1 

wherejl,j2'"'' denote the positive zeros of Jo(t) arranged in 
ascending order of amplitude, the solutions of the Goursat 
problem are 

+00 

¢(x,y,g,TJ) = L oemei(/x+mY)/0(~(/2+m2)gTJ), 
I.m = - 00 

(16a) 

¢(r,g,TJ) = i om/o(kjmlfii)Jo(kjm r ). (16b) 
m=1 

For instance, for the boundary condition lP(r) = Jo(kr), 
one has 

(17) 

We may now consider the general separable boundary data 
(9) leading us to look for the solution ofEq. (2) in the form 

¢(x,y,g,TJ) = h(g,TJ)g(x,y). (18) 

Substituting (18) into (2) supplies (12b) and the equation 

4asa'1h-k2h=0. (19) 

The Green's function of Eq. (19) is 
/o(k(g - go)I12(TJ - TJO)I/2), and using the Riemann meth
od2

-4 we get a solution of the Goursat problem for Eq. (19) 
with boundary conditions}; (g) and/z(TJ): 

h(g,TJ) = is /o(k~TJ(g-s»asll(s) ds 

+ i'1 /o(k~g(TJ - S»ash(S) ds. (20) 

Consequently, if lP(x,y) has the expansion (15a) or (15b), 
the solution of the Goursat problem (9) is given by (16a) or 
(16b) with the Bessel function /0 replaced by (20). If 
as II (s) = as 12 (s) = o(s), where o(s) is the Dirac distribu
tion we get exactly (16a) and (16b) (see the Appendix). 

We may generalize the previous results to partially sep
arable Goursat problems defined by the boundary condi
tions: 

¢(x,y,g,O) = IPI (x,y,g), 

¢(x,y,O,TJ) =/(TJ)IP(x,y), IPI (x,y,O) = lP(x,y). (21) 

Then we look for the solution ofEq. (2) in the form: 
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¢(x,y,g,TJ) = h(TJ)g(x,y,g). (22) 

Substituting (22) into Eq. (2) supplies the following two 
equations: 

a'1h = (A/4)h, 

Aasg + alg = O. 

(23a) 

(23b) 

From (23a), we get h = e(Al4)'1 while the solution of the 
diffusion like equation (23b) satisfying the boundary condi
tion lP(x,y) for g = 0 is with Re A < 0 and g> 0: 

A 
g(x,y,g) =-

41Tg 

f
+OOf+OO (A ) X exp -[ (x - xo)z + (y - Yo)2] 

-00 -00 4g 

(24) 

Consequently, if IPI (x,y,g) :;i:g(x,y,g) the Goursat problem 
(2) has no solution. But if IPI (x,y,g) = g(x,y,g) and ifj( TJ) 
has the Fourier expansion 

I(TJ) = L o;.e(Al4)'1, 
A 

the solution of the Goursat problem (21) is 

AO;. (A) ¢(x,y,g,TJ) = L - exp -TJ 
A 41Tg 4 

f
+OOf+OO (A X exp -[ (x - XO)2 

- 00 - 00 4g 

+ (y - YO)2]) lP(xo,yo)dxo dyo' (25) 

For instance if I(TJ) = e(Al4)'1 and lP(x,y) = o(x)o(y) we 
get, according to (25), 

1 (A/4)'1 
./,( f;-) _ /\, e (;. /4,;)(x' + y') 
If' x,y,:"TJ -----e , 

417' g 
which is a focus wave mode. 

(26) 

As a final generalization of the separable problems, we 
consider the case where the boundary conditions (3) have 
theform (24), that is 

IPI (x,y,g) 

A foo f + 00 ( A ) = -- exp -[ (x - XO)2 + (y - YO)2] 
41Tg - 00 - 00 4g 

XIP(xo,yo)dxo dyo, (27a) 

1P2 (x,y, TJ) 

= ~f+ 00 f+ 00 exp(~[ (x - xo)2 + (y - YO)2]) 
41TTJ - 00 - 00 4TJ 

XIP(xo,yo)dxo dyo, (27b) 

then one checks easily that the solution of the Goursat prob
lem is, provided that 4a lIP + A/-l1P = 0, 

¢(x,y,g,TJ) = eA'1/41P1 (x,y,g) + ei"s /41P2 (x,y,TJ) 

- el (Al4)'1+ (1'/4)';J IP (X,y). (28) 

This seems to be the most general situation where the solu
tions of the Goursat problem may be obtained in a closed 
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form. For arbitrary boundary conditions (3), one probably 
has to resort to numerical methods. 

IV. CONCLUSION 

The discussion of the Goursat problem makes clear that 
the homogeneous 3-D wave equation is rich in unexpected 
solutions. Are some of these solutions interesting from a 
physical point of view? We think that they could intervene to 
develop the relativistic front form of dynamics initiated by 
Dirac? many years ago. It is, in particular, gratifying to see 
that the focus wave modes appear as solutions of a boundary 
value problem. For instance, the solution (26) may be inter
preted as a wave generated by a point harmonic source in the 
hyperplane S = O. This result, shown as the relation (22) to 
obtain the focus wave modes, is well known to people work
ing in this field. 8 

APPENDIX 

Let us remark that Eq. (19) has the solutions 

h(S,1]) = el's+ "'7, 4,uv = k 2, 

consequently when the boundary conditions are of the type 
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<PI (X,y,S) = el'sfjJ(X,y), fjJ2(X,Y,1]) = eV '1fjJ(x,y). 

One may use (l6a) and (l6b) together with relations (4') 
rather than Eq. (20) to obtain the solution of the Goursat 
problem. 

For instance, this leads to 

"'(x,y,S,1]) = )' alm~eI's+ "'7ei(lx+ mg>, 4,uv = [2 + m 2, 

l'7,'m 

"'(X,Y,S,1]) = I a,...vel'5+ "'7Jo(kr), k 2 = 4,uv. 
,...v 
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The classical nature of Berry's phase for photons is shown to arise from the intrinsic 
topological structure of Maxwell's theory. The phase is developed in the context of fiber
bundle theory and is discussed in some detail. 

I. INTRODUCTION 

The surprising discovery of Berry's phase! has recently 
received considerable attention and has shown the impor
tance of geometrical structures in Hilbert space. In the case 
of Berry's phase, which is a manifestation of the anholonomy 
in a Hermitian line bundle,2 the structure can be described 
by a gauge potential in the parameter space of the quantum 
system. While the original derivation of Berry's phase relied 
on an adiabatic approximation, this condition can be re
moved, as shown by Aharonov and Anandan,3 by observing 
that the projective Hilbert space of a quantum system can 
itself act as a parameter space. Thus, Berry's phase origi
nates from the nontrivial topology of the complex projective 
Hilbert space.4 

In their studies of Berry's phase for photons, Chiao and 
Wu5 took the momentum k space as the parameter space 
and predicted a rotation of the polarization vector for a lin
early polarized laser beam travelling through a single, heli
cally wound optical fiber. Their result was soon experimen
tally confirmed.6 Although Chiao and Wu regarded the 
manifestation of Berry's phase for photons (sometimes re
ferred to in the literature as the Chiao-Wu phase) as "topo
logical features of classical Maxwell theory that originate at 
the quantum level, but survive the correspondence-principle 
limit (Ii--+O) into the classical level," several authors dis
agree and have argued that the Chiao-Wu phase can be ob
tained without any reference to quantum mechanics. For 
instance, by adopting the notion of torsion used by Ross,7 
Haldane8 attributes the Chiao-Wu phase to the geometrical 
structure of the optical fibers. Segert's discussion of the 
Chiao-Wu phase,9 which is based on the 8 2 topology of the 
unit sphere defined by IW = 1 with t being the unit tangent 
vector of an optical fiber, is also classical in nature. He con
structs a tangent bundle over 8 2 and finds a local expression 
for the relative connection one-form. This latter description 
ofthe Chiao-Wu phase bears some similarities to the origi
nal formalism of Berry,! except for its classical nature, as 
one may consider the t space to be the parameter space and 
the one-form defined on it to give the corresponding gauge 
structure. The elegance of these two approaches is, however, 
somewhat blemished by the explicit introduction of geomet
rical objects directly related to the medium. This makes the 
intrinsic relationship between the Chiao-Wu phase and 
Maxwell's theory less obvious. An approach, aimed at show
ing this interdependence more clearly, should follow the 
work of Iwo and Zofia Bialynicki-Birula, \0 wherein the 
Chiao-Wu phase appears as a result of the existence of a 
connection one-form in the reciprocal space of Maxwell's 

theory. 11, While the latter approach, which motivates this 
work, is more important in studying the nature of the Chiao
Wu phase, the methods of Haldane and Segert are conceptu
ally simpler and more suitable for experimental applications. 

The emphasis here is on the origin of the Chiao-Wu 
phase via an 8 2 topology intrinsic to Maxwell's theory and 
on the corresponding fiber-bundle formalism. As such, the 
method of Ref. 10 is closely followed and is realized in a 
simpler and more illustrative form. A directly visible geo
metric picture is provided to simplify the discussion. This 
picture is also helpful in understanding the abstract math
ematical concepts of fiber bundles and topology used in stud
ies of Berry's phase. 

For the sake of completeness, the main results of Max
well's theory as given in Ref. 11 are briefly reviewed in Sec. 
II. The 8 2 topology inherent in the theory is discussed in 
some detail and the tangent bundle over 8 2 is also construct
ed. The fiber bundle and its connection one-form are intro
duced in Sec. III. The gauge structure for the Chiao-Wu 
phase is then derived and a simple geometrical picture is 
presented. In Sec. IV, Haldane's method is rephrased in 
terms of Maxwell's theory to make the discussion complete. 
The conclusions are contained in Sec. V. 

II. MAXWELL THEORY AND THE INTRINSIC $l 
TOPOLOGY 

The Lagrangian density of Maxwell's theory is 

.Cf = - !f,.,J"'v, 

and the Maxwell equations in vacuo are 

J"'f,.,v = 0, J"'f,.,v = 0, 

(2.1) 

(2.2) 

wherei,.,v=!€"VApf;.p is the dual off,.,v and €"v;'p is the com
pletely antisymmetric tensor with €l!23 = 1. Following Ref. 
11, one can introduce an auxiliary complex antisymmetric 
tensor F,.,v; 

F,.,v(x)=!(f,.,v(x) + if,.,v(x», (2.3) 

and it is easy to verify that F,.,v is self-dual, i.e., 

F,.,v(x) = - iF,.,v(x). (2.4) 

With this new tensor field, the Maxwell equations (2.2) can 
be rewritten as 

(2.5) 

A consequence of Eqs. (2.4) and (2.5) isthatF,.,v(x) satis
fies the d' Alembert equation 

DF,.,v (x) = O. (2.6) 

It is well known that Maxwell's theory is a linear theory 
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that admits plane-wave solutions. These features are implicit 
in Eq.(2.6). A general solution ofthe d'Alembert equation 
can be written as 

F"y(x) = J dr[a,,~(k)e-ik'x+a,,-:(k)eik'X], (2.7) 

with dr==d 3k/2w(k)(21T)3 and m(k) == Ikl. The symbol 
k· x denotes the scalar product of the four-vectors k" and xl' 
with a Minkowski metric 1J"y = diag(1, - 1, - 1, - 1). 
The antisymmetric tensors a,,~ and a;, are coefficients in the 
decomposition of the field F"y into plane waves; due to Eqs. 
(2.4) and (2.5), they can be expressed as 

a,,~(k) = e"y(k)/(k, + 1), a,,-:(k) = e"y(k)/*(k, - 1), 

(2.8) 

in terms of a complex antisymmetric tensor e"y (k) and a 
complex function f The functions /(k, ± 1) describe the 
amplitudes of the plane waves and are determined by the 
sources generating the waves. In contrast, e"y (k) is an in
trinsic quantity of the theory that provides a description of 
the polarization. The polarization tensor satisfies the trans
verse condition 

k"e"y(k) =0, 

the self-dual condition 

e"y(k) = - ie"y(k), 

and the normalization condition 

(2.9) 

(2.10) 

(2.11 ) 

As a result, e"y (k) is also constrained by the following rela
tion: 

e"v (k)e!p (k) = !k["gY](A kp J + iik a€a"Y[A kp] 

- iika€aAp["ky]. (2.12) 

Equations (2.9)-(2.12) are an alternative expression of the 
Maxwell equations. By introducing a complex three-vector 
e(k) to represent the polarization and relating it to the com
ponents ofthe tensor e"y (k) by 

(2.13 ) 

the Maxwell equations reduce to the following vectorial rela
tions: 

k"e(k) = 0, 

kXe(k) = - im(k)e(k), 

e*(k)"e(k) = 1, 

e(k)"e(k) = ° = e*( - k)"e(k), 

e*(k) xe(k) = in, 

e*( - k) xe(k) = 0, 

where n is the unit vector in the k direction; 

n = k/m(k). 

(2.14 ) 

(2.15) 

(2.16 ) 

(2.17) 

(2.18 ) 

(2.19) 

(2.20) 

The following discussion will be based on this representation 
of Maxwell's theory. 

As shown by Eqs. (2.14)-(2.19), the intrinsic proper
ties of an electromagnetic wave are its wave vector k and 
polarization e(k). Since Maxwell's theory can be formulat
ed as a representation of Poincare symmetry,11 all possible 
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wave vectors form a vector space, named k space, with a flat 
Euclidean metric structure. The on-mass-shell condition 

(2.21 ) 

defines a constraint submanifold in k space. In fact, m(k) is 
just a convenient notation for m/lv(k) I, where m is a con
stant frequency determined by the source and v(k) is the 
phase velocity of the wave with magnitude c in vacuo. There
fore, the submanifold is the surface of a sphere (or s 2 surface 
in short). The vector n gives the propagation direction of an 
electromagnetic wave and, in the case oflight propagating in 
an optical fiber, coincides with the tangent vector of the fi
ber. Hence, the S2 used by Segert9 originates from the S2 
topology implicit in Maxwell's theory. 

In order to describe the polarization of an electromag
netic wave, one can decompose the complex polarization 
vector e(k) into 11 

(2.22) 

with II (k) and 12 (k) two independent real unit vectors. The 
presence of the arbitrary phase 0 is due to the fact that the 
Maxwell equations can only determine e(k) up to a phase 
factor. 11 It is always possible to choose II and 12 such that 
(n,I1 ,12) forms an orthonormal basis, i.e., 

II XI2 = n, 12 Xn = II' nXII = 12, (2.23) 

Moreover, Eq. (2.23) shows that II and 12 actually form a 
tangent bundle over the S 2 surface and, consequently, the S 2 
geometry induces a connection in the tangent bundle. The 
Chiao-Wu phase, therefore, results as a manifestation of the 
connection one-form. 

Alternatively, one could introduce a vector space of all 
possible linear polarizations, hereafter called p space, and 
express an arbitrary e(k) in terms of two orthonormal vec
tors in p space with an appropriate phase o. The orthonormal 
condition, which is due to Eq. (2.16), defines an S 2 surface in 
p space and the two vectors can be represented by two points 
on this surface. It is not convenient to describe the changes of 
polarization in p space, or more precisely, on the S 2 surface 
in p space. Nevertheless, since the polarization states are well 
described on the Poincare sphere,12 there must exist a map
ping that will map the S 2 surface in p space onto the Poin
care sphere, in the sense that any two points together with a 
phase 0 will be mapped to a point on the Poincare sphere. 
One can thus choose the three-dimensional space, in which 
the Poincare sphere is defined, as the parameter space. A 
cyclic evolution of a polarization vector will trace out a 
closed curve on the Poincare sphere and generate a Panchar
atnam phase. 13

,14 A recent study has shown both theoreti
cally and experimentally that the Chiao-Wu and Pancharat
nam phases are additive. 15 However, this paper will 
concentrate on the Chiao-Wu phase only. 

III" THE CONNECTION ONE-FORM AND FIBER-BUNDLE 
FORMALISM 

The approach presented in the previous section is very 
similar to that of Berryl for quantum mechanics. If one 
takes the Maxwell equations (2.5) to be the corresponding 
Schrodinger equation, then the d'Alembert equation (2.6), 
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or equivalently the self-dual condition (2.4), plays the role 
of the instantaneous stationary Schrodinger equation. The 
important difference is that no adiabatic condition is needed 
here. The plane-wave solutions with all possible k and e(k) 
constitute a Hilbert space K and a general solution (2.7) is 
then expressed as a vector in K. Therefore, a polarized 
plane wave in Maxwell's theory resembles the energy eigen
function f/!n (x) in quantum mechanics. Furthermore, as the 
Maxwell equations can only determine the polarization ten
sor epv (k) or e(k) up to an arbitrary phase factor,l1 one 
may treat epv (k) or e(k) as the analog of the phase factor in 
f/! n (x). As a result, the complex projective Hilbert space can 
be parameterized by k only, and may be mapped isomorphi
cally onto k space. However, one should be reminded that 
there are fundamental differences between the phase factor 
of a wave function and the polarization vector of a plane 
wave: The former is not an observable, while the latter can be 
measured with a polarizer. The formal analogy of the two is 
used only for the sake of constructing a fiber-bundle formal
ism in Maxwell's theory. 

Before going further into the details of the construction, 
it is helpful to make use of the simple geometrical triad given 
in Sec. II to derive the gauge structure in the k space and to 
see how it gives rise to the Chiao-Wu phase. This will pro
vide the reader with a visual picture for the fiber-bundle for
malism. 

As an electromagnetic wave propagates, its wave vector 
k traces out a curve on the 8 2 surface in k space. Along it the 
polarization vector e(k), or equivalently an element of the 
typical fiber, is transported according to the Maxwell equa
tions (2.14 )-(2.19). Because of the geometry of the surface, 
e(k) will in general change, the change being given by a 
connection one-form in the tangent bundle. Since this tan
gent bundle is two dimensional with 1\ (k) and 12 (k) form
ing a local basis for each fiber, the connection one-form may 
be given by 

a(k) = 12 (k)"dldk), (3.1) 

for circular polarization when ~ = 11'/2. For an arbitrary ~ in 
general, a(k) should be rewritten asl1 

a(k) = ie*(k)"de(k), (3.2) 

or equivalently, with a(k) = a; (k)dk;, 

a; (k) = ie* (k)"(V;e(k». (3.3) 

It provides a gauge structure in k space and generates a cur
vature l1 

VXa(k) = n(k) 
(3.4) 

The rotation of the polarization vector e (k), when it is paral
lel transported along the curve by the connection a(k), is 
given by the integral of the one-form along a curve in k space. 
When the curve is a closed path C on the 8 2 surface the 
rotation angle resulting from the cyclic evolution is given by 

£ a(k) = f Le (VXa(k»"dSn = - O(C), (3.5) 

where 0 (C) is the solid angle of the loop C with respect to 
the origin in k space. 
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The above discussion can be illustrated by the following 
simple example. Assuming that at t = 0, (n,l\ ,12 ) are cho
sen to be at (1,0,0) in the k space and directed along (x,y,z), 
respectively. First, by carrying the triad along the equator to 
the point (0,1,0) and keeping 12 parallel to z, the triad at 
(0,1,0) is in the direction of (y, - x,z). Next, the triad is 
transported along the meridian to (0,0,1) with the direction 
ofI\ unchanged, the triad at (0,0,1) is then in the direction 
of (z, - x, - y). Finally, upon returning to the starting 
point (1,0,0) along the meridian with 12 keeping its direc
tion unaltered, the triad ends with the orientation (x,z, - y) 
and both 1\ and 12 differ from their original orientation by a 
rotation about the x axis by 11'/2. In fact, this rotation angle 
equals the solid angle of the closed path traced out by k on 
the8 2 surface in k space, which is i of the total solid angle of 
the 8 2 surface. The result ofEq. (3.5) is thus verified. 

In Simon's beautiful reformulation of Berry's phase2 in 
terms of fiber-bundle theory, the solution of the SchrOdinger 
equation forms a Hermitian line bundle over the parameter 
space and Berry's phase results as an anholonomic effect in 
the line bundle. The similarity between the approach pre
sented above and that of Berry suggests the possibility of 
using the language of fiber-bundle theory in the case ofpho
tons as well. In fact, by eliminating the degrees of freedom 
related to the polarization, the Hilbert space K reduces to 
its complex projective space 9. The restriction to a particu
lar choice of w(k) defines a submanifold iJ in 9. Since 9 
can be parameterized by k, this parameterization defines a 
map so that 9 is isomorphic to k space and iJ to the 8 2 

surface defined by Eq. (2.21). One can now treat the polar
ization as a Hermitian line bundle W with the structure of a 
principal fiber bundle P( 9 ,U(1», which is isomorphic to 
K. The structure group U( 1 ) stems from the fact that Max
well's theory cannot determine the phase of the polarization 
epv (k).l1 It is the arbitrariness in this phase that leaves room 
for the Chiao-Wu phase. 

A cyclic evolution corresponds to a closed curve Con ty, 
thus on the 8 2 surface in k space as well, and generates a 
transport of e(k) in the line bundle. Using the arguments in 
Ref. 2, there is a natural Hermitian connection in the line 
bundle given by the one-form a(k) = ie* (k)"de(k) of Eq. 
(3.2). It defines the transport ofa fiber, e(k) for some keS 2

, 

in the Hermitian line bundle. The Chiao-Wu phase y( C) is 
obtained in the form 

y(C) = £ a(k) = f Le V(k), (3.6) 

where V(k) =da(k) = ide* (k)"de(k) is the curvature two
form and l:c is the oriented surface on the 8 2 surface with 
a8 = C its boundary. 

Since the Chiao-Wu phase results from the facts that 
the Hilbert space K for Maxwell's theory is topologically 
equivalent to a Hermitian line bundle W over 9 and that, for 
a given w, the constrained complex projective space iJ has 
the 8 2 topology,9 one can study the Chiao-Wu phase in 
general by employing a particular 8 2 geometrical structure, 
e.g. the 8 2 sphere used in Secs. II and III. 
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IV. THE CHIAo-WU PHASE AND TORSION IN OPTICAL 
FIBERS 

Soon after the experimental verification of the existence 
of the Chiao-Wu phase,6 Haldane8 recognized that this 
phase was the same as the one studied and observed by Ross 7 

and explained it in terms of the geometry of the optical fiber. 
He further beautifully demonstrated the nature of the 
Chiao-Wu phase with the help of an S 2 surface spanned by 
the unit tangent vector. However, due to the explicit use of 
torsion, Haldane's approach seems to have overemphasized 
the role played by the geometrical structure of the optical 
fiber. The aim of this section is to show the compatibility of 
Haldane's approach and the present one. In order that Eqs. 
(2.14 )-(2.19) be applicable in the present discussion, one 
may idealize the optical fibers as vacuum tubes with perfect
ly reflecting interior walls. 

Following Haldane,8 one may assume that the fiber axis 
is described by a curve res), wheresis the distance along the 
fiber counted from some starting point. The fiber has unit 
length, i.e., s = 1 at the end. Thus t(s) = (arias) II arias I 
gives the unit tangent vector at s. The local curvature K(S) 

and the unit normal vector a(s) are then defined by 
at/as = K8 and t, a and the unit binormal vector b=txa 
provide a local orthonormal basis. By considering the propa
gation of a light beam along an optical fiber as a series of 
perfect reflections inside the fiber, one must assume an even 
number N of reflections, because for every reflection there is 
a phase change by 17'12.16 and no such change is observed 
experimentally7 for a smoothly bent fiber. Actually, when a 
fiber is smoothly curved the change in direction of the k may 
be considered to be continuous and N is, therefore, effective
ly infinity. In this case, Nand N + 1 are essentially the same 
and the number of reflections N cannot be assigned to be 
even or odd. Since the experimental results do not show the 
presence of an extra phase,7 the even-N assumption can be 
considered as a good hypothesis in the following discussions. 
It has been shownl7 that, according to Maxwell's theory, if 
the angle between the normal vectors of two consecutive 
mirrors is/3, the polarization vector e(k) of the beam reflect
ed from the second mirror will further rotate by - /3 in 
addition to the 17' phase change. If the two mirrors are infini
tesimally close to each other, the angle /3 can effectively be 
written as r ds, with res) a local torsion ofthe fiber given by 
iJbl as = - 111. Therefore, the rotation of the polarization 
vector of a linearly polarized light beam inside the fiber is 
given by the relation 

a~~s) = _ res), (4.1 ) 

where 8(s) is the angle between the polarization vector and 
the a axis. In other words, Eq. (4.1) defines a parallel trans
port of the polarization vector along the fiber. Therefore, 
after a linearly polarized light beam travels along the fiber 
from So to s, its polarization vector is rotated by an angle 

1::..8=8(s)-8(so)= - [T(S')dS', (4.2) 

Consider now a second optical fiber with the same teO) 
and t ( 1) as the first one. One can construct a curved surface 
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containing both fibers and then extend it further to form a 
closed two-dimensional surface. By labeling the first fiber as 
r(s,O) and the second one as r(s,I), one can imagine that 
there are many other fibers r(s,u), with the same teO) and 
t ( 1 ), between them and that the end points of the interpolat
ed fibers lay on the two geodesic curvesr(O,u) andre 1,u) on 
the surface. Thus the area between the two fibers can be 
parameterized with sand u. The rotation angle of the polar
ization vector with respect to the 8 axis for each beam is 
given by Eq. (4.2) with the integration taken along the cor
responding fiber. Since the 8 axes of the fibers have in general 
different orientations, one must take this into account in cal
culating the relative rotation of the polarization vectors 
when two linearly polarized beams, generated by coherent 
splitting at s = 0, travel to the ends of the fibers. Using8 

ab aa 
T= -8--=b--, 

as as 
and 

as at t."'&"= -8"&=0, at s=O,l, 

the relative rotation angle is 

1::..¢J=[tdUb~]IS=1 _[tdsb~]lu=l, (4.3) 
Jo au s=o Jo as u=o 

where the first term describes the differences in 8 directions 
of the two fibers and the second one is due to the difference of 
the rotation angles with respect to the corresponding 8 axes. 
However, one can map the closed surface to the unit sphere 
defined by the unit vector t and rewrite Eq. (4.3) as8 

il il [at at] I::..¢J = - ds du t·-x- . 
o 0 as au 

(4.4) 

The geometrical meaning of this I::..¢J is immediately obvious, 
provided one makes the identification II =at/as, 
12 = at/au and n = t on the unit sphere and uses Eqs. (2.23), 
(3.4), and (3.5). 

In ending the section, one should also be reminded that 
the even-N assumption is really not necessary in deriving Eq. 
(4.1) from Maxwell's theory, since Berry l8 has pointed out, 
without giving the details of the argument, that Eq. (4.1) 
can be obtained from the Maxwell equations after some anal
ysis. 

V. CONCLUSIONS 

The Chiao-Wu phase is classical in origin and stems 
directly from the intrinsic topology of Maxwell's theory. 
The rich topological structures of the theory may manifest 
themselves in many ways. In k space, they give rise to a 
gauge potential a(k) and generate the Chiao-Wu phase for 
any cyclic evolution carried out in the space. On the other 
hand, Pancharatnam phase implies the corresponding gauge 
structure in a particular space of polarization vectors in 
which a Poincare sphere can be defined. These two topologi
cal structures of Maxwell's theory are independent and thus 
the two phases are additive. IS Because different topological 
structures correspond to different constructions of a fiber 
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bundle in the theory, additional interesting topological 
structures, besides the two mentioned, might exist for Max
well's theory. Finally, it should be pointed out that the gauge 
structure in k space is quite general and exists for any linear 
field theory, massless or massive and with or without spin. 10 

Although the above results, which refer only to the 
vacuum, show an intimate relationship between the Chiao
Wu phase and the classical Maxwell theory, they are unsatis
factory when applied to real experimental situations. Berry 
has recently suggested19 a way to solve the problem by de
scribing the electromagnetic field in terms of a six-compo
nent spinor and recasting the Maxwell equations in the me
dium into a form similar to a time-dependent Schrodinger 
equation with a Hermitian operator as Hamiltonian. 
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This paper considers the problem of finding the quantum states that minimize the products of 
the (even) Nth-order fluctuation of two canonically conjugate operators. The problem is first 
attacked in an abstract form and an equation derived for the desired states. A consideration of 
the N = 2 case then leads to a connection with the new concept of "squeezed states" of the 
electromagnetic field, and the usual exact solution involving the coherent state. The concept of 
"higher-order squeezing" is touched on to motivate the further discussion. The cases N = 4, 6, 
and 8 are then taken up, and approximate solutions to them found via a new numerical 
technique. During these calculations, it is noted that only the first few terms in the expansion 
in number states figure in the solution; this observation is then exploited to find an 
approximate closed solution to the problem valid for all N. 

I. INTRODUCTION 

In this paper, we will consider the problem of finding the 
quantum states that minimize the products of the "Nth-or
der fluctuation" (to be defined below) of two canonically 
conjugate operators. In Sec. II, we state the problem in ab
stract, formal terms, and derive the equation obeyed by the 
desired states. In Sec. III, we consider the case N = 2, for 
which we are able to write down the well-known harmonic 
oscillator solution. This solution is then used as a briefintro
duction to "squeezed states" in Sec. IV. Having described 
"ordinary" (N = 2) squeezing, we then move on to the de
finition of higher-order (N) 2) squeezing in Sec. V, and also 
describe how this relates to the states sought in the paper. 
After this physical motivation, the tenor of the paper reverts 
to an abstract discussion as the approximate solutions to the 
cases N = 4, 6, and 8 are found in Sec. VI, VII, and VIII, 
respectively. In Sec. IX, an approximate solution to the gen
eral N case is given, and its properties explored. Section X 
then concludes the paper with a brief summary of the results 
obtained. 

II. ABSTRACT STATEMENT OF PROBLEM 

Consider two operators X,P satisfying 

[X,P] = i. (1) 

The problem considered in this paper is to find the states, "') 
and the corresponding values ( UN) min' which minimize the 
Nth-order uncertainty product: 

UN == ("" (a.¥)N '''') ("" (IlP)N ''''), 

subject to ("""') = 1. Here, 

a.¥==X - (X), llP==P- (P). 

(2) 

(3) 

Before pursuing the solution, first define new operators x, p 
that also satisfy [x,p] =;, by means of 

x==X - (X), p==P- (P). (4) 

By definition (x) = (P) = 0, and the uncertainty product 
takes the form 

(5) 

Next, follow a generalization of a procedure of Jackiw. 1 In
troduce a Lagrange multiplier, m, to incorporate the condi
tion ("""') = 1; then a necessary condition that UN be a min
imum is 

(6) 

To further simplify the problem, let us restrict our attention 
to only those states for which (xN) = (PN); carrying 
through the derivative in Eq. (6) using the expression for 
UN in Eq. (5), and determining m, one finds 

(7) 

where A==(XN) = (PN). Equation (7) is an eigenvalue 
equation for the desired2 state, ''''), whose corresponding 
eigenvalue, A., gives the value of ( UN )::;~ for that state. 

As pointed out in the Introduction, our main interest in 
pursuing such states lies in their role in "higher-order 
squeezing," to be discussed in Sec. V. In this connection odd
N states have a number of undesirable properties,3 so we will 
restrict our attention to even N = 2, 4, 6, .... In the next 
section, we consider the lowest order such, N = 2. 

III. CASE N=2 

For N = 2, Eq. (7) becomes 

!(x
2 + p2) '''') = A.,,,,). (8) 

This is the well-known harmonic oscillator problem,4 with 
solutions 

(9) 

where In) are the usual number states. Here, (U2 )min 

reaches its absolute minimum for '''') = ,0), (U2 )min 

=A 2 = 1. 
Ifwe return to the variables X,P, the more general solu

tion is found to be5 the coherent state, 'a), with 
a = (X) + ;(P), and the same value of (U2 )min = 1. Fur
thermore, for this state one can show that «a.¥)2) 
= «/lP)2) = ~. 
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IV. "ORDINARY" (N=2) SQUEEZED STATES 

So far we have been considering the restricted class of 
states for which (x2) = (P2). If one relaxes this condition, so 
that the variances need no longer be equal, (x2) =1= (P2), this 
leads to what have become known as "squeezed states.6

" In 
particular, in a certain squeezed state the variance of x, for 
example, might be chosen to have a value (X2) <~, while the 
corresponding variance of pis (P2) > ~, such that one still has 
(U2 )min =!. We then have "squeezed" or reduced the un
certainty in x, while increasing that of p; one may7 also 
squeeze p at the expense of x. 

This playful game of squeezing takes on a practical as
pect when, for example, we consider quantum states of a 
single-mode electromagnetic field, E, at optical frequencies. 
Suppose we decompose this field into quadrature phase com
ponents, Ee , Es: 

E = Ee cos Ot + Es sin Ot, (10) 

where 0 is the frequency of the field, and t is the time. In 
quantizing the field, E, Ee , and Es become operators, and 
with a suitable choice of units, after some calculations a re
sult is found that very much resembles Eq. (1) 

[ Ee,Es] = i. ( 11) 

The electromagnetic field of a common optical source, the 
laser, can be modeled quite well as a coherent state, la). As 
we have seen above, and in accordance with Eq. (11), this 
state has its fluctuations-which show up in a detector as 
noise-distributed equally between the two quadrature com
ponents, Ee , Es. Recently, a number of groups8 have man
aged to generate squeezed light fields, in which one quadra
ture component has decreased noise, at the expense of 
increased noise in the other quadrature. In a coherent state 
the fluctuations are independent of the amplitude, a. In par-

ticular, as a ..... O, we approach the vacuum state; squeezed 
states are then seen to be such that one quadrature of the field 
has less noise than the vacuum, which accounts for some of 
the interest shown in them. 

The techniques needed to generate squeezed light 
sources are quite complex, and will not be gone into here. 
Applications of squeezed light include low-noise optical 
communications, detection of gravity waves by optical inter
ferometry, and, no doubt, other uses yet unvisualized. In the 
last few years work in this field has undergone an explosive 
increase.9 

V. HIGHER-ORDER SQUEEZING 

For "ordinary" second-order squeezing the coherent 
state is the benchmark, as it minimizes the second-order un
certainty product. Hong and Mandel3 have sought to use 
this fact to generalize the concept of squeezing to higher
order (even) moments of the field. In a field state lif) a 
quadrature component Ee or E s is said to exhibit Nth-order 
squeezing if 

(if I (aE;)Nlif) < (al(aE;)Nla) U= Cor S), (12) 

i.e., the Nth-order fluctuation in the given state is less than 
that which obtains in the coherent state la). In fact, given 
the commutation relation between Ee and Es, it is possible 
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to show3 that (al (aE; )Nla) = (N - 1)!!l2N12, so thatthe 
criterion for higher-order squeezing, Eq. (12), can be writ
ten more explicitly 

(ifl(aE;)Nlif)«N-1)!!l2NI2 U=C or S). (13) 

Here (N - I)!! == 1 . 3 . 5' .. (N - 1). (For N = odd, the mo
ment vanishes3 in a coherent state, one of the difficulties 
with defining odd N higher-order squeezing, alluded to 
above.) 

However, while the coherent state does minimize the 
second-order uncertainty product, this does not necessarily 
follow for N> 2. In fact, in a comment \0 on Hong and Man
del's papers,3 one of us gave an example of a state infinitesi
mally different from the coherent state, the "Jackiw state l

" 

(14) 

in which both quadrature components Ee and Es are 
squeezed in fourth order; from this it follows that the fourth
order uncertainty product in this state is also less than that 
for the coherent state. Here, 0 is a normalization factor, E is 
a small positive parameter, and lal is large. 

However, in the Jackiw state, both the squeezing and the 
lowering of the uncertainty product are infinitesimal. Thus, 
although this result was of some formal value for examining 
the properties of higher-order squeezing, it did not have any 
practical usefulness. The question then became a general 
one, framed above, to find the states that minimize the 
(even) Nth-order minimum uncertainty products. Besides 
the possible utility of such states in discussions of higher
order squeezing, the problem is an interesting one of a gen
eral mathematical and quantum-mechanical nature. Hence, 
in the next three sections, which deal with the cases N = 4, 6, 
and 8, we revert to an abstract discussion of the solution of 
this problem. 

VI.CASEN=4 

One now needs to solve 

(15) 

a difficult problem that does not appear to have an exact 
solution. 

A technique for the solution of Eq. (15) is suggested by 
a paper of Partovi and Blankenbecler. II Define 

Ho ==!(x2 + p2)2, 

HI ==!(x2 _ p2)2. 

Equation (15) then becomes 

(Ho + HI) I if) = A lif), 

(16) 

(17) 

(18) 

and one can attempt to solve this by perturbation theory. 12 

The zeroth order wave functions are the eigenfunctions of 
Ho that are just the number states, In), with eigenvalues 
(n + ~)2. 

The detailed calculation to second order in HI has al
ready been published, 13 so the steps of the derivation will not 
be repeated here. In further work, by a straightforward and 
laborious perturbation approach, this calculation has been 
extended to fifth order. The exact values for the contribu
tions of the zeroth, first, second, third, fourth, and fifth or-
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ders are, respectively, 0.25, 0.5, - 0.075, 0.0375, - 0.0239, 
and 0.01715. The value for A to fifth order is thus found to be 
0.7057, or 94.09% of the coherent state value of 0.75 as pre
dicted by Eq. (13) above. The calculations are very tedious 
to perform by hand, and a numerical method was sought to 
expedite the calculations for this and higher values of N. 

The new approach is as follows: First, define the usual 
raising and lowering operators a, a + where 

X= (a+a+)/(2)112, p= (a-a+)/(2) 1I2i. (19) 

By straightforward calculation one finds that 

HI =!(a4+a2a+2+a+2a2+a+4). (20) 

The problem then boils down to diagonalizing (Ho + HI)' 
with the smallest eigenvalue giving the desired value of 

1/2 

(U4 )min' 

Next, write the solution I"') in the form 
00 

I"') = L cnI4n). (21) 
n=O 

One notes the form of I"'), i.e., only containing the states 
n = 0, 4, 8, .... It can easily be seen that states of odd parity 
1, 3, 5, ... are automatically excluded since Ho and HI as 
defined in Eqs. (16) and ( 17) both commute with the parity 
operator. The ground state of the system being of even par
ity, HI only mixes in even parity components. That the states 
2,6, 10, etc. are not involved is a feature of HI that is obvious 
from the form 14 ofEq. (20), i.e., that HI only connects states 
n, n' that differ by multiples of 4. 

The new numerical approach mentioned above consists 
of cutting off the sum in Eq. (21) at a finite value, K. This 
amounts to reducing the infinite-dimensional space of the 
exact problem to a more tractable, finite (K + 1)-dimen
sional space. The computer program 15 MathCAD 2.0 is 
then utilized to iteratively determine the best numerical val-

ues of (U4 ) ~:n for K = 0, 1, 2, ... . If we denote the total 
Hamiltonian for the case we are working on (N = 4) as 
H4 =-Ho + HI' then in the basis 14n) one finds that H4 has 
the following diagonal and off-diagonal forms: 

(H4 )'/n,n = H (8n + 1)2 + (4n + 1)(4n + 2) 

+4n(4n-l)]Dm,n, (22) 

and 

(H4 )~,n = Hn( 4n - 1) (4n - 2) (4n - 3)] 112Dm,n _ I 

+ H (4n + 1)( 4n + 2)( 4n + 3)( n + 1)] 112 

XDm,n+ I' (23) 

[The reader may find it useful at this point to recall that 
(H4 )m,n = (4mIH414n).] 

The "root" function of Math CAD 2.0 is now utilized to 
iteratively determine the smallest eigenvalue, A, that satisfies 
the characteristic equation, det (H4 - AI) = 0, in the 
(K + 1 )-dimensional space. Carrying out the calculations, 
it is found that the most significant improvement toward the 
"true" value of A occurs between K = 0, which gives 
A = 3/4 = 0.75 [the coherent state value ofEq. (13)], and 
K = 1, yielding A = 0.7000,justa trifle less thana 7% reduc
tion from the coherent-state value. Successive iterations up 
to K = 6 only improve results a little, with K = 6 yielding 
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A = 0.6984. For K> 6 MathCAD 2.0 begins to yield erratic 
results, indicating that it has reached the limits of its preci
sion.1t is interesting to recall, as mentioned above, that fifth
order perturbation theory gives A = 0.7057, so it would ap
pear that the new numerical technique is a significant 
improvement over conventional perturbation theory, at least 
for this problem. 

VII. CASE N=6 

For this case, the Hamiltonian for Eq. (7) is H6 

=-!(p6 + x 6). We rewrite this in the form H6 = Ho + HI, 
where 

Ho =-i(p2 + X2)3, (24) 

HI =-H (p2 _ X2) (p2 + X2) (p2 _ X2) 

+ (p2 + X2)(p2 _ X2)2 + (p2 _ X2)2(p2 + X2)]. 

(25) 

As before, Ho is diagonal in the 14n) basis, with eigenvalues 
(8n + 1) 3/8. After some calculation the on- and off-diag
onal terms of H6 are found to be 

(H6 )'/n,n = H (8n + 1)3 + 4(8n + 1) (16n2 + 4n + 1) 

+ (8n + 5)( 4n + 1)( 4n + 2) 

+ 4n(8n - 3)( 4n - 1) ]Dm,n (26) 

and 

(H6 )~,n = 1(4n + 5/2) [(4n + 1) (4n + 2)(4n + 3) 

X (4n + 4) ]112Dm,n+ I + 1(4n - 3/2) 

X [4n(4n - 1)(4n - 2)(4n - 3)]1I2Dm,n_I' 
(27) 

TheK = 0 value, i.e., that for the coherent state [Eq. (13)], 

is (U6 )~:n = 15/8 = 1.875. Invoking MathCAD 2.0, this 
value is reduced atK = 1 by about 19%, to 1.5240. As with 
N = 4, there is again the same pattern of only small improve
ments of a few percent with increasing K, the value 1.4765 
being found for K = 6; for K> 6 MathCAD 2.0 loses preci
sion and returns erratic values. 

VIII. CASE N=8 

For Hs = !(pS + xs) one finds the following expres
sions for on- and off-diagonal terms: 

(Hs )'/n.n = {-n,[(6(4n +!)2 + ~f + (4n + 1)(4n + 2) 

X (4n + 3)(4n + 4) + 4n(4n - 1)(4n - 2) 

X (4n - 3)] + (4n + 3/2)2( 4n + 1)( 4n + 2) 

+ (4n - !)2( 4n - 1) (4n)}Dm.n (28) 

and 

(Hs)~,n = (A +A T +B+BT)m,n, 

where 

(A ) m,n =- [ (4n + 1)( 4n + 2)( 4n + 3)( 4n + 4) ] 112 

X{(4n + ~)(4n + n + M12(16n2 

+ 20n + \l) + 3] }D m,n + I , 
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(31 ) 

and "T" denotes matrix transpose. 
The K = 0 or coherent-state value is now 105/16 

= 6.5625. The first iteration yields about a 30% reduction 
below this, with (Ug )~:n = 4.5956 for K = 1. Upon higher
dimensional iteration, an approximately further 7% reduc
tion is found, and the K = 6 value is found to be 4.1447. 
Again, beyond this value of K MathCAD 2.0 becomes erra
tic, indicating loss of precision. 

IX. APPROXIMATE SOLUTION FOR ANY N 

We have seen that, in the cases N = 4, 6, and 8, the 
solution in the 2 X 2-dimensional space yields a close approx
imation to that found by higher-dimensional iteration. This 
observation may be exploited to find an approximate solu
tion to the general problem, good for any N. 

Write 

(32) 

It is not too difficult to compute the 2 X 2 dimensional matrix 
<¢"BN ,¢,) and diagonalize it exactly, whereupon one finds 
the result in this space of 

(UN)~:n = [(N-I)!!/2N12][(N4+4N3+20N2+32N 

+ 48) - {(N4 + 4N 3 + 20N 2 + 32N + 48)2 

- 768(N 3 + 2N2 + 4N + 3)}1I2]!48. (33) 

This result naturally agrees with the K = I values quoted 
above for N = 4, 6, and 8. For N = 10, the equation yields a 
value of 17.9570, compared to the coherent-state result of 
945/32 = 29.53125, an almost 40% reduction below this 
latter value. As N ..... 00, Eq. (33) predicts that ( UN) min ..... O. 

X. SUMMARY AND CONCLUSIONS 

In summary, the problem of finding the even Nth order 
minimum uncertainty product has been studied, and the 
fundamental equation (7) for its value has been derived. The 
N = 2 case was considered, and the usual coherent-state so
lution was rediscovered. For the cases N = 4, 6, and 8, a new 
numerical technique was applied to obtain approximate so
lutions for the minimum uncertainty product. Finally, an 
observation made in the course of solving these cases allowed 
an approximate solution of the problem to be given for any 
N. For convenience, the results obtained are drawn together 
in Table I. 

From an abstract point of view, the problem considered 
is an interesting one, and the results obtained may prove 
useful in a number of investigations. In particular, the nu
merical approach to the approximate solution of the prob
lem, i.e., diagonalization of successively higher-dimensional 
approximations to the true Hamiltonian by a commercial 
software program (MathCAD 2.0), may indicate a useful 
new approach to quantum-mechanical problems usually at
tacked via perturbation theory of the standard variety. 12 
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TABLE I. Summary of results obtained for ( UN ) ~;~ . 

N Coherent-state Approximate % of coherent 
value solution state value 

2 ~ =0.5 
4 a = 0.75 0.6984 93.12 

6 V = 1.875 1.4765 78.75 

8 W = 6.5625 4.1447 63.16 

N (N - 1)!!/2NI2 See Eq. (33) 

Looking at the problem from a physical angle, it appears 
that states of the electromagnetic field as simple in form as 
Eq. (32) yield substantial reductions in the higher-order 
fluctuations of the quadrature field components, below their 
coherent-state (which includes the vacuum) values, in both 
quadratures simultaneously. While it cannot be denied that 
at the present time, production of just ordinary (N = 2) 
squeezing is quite difficult, future techniques may evolve 
that allow higher-order squeezing to be produced, and its 
properties to be studied. 
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Using the soC 2,1) Lie algebra and the Baker-Campbell-Hausdorff formulas, the Green's 
function for the Hartmann potential is constructed and its bound state energy spectrum is 
found. Also, this Green's function is constructed in a coherent state basis and the equivalence 
of the two descriptions is shown. 

I. INTRODUCTION 

The potential 

V(r,O) = ra2(2aolr - ra~/i2 sin2 0) Eo, (1) 

was proposed by Hartmann I in 1972 to describe organic 
molecules like benzene. Here, 0 0 is the Bohr radius, Eo the 
ground state energy of the hydrogen atom, and r, u are posi
tive real parameters. The Schrodinger equation for this po
tential is exactly solvable I and several others solutions have 
appeared, among which, we mention those of Gerry2 and 
Kibler and Winternitz3 that discuss the dynamical symme
try group. A path integral calculation of the Green's func
tion for this potential has been done by Chetouani et 01.4 

This paper does not give a new result for the quantiza
tion of the Hartmann potential, but introduces a new pre
scription for the calculation of Green's functions. The tech
nique consists of writing the resolvent operator in the 
exponential representation of Schwinger. 5 This exponential, 
which involves the so(2, 1) ®so(2,l) generators, related to 
the dynamical symmetry of the Hartmann potential,2 can be 
disentangled by using Baker-Campbell-Hausdorff (BCH) 
formulas. Finally, the explicit action of the exponentials' of 
the generators on functions of coordinates is determined by 
using a variant of the technique of Mil'shtein and Strakho
venko,6 which was originally applied to the Coulomb poten
tial. This gives the explicit form of the Green's function from 
which one can determine the bound state energy spectrum 
and the corresponding wave functions. It is also possible to 
consider the Green's function using the so (2,1) coherent 
states of Perelomov7 and apply the technique described 
above to obtain the final results in an equivalent manner. 

This paper is organized as follows. In Sec. II, we review 
the soC 2, 1 ) Lie algebra and two BCH formulas for disentan
gling exponentials of the generators, which appear in the 
following sections. The explicit construction of the Green's 
function for the Hartmann potential and the determination 
of its bound state spectrum are done in Sec. III. The coherent 
state Green's function and its trace are obtained in Sec. IV 
and the conclusions are given in Sec. V. 

II. THE BCH FORMULAS FOR THE 80(2, 1) LIE ALGEBRA 

We choose the basis such that the generators T I' T 2' and 
T 3 of the so(2,1) Lie algebra obey the commutation rela
tions, 

(2a) 

by 

[TI , T3 ] = - jT2, 

[Tz, T3 ] = - jT3• 

(2b) 

(2c) 

A simple matrix representation of this algebra is given 

TI = (UI - i(2 )12{2, 

T2 = - ju3/2, 

T3 = (UI + j(2 )12{2, 

(3a) 

(3b) 

(3c) 

where U; are the Pauli spin matrices. 
In the following sections, we will need to use BCH for

mulas that allow us to disentangle the exponentials of the 
generators T;, in the case when they are realized as differen
tial operators. The explicit forms are given later. It may be 
noted, however, that the disentanglement formulas that de
pend only on the commutation relations between the genera
tors may be derived by using any convenient faithful realiza
tion of these. Further, since the algebra is finite dimensional, 
the exponential of a linear combination of the generators can 
be expressed as the product of exponentials of the genera
tors.8 The particular cases of this result are the formulas, 

exp{ - is(2T I + k 2T 3 )} 

= exp{ - jaT3} exp{ - ibT2} exp{ - icT I }, (4) 

where 

a = k tan ks, (Sa) 

b = 2 In (cos ks), (Sb) 

c = 2k -I tan ks, (Sc) 

and 

exp{ - icTI}exp{ - juT3 } 

= exp{ - ipT3}exp{ - ipT2}exp{ - i1'TI}, (6) 

where 
p = iul( 1 - icu/2), (7a) 

P = 2 In (1 - icu/2), (7b) 

l' = cl( 1 - icu/2), (7c) 

with s, k, and ureal. 
Using the realization given in Eqs. (3a)-(3c), it is very 

easy to verify that Eqs. (4) and (6) hold. 
An alternative method is to differentiate both sides of 

Eqs. (4) and (6) with respect to variable s and equate the 
coefficients of T; on both sides. This leads to differential 
equations: 
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c eb = 2, 
. • b 
b +eae =0, 

a + b e + ca2eb /2 = k 2, 

in the first case and 

c + ie2a/2 = reP , 

(8a) 

(8b) 

(8c) 

(9a) 

- iae = P + p reP , 

ia=p +Pp + rePp2/2, 

(9b) and the parameter M is defined by 

(9c) M2 = m2 + qy2a2 . (18) 

in the second case. Here, the overdot denotes derivative with 
respect to s. Solution of Eqs. (8) and (9) leads to Eqs. (5) 
and (7). 

III. THE GREEN'S FUNCTION IN SQUARED PARABOLIC 
COORDINATES 

In this section, we use the "squared" parabolic coordi
nates2s, 1], and ¢J, that are related to Cartesian coordinates 
by 

x = 51] cos ¢J, 

Y = 51] sin ¢J, 

Z = (1]2 - 5 2)/2, 

where the former are 
0<5 < 00, 0<1] < 00, 0<¢J<21T. 

restricted 

(lOa) 

( lOb) 

(10e) 

by 

The relation of 5, 1] with the spherical polar coordinates 
r, (J is given by 

r= (52 + 1]2)/2, (lla) 

(lIb) 

In the place of the Hartmann potential, it is convenient 
to use the potential 

V(r,(J) = - ya2( 1/r - qy/2r sin2 (J ), (12) 

where y, 0', and q are dimensionless parameters and atomic 
units ao = 1, Eo = - 1/2 are used. The case q = 1 corre
sponds to the Hartmann potential while q = 0 gives the Cou
lomb potential. 

The time-independent Green's function GE (r, r'), for a 
given energy E, satisfies the equation 

(H - E)GE(r,r') = 83 (r - r') , (13) 

where the Hamiltonian H is written as 

H = p2/2 + V(r,(J) . (14) 

Since V(r,(J) is independent of ¢J, one may expand 
GE(r,r') as 

00 

GE(r,r') = L 
m= - 00 

exp{im(¢J - ¢J')} G (f;- .f;-' ') 
21T Em ~,1],~,1] , 

(l5) 

so Eq. (13) becomes 

(Hm - E) GEm (5,1];5 ',1]') 

= 8(5 - 5')8(1] - 1]')/51](5 2 + 1]2) , (16) 

where 
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Henceforth, for convenience, we take M to be positive. It 
may be verified that the operators, 

1 ( a2 
1 a M2) 

T1(s) = - 4" as 2 +7 as - ? ' (19a) 

i (a ) T 2 (s) = - - 5-+ 1 , 
2 as (19b) 

(19c) 

obey the commutation relations of the so (2,1) Lie algebra as 
given in Eqs. (2a)-(2c). Using similar operators T;(1]) as 
defined for T; (5) above, one may rewrite Eq. (16) as 

[2(T1 (5) + Tl (1]» + k 2(T3 (s) + T3 ( 1]» - a2y] 

X GEm (5,1];5 ',1]') 

= 8(5 - 5')8(1] - 1]')/5'1]' , (20) 

(21) 

Next, using the Schwinger representation,5 we can write 
GEm (5,1];5 ' 1]') in the form, 

GEm (5,1];5',1]') 

= _i_ i oo 
ds exp{2isa2y} 

5'1]' 0 

xexp{ - is[2T1 (5) + k 2T 3 (s) ]}8(s - 5') 

X exp{is[2T1 (1]) + k 2T3 ( 1]) ]}8( 1] - 1]') . (22) 

Due to the symmetry in 5, 1] we consider only 

exp{ - is[2T1 + k 2T 3 ]}8(s - 5') , 

whereT; stand for T; (5). The operatorT3 is realized here as 
52/2. The form of T 2' given in Eq. (19b), gives 

exp{ - ib T2} 1(5) = exp{ - b /2} 1(5 exp{ - b /2}) . 

(23) 

Using a variant of a technique of Mil'shtein and Strak
hovenko,6 one may find the effect of exp{ - ieT I}' on a func
tion 1(5), which posses the inverse Laplace transform: 

1(5) = ~J;oo dO' F(O')exp{ O'
S2

} SM, (24) 
2m -;00 2 

where the usual transformation is given by 

F(O') = i oo 
ds/(s) exp { - ;S2} Sl-M. (25) 

We note first that 

TlSM = O. (26) 

Using Eqs. (6), (7), (19), (23), and (24) we get 
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exp{ - icT1}exp{ut 2/2} t M 

= t M exp{ut 2/(2 - iuc)} . 
(1 - iucl2) 1 + M 

(27) 

Substituting it in Eq. (24) and using Eq. (25), we arrive at 

exp{ - icT1} J(t) 

= (00 x dxJ(x) (.£)M ~ 
Jo X 211'1 

X fiOO du exp{ - ux
2
/2 + ut

2
/(2 - iuc)} . (28) 

-ioo (1-iucI2)I+M 

Expanding the term with t 2 in the exponential, one can 
evaluate the integral in du, by residue calculus, getting 

exp{ - icT J J(t) 

= _ ~ Loo x dxJ(x)exP{i (t
2

; x
2

) } 

XJ M (2 t;) exp{ - i1rM}, (29) 

where J M (z) is the Bessel function 9 of order M. Making 
J(t) = 8(t - t'), Eqs. (3), (16), (21), and (27) give 

exp{ - is[2TI + k 2T 3 ]}8(t - t') 

ikt' {i(t
2 + t'2)} = - --exp --'.::::-'----='----'-

sin ks c 

kt't X J M -.-- exp{ - i1TM} , 
smks 

where we have used the relations 

exp{ - b 12}/c = k 12 sin ks 

and 

exp{ - b} - ac/2 = 1 , 

(30) 

(31) 

(32) 

which follow from Eqs. (5a)-(5c). Going back to Eq. (20), 
we get 

GEm (t,l1;t',rJ') 

= _ i (00 ds k 2 exp{2isify} 
Jo sin2 ks 

Xexp{(ik 12) (t 2 + 112 + t,2 + l1'2)cot ks} 

XJM(kt't Isin ks) JM(kl1'l1/sin ks) 

X exp{ - 2i1TM} . (33) 

This result agrees, up to a phase factor, with that of the 
path integral calculation of Chetouani et al.4 Following their 
subsequent manipulations of this result, one can deduce the 
bound state energy spectrum 

EN = - ru4/2N2, (34) 

where 

(35) 

and n I' n2 are integers. The wave functions 'I' n,.n,.m (t, 11,l/J) 
may be similarly found. 

IV. COHERENT STATES 

1953 

It is convenient to now use the basis 

Ko = TI + T3/2 , 

K 1 = T 1 - T 312 , 

J. Math. Phys., Vol. 31, No.8, August 1990 

(36a) 

(36b) 

(36c) 

and put K± = KI ± iK2• Then Eqs. (2a)-(2c) lead to 

[Ko,K ± ] = ± K ± ' 

[K+,K_] = - 2Ko . 

(37a) 

(37b) 

The Casimir operator C, written in the representation 
given by Eqs. (19a)-( 19c) is 

C=Ko2-KI2_K/= (M 2 -1)/4. (38) 

Consider the unitary irreducible representation 
:D + [ (M + 1) 12] of so (2, 1) Lie algebra. 10 The basis states 
can be chosen to be Ip,M), such that 

Kolp,M) = (p + M) Ip,M) (p = 0,1,2 ... ) (39) 

and 

(Ko2 _ K/ _ K/) Ip,M) = M2 - 1 Ip,M) . 
4 

We define the Perelomov7 coherent states by 

IA-,M) = exp{aK+ - a*K_}IO,M), 

where 

A- = - (allal )tanhlal . 

Then 

IA-,M) = (1-1A-1 2)(M+I)/2 

X i (r(p + 2k) )1I2A- Plp,M) , 
p=o p!r(2k) 

with 

(A-,M IA- ',M) = [(1 - 1A-12)( 1 - IA- '12)] (M + 1)/2 

(40) 

(41) 

(42) 

(43) 

X (1 - A- *A-') - (M+ I) (44) 

and the resolution of unity is given by 

1 = f dJLM(A-) IA-,M) (A-,M I , 

where 

dJLM(A-) = M d 2A- 11T(l - 1A-12)2 . 

(45) 

(46) 

One may introduce physical coherent states IA-,M), by a 
pseudo-rotation related to the parameter 0: 

-----IA-,M) = exp{iOK2}1A-,M) , (47) 

which still obey Eqs. (44) and (45), since K2 is Hermitian. 
The physical coherent states relevant for the Hartmann 

potential are 

rAl.A.2,M) = f:4M) ® 1:t:M) , (48) 

where 1::r::M), l:t~) are the physical coherent states asso
ciated with the representations given by Ti(t) and T i (l1), 
respectively. 

We consider now Eq. (22) in operator form: 

GEm = i Loo ds exp{2isyif} 

Xexp{ - is[2TI (t) + k 2T 3(t)]} 

xexp{ - is[2T1(11) + k 2T 3 (11)]} (49) 

and the matrix elements 
~ ", ~ 

PEm (A-1.A.2;A.;,A-;) = (A I.A.2,M I GEm IA;.A. ;,M) . (50) 
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Next we calculate 

exp{ - iOT2 }(2TI + k 2T3)exp{iOT2} 

= eO(2T I + k 2 exp{ - 20}T 3) 

= 2kKo, 

with the choice eO = k. Thus 

(51) 

PEm (A I ,A2;A ;,A 2) = i 1"0 ds exp{2is[ ya2 - k(M + 1)]} 

PEm (A I ,A2;A ;,A 2) 

= i LX> ds exp{2isya2} 

X (A I ,A2,M lexp{ - 2iksKo(s)} 

xexp{ - 2iksKo(7J)}IA;,A 2,M) . 

Using Eq. (44), we rewrite Eq. (52) as 

(52) 

X [ (l-IA; 12)(l-IAI12)(l-IA212)(l-IA212) ](M+I)/2, 

(1 - A;A T exp{ - 2iks})2(1 - A 2A T exp{ - 2iks})2 
(53) 

which leads to the Green's function for the Hartmann potential over the so(2,1) ®so(2,l) coherent states. To find the 
spectrum of this system, we may take the trace of the Green's function: 

I Tr PEm (A I,A2;A ;,A 2) = i I (00 ds exp{2is[ ya2 - k(M + 1)]} 
m mJo 

Substituting Eq. (46) in Eq. (54) and performing the inte
grations, we arrive at 

I TrpEm(A ;,A 2;A I ,A2) 
m 

= - I 1 , (55) 
m,n"n, 2[ya2 - k(n l + n2 + M + 1)] 

which has poles given by Eq. (34), as was expected. 

v. CONCLUSIONS 

In this paper we have calculated the Green's function 
and the bound state spectrum for the Hartmann potential by 
using the BCH formulas for the exponentials of the genera
tors of the so (2,1) Lie algebra. We have also calculated the 
Green's function in the so(2, 1) ® so(2, 1) coherent state ba
sis and derived equivalent results. 

In connection with the method we have used, we make 
the following comments. 

( 1) The case q = 0 corresponds to the Coulomb poten
tial and then M = m = integer. In that case, one can use 
Grafs addition theorem II to deduce the familiar form of the 
Coulomb Green's function in spherical polar coordinates. 6 

(2) In spherical polar coordinates one can use separa
tion of variables and a generalization of spherical harmonics 
YAm with A nonintegral. Then the radial part of the Green's 
function can be calculated using the same technique as 
Mil'shtein and Strakhovenko.6 

( 3) It is known that by change of variables one can re
late the Green's functions for the Coulomb, harmonic oscil
lator, and one-dimensional Morse potentials. 12 These coor-
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dinate transformations can be applied to the case we have 
considered to generate Green's functions for complicated 
noncentral potentials which, however, do not seem to have 
physical significance. 

(4) Guha and Mukherjee l3 have considered a some
what more general noncentral potential than the Hartmann 
one. Our technique can still be used to derive the Green's 
function for the case they considered. 
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of the Lennard-Jones type 
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For a broad class ofthe strongly singular potentials VCr), which are defined as superpositions 
of separate power-law components, the general solution of the corresponding Schrodinger 
differential equation is constructed as an analog of Mathieu functions. The analogy is 
supported by the use of the (generalized) continued fractions. The questions of convergence 
are analyzed in detail. 

I. INTRODUCTION 

In accord with Newton,1 singular potentials have re
ceived a considerable amount of attention as a methodical 
laboratory in high-energy physics. At the same time, the 
strongly singular repulsive core and Schrodinger equations 

d 2 

- dr2 t/!(r) + (g2qr2q+g2q_lr2q-1 + ... +g_ 2p r- 2p ) 

X t/!(r) = 0, g _ 2p > 0, P > 1, (1.1) 

also find applications in the low-energy phenomenology. In 
particular, the Lennard-Jones forces [say, with q = 0 and 
p = 6 in (1.1)] play an important role in the scattering of 
molecules. 2 

In its simplest nontrivial special case, our Eq. (1.1) 
(with q = 0, p = 2, and with the zero odd couplings g _ 1 and 
gl) degenerates to the exactly solvable Mathieu differential 
equation. 3 In our preceding papers,4.5 slight generalizations 
of the Mathieu special functions have been introduced and 
shown to lead to the similar "exact" solvability of ( 1.1 ) even 
for q = 1 and p = 2 and 3 or, alternatively, in the q = 0 and 
p = 2 case with the arbitrary nonzero g _ 1 and gl. In the 
present paper, we intend to extend these constructions and 
results to all the integers p and q and arbitrary couplings. In 
essence, we shall introduce a further generalization of Math
ieu functions and describe some of its properties, especially 
in terms of the (generalized) convergent continued frac
tions. 

In Sec. II, we shall start from an appropriate Laurent
series ansatz, the form of which is inspired by its above
mentioned special cases of Refs. 4 and 5. The basic problem 
of convergence of the Laurent series will be clarified in Sec. 
III. The underlying recurrences will then be studied in more 
detail. First of all, their maximal simplification and approxi
mative finite-matrix reinterpretation will be described in 
Sec. IV. From an alternative point of view, Sec. V refines 
these results and converts them into our final, generalized
continued-fraction quasinonnumerical formulas. Their 
further rearrangement (leading to the significant accelera
tion of their convergence) is finally added in the Appendix, 
and Sec. VI gives a short summary. 

II. THE GENERALIZED MATHIEU ANSATZ ",(r,y) 

In the manner already used in Refs. 4 and 5, we may try 
to define all the possible solutions of our differential Schro-

dinger equation (1.1) by the Laurent-series formula or an
satz: 

00 

t/!(r) = t/!(r,r) = x(r) L hnr" + Y, (2.1 ) 
n= - 00 

with a suitable Floquet6 parameter r and with some auxil
iary function 

( 
p-I q+l) 

x(r) =exp - j~1 rj+lr-j/j- i~1 f3i,-i/i . (2.2) 

The latter function depends on some p + q independent pa
rameters rj + 1 and f3i in general. 

An insertion of (2.2) and (2.1) in (1.1) converts our 
differential Schrodinger equation into an infinite set of the 
linear necessary conditions: 

2p 
L Hnmhn+m=O, n= ... ,-I,O,I,.... (2.3) 

m= -2q 

Here, each row of the doubly infinite matrix H contains 
q + P abbreviations or redefined couplings: 

and 

Hn. - q = - Gq = f3of3q + f3lf3q- 1 + ... +f3qf3o - gq, 

Hn. _q_1 = - Gq+ 1 = f3lf3q + f32f3q-1 

+ ... +flqf3l -gq+I' 

(2.4) 

H n.p+2 = -G_(P+2) =r2rp +r3rp-1 

+ ... +rpr2 -g-(p+2)' 

H n.2p = -G- 2p =rpr p -g-2p. (2.5) 

The further matrix elements are given by the formulas 

H n.m = -G_ m + (rm-I -f3l_m)(2n+2r+ m + 1), 

m= -q+l,-q+2, ... ,p,p+l; m-:j:.2, (2.6) 

which are linear in n. We must set rj = Oforj < 20rj>p, and 
f3i = 0 for i < 0 or i> q. The abbreviation 

p q 

-G_ m = L rjrm-j -2 L rm+kf3k 
j=2 k=O 

q 

+ L flif3 - m - i - g - m (2.7) 
;=0 
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is also introduced here. The last matrix element becomes 
quadratic in n, 

Hn2 = (n + Y + I)(n + Y + 2) - g _ 2 (2.8) 

and, therefore, dominates the matrix H in the n ~ I asympto
tic region. 

In its fully unrestricted form, our Eq. (2.3) is a differ
ence equation 7 of the order 2p + 2q. Of course, its solutions 
still depend on the Floquet parameter y so that, in accord 
with the general theory of differential equations,6 the gen
eral solutions of our radial Schrodinger equation (1.1) read 

(2.9) 

and will still admit an imposition of the arbitrary boundary 
conditions. 

In the above context, it is interesting to recall some stud
ies of the p < I regular potentials8

-
JO where the difference (or 

algebraic reformulation of) Schrodinger equation of the type 
(2.3) may even happen to guarantee the proper bound-state 
asymptotics of "p(r,y) [at a single particular value of yin the 
present language, i.e., say, with Cb = ° in (2.9)]. In contrast 
to this, the physical states remain the genuine two-term su
perpositions (2.9) for the singular forces withp> I in gen
eral. Their p + q = 2 numerical construction4 and the 
p + q> 2 examples of exceptions5, II may be found else
where. 

III. THE GUARANTEE OF CONVERGENCE OF THE 
LAURENT SERIES 

In the spirit of our preceding papers,4,5,11 we may re
strict the complete freedom in our choice of parameters in 
(2.2) and demand that the exponential factor x(r) also re
produces the leading-order WKB asymptotics: 

f3q =.Ji;; >0, YP =~g-2P >0. (3.1) 

This makes the quasicouplings G2q and G _ 2p equal to zero, 
and leads to the new specification of the first nonzero values 
Gs + p _ I and G _ p _ 1 _ I in the new form of our difference 
Schrodinger equation: 

p+I+1 
I Hnmhn+m=O, n= ... ,-1,0,1, .... (3.2) 

m= -q-s+ I 

of the (lower) order p + q + t + s with O<.s<.q and 
O<.t<.p - 2. 

In the I n I ~ I asymptotic region, our understanding of 
Eq. (3.2) may be improved via the simple assumption 

(3.3 ) 

This specifies the possible quotients p from the algebraic 
equation 

-Gs+9- 1 + ... + [-2f3qN + O(l)]pS 

+ ... + [N 2 + O(N)] 

X ps+9+ 1+ ... + [2YpN + O(l)]ps+9+P 

+ ... + ( - G _ p _ 1 _ I )pS + q + p + 1 = 0, 

INI~I 

as its p + q + t + s independent (complex) roots: 

pzp~i) = (- Gs+q_1/2f3qN)IIS, i= 1,2, ... ,s, 
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(3.4 ) 

PZPb j
) = (2f3qIN)II(q+l), j= 1,2, ... ,q+ I, 

pZp~k) = (2YpN IG_ p_ I_ 1 )111, k = 1,2, ... ,t, 
pzp~/) = (-N12Yp)II(P-I), 1= 1,2, ... ,p-1. (3.5) 

The separate quotients (3.5) have to be confronted with 
the (pair of) standard criteria of non divergence of the Laur
ent series (2.1), 

IhN+llhNI<.I, N~I, Ih_Mlh_M+II<.I, M~l. (3.6) 

These inequalities contradict some offormulas (3.5). Vice 
versa, all the "admissible" asymptotics may be given by the 
explicit formulas 

S q+1 
h -h(+) = ~ c(+)p(i)m+ ~ d(+)p(n m (3.7) 

N+m- N+m ~ I a L J b , 
;= I j= I 

and 
1 p-I 

h -h(-) = ~ c(-)/p(k)m+ ~ d(-)/p(/)m -M-m- -M-m L.J k c L.J 1 d' 
k= I 1= I 

(3.8) 

m>O, M~l. 

They and only they guarantee the convergence of (2.1) for 
all r E(O, 00). 

IV. THE MATRIX SCHRODINGER EQUATION 

Our doubly infinite Laurent-series ansatz (2.1) makes 
sense if and only if we complement it by the convergence 
conditions (3.7) and (3.8). They must also be added to our 
difference Schrodinger equation as boundary conditions. In 
the recurrent manner, the two sets h~+), h~~)I"" and 
h ~-,J, h ~-,J + I , ... of the "Jost" solutions may be then de
fined. The "matching" h ~ + ) = h ~ - ) of these two sequences 
at some s + t + p + q values of nE ( - M, N) has to fix all the 
s + t + p + q - I free (unnormalized) parameters ci ± ) 

and d l as well as the pair of Floquet energy-dependent 
parameters Ya and Yb in (2.9). 

A. The WKB choice of X(r) 

In the purely numerical context, we may mention that 
for s > ° or t > 0, the above recurrent use of (3.2) may lead to 
a slight loss of precision in a way which has thoroughly been 
discussed in Ref. 12. This phenomenon reflects an asympto
tic dominance of ci ± ),s, causing a step-by-step loss of infor
mation about the initial "subdominant" coefficients d J ± ). 

Hence, in what follows, we shall prefer the "extreme" WKB 
choice of x(r) with t = s = ° in (3.2). Such a choice will 
simply eliminate all the ci ± )'s from our considerations. 

From the constructive point of view, the requirement 
t = s = 0 is equivalent to the vanishing of all the quasicou
plings Gin (2.4) and (2.5). This implies the trivial recurrent 
construction of the WKB values of the following param
eters: 

f3q =.,fi;;, f3q - I = g2q - 1/2f3q, 

f30 = (gq -f3If3q_1 -'" -f3q-If31 )/2f3q, 

Yp =~g-2P' Yp-I =g_2p+1/2yp, 
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Y2 = (g-p-2 -Y3Yp-1 - .,. -YP _IY3)/2yp, (4.1) 

and leads to a unique, completely WKB specification of ex
ponentials (2.2). 

The recurrent simplification and stability of the Jost so
lutions is an unexpected merit of the WKB choice of param
eters ( 4.1 ). Another one lies in a partial preservation of anal
ogy with the regular forces 10 -we may reduce the n> 1 and 
n <( - 1 asymptotical difference Schrodinger equation (3.4) 
to its respective two-term forms: 

2PqNh Jv:;'~+j = N 2hJv:;')S+q+j+ I + corrections, 

N> 1, j = O,I, ... ,q 
and 

(4.2a) 

2YpMh ~-.J+s+ q+p+ k = M 2h ~-.J+s+ q+ k+ I + corrections 

M> I, k = O,I, ... ,p - 2. (4.2b) 

This induces a natural reparametrization of the WKB spe
cial case of (3.7), 

q+1 

hJv+"')m =hN - m L dJ+)/Pbj)m, m=O,I, ... (4.3a) 
j= I 

and (3.8), 
p-I 

h (-) - h- ~ d,( - )PdU)m, 0 I -M+m - -M+m ~ m= , , .... 
i=l 

(4.3b) 

For m<{min (M,N), the residual m dependence of the 
"barred" h 's remains weak. 

B. The partitioning and truncation of recurrences 

In the in i > I asymptotic domain of indices, the decou
pled two-term asymptotic character of our recurrences 
(4.2) may most easily be visualized via the following parti
tioning of the Jost solutions: 

, Zf3-1 = 

and 

h<+) 
N-2q-1 

h(+) 
N-q-I 

Z_a= , Z_a+l= 

, ... 

h ~-.J+P-2 h ~-.J+2p-3 

( 4.4a) 

(4.4b) 

In such a notation, we may rewrite (4.2a) as a recurrence for 
vectors, 

B f3 Z f3 - I = Af3Zf3 + corrections, (4.5a) 

with the diagonally dominated (q + I )-dimensional matrix 
coefficients A and B. Similarly, an introduction of the 
(p - I )-dimensionallower-case matrices a and b enables us 
to rewrite (4.2b) in the analogous form, 

b _aZ _ a+ I = a _ aZ _ a + corrections. (4.5b) 

In the partitioned notation, our boundary conditions 
(3.7) and (3.8) only reflect our freedom of choosing d's, i.e., 
an arbitrary initial pair of vectors zf3 #0 and Z _ a #0 as a 
normalization. This is equivalent to the truncation of recur-
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rences (4.2a), (4.2b)-they may now be treated as the re
spective matrix-looking relations: 

- B f3 - 2 A f3 - 2 
C(1) C(2) 

Zf3-2 13-2 13-2 
=0 

-Bf3 - 1 A f3 - 1 
c(1) 

Zf3-1 13-1 

-Bf3 Af3 Zf3 
(4.6a) 

and 

a -a -b -a Z -a 
e(1) -a+1 a -a+1 -b -a+l Z -a+1 =0. 

(4.6b) 

Moreover, an incorporation of the above-mentioned match
ing conditions leads us precisely to the matching of the two 
partitioned sets (4.6) into a single (finite-dimensional!) ma
trix equation. Its detailed analysis will be given in the next 
section. 

v. THE GENERALIZED CONTINUED FRACTIONS 

A. The factorization of the Laurent coefficients 

For a simplification of the forthcoming discussion, let us 
replace the Jost solutions hk by their smooth representants 
hk as introduced in Eq. (4.3) above. With the bars omitted, 
our new partitioned-matrix Schrodinger equation will still 
preserve its old form (4.6). As an important consequence of 
the renormalization, the corrections Cor e (which are not 
necessarily diagonally dominated) will remain manifestly 
small in comparison with the renormalized, diagonally 
dominated submatrices A and B or a and b: 

As=O(l)=Bs' a_s=O(l)=b_ s' 

is i;::;;M, N>I, 
C~i) = O( lIN i + lI(q+ I), 

e,!~ = O( lIMj+ lI(p- I», 

i = 1,2, ... ,S, j = 1,2, ... ,T, 

S= I + [(p-2)/(q+ I)], T= I + [q/(p-2)]. 
(5.1 ) 

Obviously, we may only get S> I (and T = I) for 
p - I> q + lor, alternatively, T> I (and S = I) for 
q+l>p-l. 

As a consequence of the renormalization and (5.1 ), the 
leading-order coefficients in the two-term recurrences (4.5) 
remain diagonal. Hence, we may postulate 

Zs = YsYs-I"'Y,/+IZ,/, S>7] 
and 

(5.2a) 

Z-S=Y-SY-S+I"'Y-,/-I Z-,/, -S< -7], 
(5.2b) 

and conclude that the factors Yand yare also asymptotically 
diagonal. Thus the simplicity of our scalar results4

•
5 survives 

transition to the present matrix case. 
Without any loss of clarity, we may recall now the 

n -- - n symmetry of our formulas (cf. the Appendix for 
details) and restrict our attention to Eq. (5.2a), i.e., to the 
capital-letter (lower) comer of the banded matrix H in 
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(4.6a). For the sake of generality, we shall assume that S> 1 
and notice that relation ( 4.6a) may in fact be read as a defini
tion of the auxiliary quantities Ys' In this sense, it is equiva
lent to the nonlinear relations 

Ys = [(As + itl Cti)Ys+iYs+ i - I'" Ys+ I) - I]Bs' 

(5.3 ) 
s = p,p - 1,/3 - 2, .... 

Of course, their truncation 
Yp + I = Yp + 2 = ... =0 (5.4) 

is equivalent to the truncation of H. In the limit N - 00, the 
combined prescription (5.3) + (5.4) may now be interpret
ed as a new generalization of the standard I3 analytic contin
ued fractions. 

Due to the validity of the asymptotic estimates (5.1), 
the generalized continued fractions (GCF) Ys may be re
placed by their very good zero-order approximants 

Ys 'ZA s- IBs (5.5) 

in the N). 1 asymptotic region. An insertion of these almost 
diagonal matrices in the explicit product of matrices (5.2a) 
degenerates to the closed (scalar) gamma-function approxi
mation formulas of Ref. 4 and 5 for all the simplest or "next
to-solvable" forces in ( 1.1). If needed, the higher-order cor
rections to (5.5) may be generated in the manner described 
in more detail in the Appendix below. 

Our above derivation of the possible finite-dimensional 
truncation of the matrix H in (4.6) implies thatthe values of 
the Floquet parameters r are not arbitrary. At each energy 
E, we may search for them via the standard determinantal 
condition of solvability: 

C(2) -I c(I) -I a -I -b -I 
A(2) 
Co 

A(I) 
Co 00 

A 

-BI 

det 
C(I) 

P-I 

Ap 

=0. 

(5.6) 

In the extensive p = 2 and p = 3 tests as presented in our 
preceding papers4,5 for the q = 1 bound states, Eq. (5.6) has 
been used to fix the Floquet exponents ra,b (E) numerically. 
Of course, the related determination of the physical value of 
the energy Ewas performed in the standard manner, via the 
requirement of vanishing of "'(r) at the boundaries r-O and 
r- 00. The precision was verified by a comparison with the 
Runge-Kutta method. 14 

The rate of convergence of the above-mentioned nu
merical results proved satisfactory. The main reason may be 
seen in the continued fractional character of the algorithms. 
In the present generalizations, the numerical tests become 
redundant-we must only succeed in extending the recur
rent, GCF approach to the secular or Hill l5 determinants of 
the type (5,6). 

B. The GCF factorization of the Hill determinants 

Without any significant loss of generality, let us pick up 
now T= 2 and S= 1 in our determinant detH in (5.6). 
With any such choice we have only to match the respective 
(p - 1 )-dimensional diagonal submatrices a _ a"'" a _ I 
and their (q + I)-dimensional counterpartsA I ,A2X'" Ap at 
the zeroth, (L XL)-dimensionalblockoo =ao =Ao =Ao. 
Thus, provided that we choose the zeroth dimension L suffi
ciently large, L,max(p - 1, q + 1), we may denote 

(5.7) 

-Bp_I Ap_I Cp _ I 
- lJp Ap 

The shapes and dimensions of the new five ( = T + S + 2) "capped" submatrices follow already from our specification of the 
. diagonal blocks. 

In order to preserve an analogy with the continued-fractional treatment of the Mathieu functions l5 and their recent 
generalizations,4,5 let us introduce the pair of auxiliary matrices: 

1I1_a 
1I1-a+1 

111_2 

H(l) = (5.8) 

CI 
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Their partitioned structure copies that of H. We shall postu
late that our matrix H equals the product 

(5.10) 

This relation has to become an algebraic identity. 
In the first step in the indicated direction, we define 

FfJ + I = 0 and arrive merely at the definition of the matrix 
continued fractions, 

Fk = 1/(Ak + CkFk+ IBk+ I)' k = p,p - 1, ... ,1. 
(5.11 ) 

This concept appears often in the literature. 16 
In the next step, we complement (5.11) by its T = 2 

counterpart: 

!-m = 1/(a_ m +g-ml-m-Ib- m- I ), 

m = a,a - 1, ... ,1, ( 5.12) 

with the initial choice of matrices! _ (a + I) =! _ (a + 2) = 0 
and with the abbreviation 

g-n =c~)n +c~)J_n_2b_n_2' 

n = a - l,a - 2, ... ,1. (5.13 ) 

We may immediately notice a close similarity of the new 
formulas to our preceding GCF construction-in general, 
the 1> 1 quantities!andyor the S;;;. 1 quantities Fand Ymay 
be shown to differ just by an inessential matrix multiplica
tion factor. 

In the final step, our recurrences have to be comple
mented by the missing capped definitions 

go =c~\) +C~2)!_2b_2' 
(5.14 ) 

Our construction becomes complete. In a full analogy 
with the analytic treatment of the Mathieu and Hill equa
tions,6.15 it is based on an assumption of existence of the 
underlying continued fractions. In particular, this means a 
feasibility of all the inversions in Eqs. (5.11) and (5.12): In 
the present notation, all the subdeterminants det 1/!k and 
det 1/ Fk of H (I) with nonzero subscripts k must differ from 
zero. Vice versa, all the zeros of our secular determinant 
detH=detH(I)'detH(2)=detH(I) will then coincide 
with zeros of the transcendental GCF equation det 1/10 = 0, 
i.e., our condition (5.6) may be given the explicit GCF form: 

d ( A A(I),! bA 
A(2),! b I" bA 

et ao + Co _ I - I + Co _ 2 - 2J - I - I 

+ CoFIBI) = O. (5.15) 
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(5.9) 

This is our final formula~nce again, we would like to em
phasize its numerical efficiency as verified, for its first two 
nontrivial special cases, in Refs. 4 and 5. 

VI. CONCLUDING REMARKS 

( 1) A number of interactions between composite sys
tems (ranging from nucleons to complex molecules) may be 
described by a phenomenological or effective central poten
tial V(r) with a repulsive core: 

D 

V(r) = L amr- mxz. (6.1 ) 
m=1 

Via the Fivel transformation l7 r-+rons
" the corresponding 

differential Schrodinger equation may often be given our 
"canonical" form ( 1.1 ). This extends the applicability of our 
present results-in all the modified (6.1) (and some other) 
cases, one of the parameters g remains proportional to the 
energy (E::::: - go, a> - 2), the value of g _ 2 may incorpo
rate the angular momentum 1= O,I, ... [i.e., 
g _ 2 :::::g'_ 2 + I (l + 1)], etc. The values of integers p and q 
depend ll on the detailed form of V(r): In the most frequent
ly used Lennard-Jones model with Z = 2 and D = 6, we 
have q = 0 and p = 6. 

(2) The Lennard-Jones force exemplifies the multiplic
ities T = 1 and S = 5 of corrections in our matrix H. In the 
upper corner of H (I), the auxiliary GCF quantities! degen
erate again to the above-mentioned matrix fractions. At the 
same time, their "extended" S> 1 counterparts F remain 
scalars: Such a generalization has already been studied, e.g., 
in Ref. 8. Thus the genuine "matrix" and "extended" new 
type of GCFs will only be met for the values p and q that 
satisfy the inequality q > P - 2> 0 or, alternatively, 
p - 2 > q> O. After the Fivel transformation, the corre
sponding simplest "generalized Lennard-Jones" examples 
(6.1) of this type will be characterized by the parameters 
D= lOandZ= 1/20rZ= 1/3. 

(3) We may notice that a direct start of our recurrences 
(3.2) from the non-GCF and "more natural" trivial initial 
values 

hn =O,hm =0, n>No~l, m< -Mo< -1, (6.2) 

would lead immediately to severe oscillations caused by the 
"one-term" character of the first few iterations of (4.2). 
Similar observations have already been made and tested in 
the various slightly different contexts. IS Always, a smooth 
truncation was able to weaken or even remove the oscilla
tions. In this spirit, the present GCF quantities offer one of 
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the new suitable computational means: In fact. they just 
combine the "matrix" and "extended" idea of generalization 
of the continued fractions. The numerical consequences of 
such an idea were already analyzed in detail. In particular. 
an efficiency of their asymptotic acceleration of convergence 
[which is rather similar to our present technique and/or 
formula (5.5)] has been numerically illustrated in Ref. 19 
and in the first item of Ref. 8. respectively. 

( 4) The smooth shape of our forces implies an easy nu
merical "brute-force" tractability of the related bound-state 
or scattering boundary conditions. Indeed. the threshold 
and asymptotic physical (WKB) logarithmic derivatives 

(6.3) 

may be matched to our generalized Mathieu functions (2.6) 
at any suitable pair of coordinates r = ro < I and r = roo ).1 
near the boundaries (end points). In a non-numerical set
ting. we may see our factor x(r). (2.2). as obtained by an 
integration of this "simplest possible" formula (6.3). The 
Floquet factor r appears then naturally as an integration 
constant. 

(5) An interesting formal feature of the strongly singu
lar interactions emerges also in connection with their so
called quasiexact solvability (i.e .• with an existence of the 
particular elementary solutions at certain particular values 
of the couplings) as discovered recently in some regular (or. 
more precisely. weakly singular. p< 1) systems20 and exist
ing also in some I I strongly singular equations (1.1). In the 
latter p>2 cases. however. a limiting transition to the infinite 
series fails to provide exact solutions in gene~al. In the frame
work of the so-called Hill-determinant method (see. e.g .• 
Ref. 21 or the papers listed in Ref. 9). such an asymmetry 
between the regular and singular interactions is a little bit 
puzzling. 

APPENDIX: AN ACCELERATION OF CONVERGENCE 

For the sake of simplicity. let us contemplate the change 
of variables: 17 

r-r' = IIr. t/!(r)-t//(r') = t/!(r)/r. (AI) 

and notice that it converts (1.1) into the "primed" form of 
the same equation with the modified parameters: 

p' - 1 = q + I. q' + 1 = p - 1. 

g'-2P' =g2q' g'-2P'+1 =g2q-I.···. g'2q' =g-2p' 
(A2) 

Obviously. such a formal n - - n symmetry enables us to 
restrict our attention to. say. capital-letter quantities. With
out any loss of clarity. we may also consider our recurrences 
[say. Eq. (4.5a)] in their first nontrivial S = 2 form: 

B 5Z 5 - 1 =A5Z5 +C~I)Z5+1 +C~2)Z5+2' (A3) 

A priori. the above-made asymptotic estimates (4.3) in
dicate a slow convergence of GCFs or recurrences (A3 )-a 
shortcoming that has already been noticed in the older p < 2 
studies.8 The reason is obvious; the relevant measure of 
smallness (in fact. the parameter Ip I = N - 1/( q + I) ) only be
comes noticeably small for the extremely large dimensions 
N. Here, we intend to show that the related scalar techniques 
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of the suitable acceleration of convergence (cf. Ref. 5) may 
easily be extended to the present GCF case. 

In general, our idea lies in a systematic and exact elimi
nation of the dominant corrections from the two-term rela
tions (4.5). Thus, in particular. we must eliminate the com
ponents Z5 + I from (A3). After a shift of subscripts. 

B5+ IZ5 =A5+ IZ5+ 1 + Cf~ IZ5+2 + Cf~ IZ5+3' 
(A4) 

in the latter formula (this is quite easy) we get 

B f1Z5-1 =A ~21Z5 + C~21(2)Z5+2 + C~21(3)Z5+3' 
(AS) 

with the superscripted "second-order" matrix coefficients: 

B [21-B A[21-A +C(2)A -I B C[21(1)-O 
5 - 5' 5 - 5 5 5+ 1 5+ I' 5 -, 

C[21(2)-C(2)_C(1)A -I CO) 
5 - 5 5 5+ 1 s+1> 

C ~2](3) = - C ~I)A 5-+\ C ~2~ I' (A6) 

In principle, the elimination of the dominant correc
tions (or of C ~k](k - I) may be iterated: For k = 2, the 
elimination of Zs + 2 must be made in two steps. First. we 
reintroduce temporarily Z5+ I by the shift of 5 in (A4). 

B 5+ 2Z 5+ 1 =A5+ 2Z 5+ 2 + C~I~2Z5+3 + C~2~2Z5+4 
(A7) 

and, second. we eliminate it again via the shifted formula 
(AS), 

B [21 Z A [21 Z + C [2](2)Z + C [2](3)Z 
5+1 5= 5+ 1 5+ 1 5+ 1 5+ 3 5+ 1 s+4' 

(A8) 

In the resulting prescription 

B ~3IZs_1 =A ~31Z5 + C~31(3)Zs+3 + C~3](4)Z5+4' 
(A9) 

as well as in all its further (k th) generalizations, the matrices 
A and C may again be given an explicit form similar to (A6). 

In the practical computations, linear formulas of the 
type (A3) or (A9) may easily be rearranged as the GCF 
definitions [cf. (5.3)]. In general, the k th GCF quantity 
y~k I with S replaced by S [k I = S + k ) converges as liNk 

per iteration. Thus, in particular. the formula, 

Y5 = (A ~kl) -IB ~kl + o(N -k), (AlO) 

may be employed as an improvement of accuracy of our 
k = 1 approximant (5.5). 
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A Lorentzian space-time (M,g), along with an observer field ( = timelike vector field) V, are 
considered. Several theorems are presented that are concerned with the redshift and parallaxes 
in such a model. Here the term "parallaxes" stands for the relative motion of two observers at 
the celestial sphere of a third observer. As an important mathematical tool, the index form 
along a lightlike geodesic is used. 

I. INTRODUCTION 

In an earlier paper I we presented some criteria for a 
space-time (M,g) , with observer field V to be parallax-free in 
the following sense: If any two observers are seen from any 
third observer in the same direction at the celestial sphere 
(i.e., one behind the other) at one instant oftime, then this 
will be the case for all time. In the present paper, some new 
theorems are presented that are concerned with this notion 
of parallaxes and with its relationship to redshift. 

The paper is organized as follows. Mter introducing our 
general assumptions and notations in Sec. II, Sec. III re
minds the reader of the index form along a lightlike geodesic 
and of its main properties. The index form will serve as a 
valuable tool to prove some of the theorems following later 
in the article. Section IV deals with various versions of a 
redshift formula, with special regard to the problems due to 
focusing effects. Section V is devoted to parallaxes. In order 
to obtain more detailed insight into this concept, a slight 
change of terminology in comparison to Ref. 1 is necessary: 
Whereas in the earlier article the property of being parallax
free was assigned to the model (M,g, V) as a whole, in the 
present paper it is assigned to an individual light signal. Fin
ally, Secs. VI and VII present some theorems on redshift and 
parallaxes in models with special symmetry properties of the 
redshift. 

II. GENERAL ASSUMPTIONS AND NOTATIONS 

In all that follows, let (M,g, V) be a space-time with an 
observer field, i.e .. (i) M denotes a four-dimensional COO 
manifold, the topology of which is Hausdorff and second 
countable; (ii) g denotes a COO Lorentzian metric on M, 
where the signature is chosen to be (+ + + -); (iii) V 
denotes a timelike Coo vector field on M satisfying g( V, V) 
= - 1. By assuming the global existence of V, we require 
(M,g) to be time orientable. The integral curves of V are 
interpreted as observers. The normalization condition 
g( V, V) = - 1 ensures that these observers use standard 
clocks (but large parts of the article will be independent of 
this normalization condition). The integral curves of V 
( = observers) will usually be denoted by y,:Y, etc., whereas 
1", i, etc. denote the corresponding tangent fields. 

Let us agree to parametrize light signals ( = lightlike 
geodesics with initial point and endpoint) always aftinely, 
future pointing with respect to V, and such that the param-

eter runs through the interval [0,1]. Every light signal ad
mits exactly one such parametrization. We denote the set of 
all these light signals by .!L': 

if: = {A: [0,11 ..... M IA. is a C 00 map satisfying 

V,t.A. ' = 0, g(A. ',A. ') = 0, g(A. " V) <O}. (2.1) 

The symbol V here and in the following always denotes the 
Levi-Civita connection of g. The vector fields along any 
A. E .!L' will be noted by fll',t: 

fll',t: = {A:[O,I] ..... TM IA is a Coo map with 1T 0 A = A.}, 

(2.2) 

where 1T:TM ..... M denotes the tangent bundle over M. Fur
thermore, we write 

fll'i: = {A E fll',t I g(A. ',A) = O}. (2.3) 

Note that the tangent field A. ' is itself contained in fll'i. For 
any A E fll',t, the covariant derivative with respect to the 
tangent field will be denoted by a prime: 

A '(s) = V,t'(s)A for all s E [0,1]. (2.4) 

III. THE INDEX FORM ALONG LlGHTLIKE GEODESICS 

In this section, we are going to remind the reader of the 
index form along lightlike geodesics and of some of its prop
erties. For details, the reader is referred to Beem and Ehr
lich. 2 

Definition 1: For A. E .!L' the index form 

/,t:fll'i X fll'i ..... R, (A,B) ..... /,t (A,B) 

is defined by 

/,t(A,B):= f (g(A',B') +g(A,R(A.',B,A.'»)lsds, 

with R denoting the curvature tensor of g. 
More generally, the index form is often defined on 

piecewise (I) smooth vector fields. However, it will be suffi
cient for our purposes to have /,t on the smooth vector 
fields fll'i. Integration by parts results in the following rep
resentation of the index form: 

/,t(A,B) =g(A(1),B'(1» -g(A(O),B'(O» 

+ f g(A,R(A. ',B,A.') - B ")Is ds. (3.1) 
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The integral in (3.1 ) vanishes if B happens to be a Jacobi 1 
field (i.e., a vector field satisfying the Jacobi equation V 
R (A. ' ,B). ') = B H). Here / A is a symmetric bilinear form, 
but contrary to the nonlightlike case it has a nontrivial ker
nel since obviously, /A (A. ',.) = O. The most important 
property of/A' which will be used repeatedly below, is giv
en by the following fundamental lemma. 

Lemma 1: Assume A. E .Y to be free of conjugate points. 
Then any A E it"i with A (0) = A (1) = 0 satisfies 
/ A (A,A) = 0 if and only if A is a mUltiple of A. '. 

Whereas the "if" part of this lemma is obvious, the 
proof of the highly nontrivial "only if" part can be found in 
Beem and Ehrlich. 2 

j(h(t)) 

Since / A degenerates on the multiples of A. " it is often 1 (t) 
recommended to factor out this subspace from it" A' The 
following terminology will be used. 

Definition 2: Define an equivalence relation on it" A by 
A - B: '¢:} A - B is a multiple of A. '. An equivalence class 
[A] E it" AI_is called a "Jacobi class" ifit contains a Jacobi FIG. 1. A message,8 from rto r. 
field. 

We conclude this preparatory paragraph by proving a 
simple lemma, which will often be used below. 

Lemma 2: Let Jbe a Jacobi field along any A. E.Y. De
fineafunctionk: [0,1] -+R by k(s): = g(A. '(s),J(s»; then its 
derivative k' = g(A. ',J') is a constant function. 

Proof: Here k H = g(A. ',J H) = g(A. ',R (A. ',J). '» = 0 
as a result of the curvature identity g(X,R ( U, V, Y» 
+ g(Y,R (U, V,x» = O. • 

IV. REDSHIFT 

This section will be concerned with the redshift, under 
which any observer in V is seen by any other observer. We 
begin with a rigorous definition of the redshift function 
which is developed from a purely kinematical consideration. 
The main idea of this consideration dates back to Weyl.3 Let 
us fix two observers rand y belonging to our observer field V 
and let us assume that y receives light signals from r over a 
time. This situation is formalized by the following definition. 

Definition 3: Let r:1 -+M and y:1 -+M be two integral 
curves of V. (Here 1 and i denote some real intervals.) A C 00 

map 

{:1:[0.1] X1-+M, (s,t) ,....{:1(s,t) 

is called a "message" from r to r iff 
(i) {:1(.,t)E.Y for all t E 1, 
(ii) {:1(0,.) = r, 
(iii) there is some diffeomorphism h:1 -+ i such that 

{:1(1,.) = yo h: Here h is called the "message function" of {:1. 
Hence, a message is a lightlike geodesic variation, the 

endpoints of which vary along integral curves of V; see Fig. 
1. For an arbitrary pair (r,y) of integral curves of V, neither 
the existence nor the uniqueness of a message from r to y is 
guaranteed. We shall return to this problem as far as the 
well-definedness of the redshift function is concerned. The 
message function h appearing in (iii) of Definition 3 is neces
sarily a monotonously increasing (!) diffeomorphism. (To 
give a rigorous proof of this fact, apply Lemma 2 to the 
generator J of the variation{:1.) The message function h com-
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pares the reading of irs clock to that of y's, as seen from y. A 
process near the world line of r, which starts at t and ends at 
t + I1t, seems to start at h(t) and end at h(t + I1t) if it is 
observed from y. Therefore, the redshift under which r is 
seen by y is given by 

h '(t) = lim h(t + I1t) - h(t) = emitted frequency. 
~t_O I1t received frequency 

(4.1) 

The transition I1t -+ 0 to the linear approximation is neces
sary since a periodic process near r will be judged as periodic 
from y, too, if and only if h is linear. Stated in different 
words: Our notion of redshift makes sense only for such 
large emitted frequencies that h may be replaced by its linear 
approximation over some number of periods. 

Since the limit I1t -+ 0 has to be taken in (4.1), it is con
venient to tum from the variation {:1 to the corresponding 
variational vector field ( = Jacobi field). In analogy with 
Definition 3, we will call this object an "infinitesimal mes
sage," where the attribute "infinitesimal" refers to the tem
poral duration (and not to the spatial distance). 

Definition 4: Let A. E .Y be any light signal. A vector 
field J E it" A is called an "infinitesimal message" along A. iff 

(i) R(A. ',J). ') =J", 
(ii) g(A. ',J') = 0, 
(iii) J(O) = VA(O) , 

(iv) There is some real number u such that J(1) 
= eU VA( 1) : Here u is called the "redshift" of the infinitesimal 
messageJ. 

In Definition 4 (i) expresses the fact that J describes a 
second geodesic which is infinitesimally close to A.; (ii) en
sures that this geodesic to be lightlike, too, whereas (iii) and 
(iv) express the fact that it interconnects the same two ob
servers as A. does. [Note that the redshift u is defined by 
Definition 4 (iv) in such a way that the frequency ratio ( 4.1 ) 
corresponds to eU

.] 
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The redshift of an infinitesimal message can be ex
pressed by geometric quantities. Although the resulting red
shift formula is well known,4-7 a proof will be presented since 
it is extremely simple and instructive: It is essentially the 
Brill6 proof translated into our notation. 

Theorem 1: Let J be an infinitesimal message along any 
light signal A- E .!f: Then its redshift u is given by 

Proof By assumption, J satisfies g(A- ' ,J') = 0: Integrat
ing this equation over A- results in g(A- '(O),J(O» 
= g(...t , ( 1 ) ,J ( 1 ». This yields the desired equation if the 

boundary values J(O) = V..t(O) and J(1) = e"V..t(I) are in
serted. • 

Please note that the Jacobi field J does not occur in the 
redshift formula given by Theorem 1. This proves the follow
ing corollary. 

Corollary 1: If J I and J2 are two infinitesimal messages 
along one and the same light signal..t, then JI and J2 have the 
same redshifts. 

As a consequence, the redshift may be viewed as a func
tion on the set of all light signals. We use the letter r instead 
of u to denote this function. 

Definition 5: The function r: .!f ..... R defined by 

is called the "redshift function" of (M,g,V). 
Obviously, r(A-) is well defined for all A- E .!f. However, 

the interpretation of r(A-) as redshift on the basis of the fore
going considerations requires the existence of at least one 
infinitesimal message J along A-. (It should be emphasized 
that the problem is in the existence and not the uniqueness of 
a Jacobi field J with the desired properties, contrary to a 
remark made by Herrman,7 p. 11-18.) In order to character
ize the set of pathological light signals, for which this as
sumption is not justified, we introduce the following termin
ology. 

Definition 6: A light signal A- E .!f is called "regular" iff 
there is exactly one infinitesimal message J along A-. Here A- is 
called "singular of the first kind" iff there is more than one 
such J and it is called "singular of the second kind" iff there 
is none at all. 

Hence, r(A-) cannot be interpreted as redshift if A- is sin
gular of the second kind. Fortunately, the following theorem 
clarifies that this is an exceptional case. 

Theorem 2: For any light signal A- E .!f, the following 
properties are equivalent: 

(i) A- is regular, 
(ii) ..t(1) is not conjugate tOA-(O) alongA-. 
Proof: For "(i) ~ (ii)" of Theorem 2: This implication 

will be shown indirectly, i.e., we prove "1 (ii) ~ 1 (i)." 
AssumeA-( 1) to be conjugate tOA-(O). This means by defini
tion that there is a Jacobi field J #0 satisfying J(O) = J( 1) 
= O. Hence, the function k defined in Lemma 2 satisfies 

k(O) = k( 1) = 0 in this case. Since k' is constant, this re
quires k to vanish identically. The resulting equation k' 
= g(..t ' ,J') = 0 shows that A- cannot be regular: If we are 

given any infinitesimal message J I along A-, then J2 = J I + J 
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will be a second infinitesimal message different from J I • 

For "(ii) ~ (i)"ofTheorem2:SinceA-(1) is assumed 
to be not conjugate to A-(O), every choice of the boundary 
values J(O) and J( 1) determines a unique solution of the 
Jacobi equation R(A- ',J,A ') = J". Let us consider the solu
tionJwith 

J(O) = V..t(o» J(1) = e'(..t) V..t(l)' (4.2) 

Let us apply Lemma 2 to this special J. From (4.2) we find 
k(O) = k(1) = g(A- '(O),V..t(O»' which requires k tobecon
stant as a consequence of Lemma 2. The resulting equation 
k ' = g(A- ' ,J') = 0 shows that J is indeed an infinitesimal 
message along A-. Since J is the only Jacobi field satisfying 
( 4.2), there cannot be any further infinitesimal message 
alongA-. • 

In particular, we can read from Theorem 2 that every 
singular light signal can be made into a regular light signal 
just by cutting it a little bit shorter. Furthermore, we learn 
that the regularity of a light signal is a property of the space
time (M,g) alone, i.e., independent of the observer field V. 
On the other hand, it does depend on V, whether a singular 
light signal is of the first or second kind. We illustrate this by 
example. Consider the Einstein cylinder universe M = S 3 

XR, g= rr*t - dt 2
, where t:M ..... R and 1T:M ..... S 3 denote 

the natural projections and t stands for the canonical Rie
mannian metric on the three-sphere S 3. First let V be the 
standard observer field V = a/at. In this case, any light sig
nal A- connecting the antipodal points p and q (see Fig. 2) 
turns out to be singular of the first kind. However, if we 
switch over to an observer field V by deforming V inside 
some small neighborhood of q in such a way that Vq is not a 
linear combination of Vq and A- ' ( 1 ), then the same light sig
nal A- becomes singular of the second kind. 

With respect to the physical interpretation of the above, 
it should be kept in mind that the appearance of conjugate 
points characterizes a focusing effect and that near focal 
points the ray optical approximation is not admissible. We 
have to switch over to a wave optical consideration and leave 
our concept of a pointlike observer. From this point of view, 
the foregoing considerations can be summed up in the fol
lowing way: In every case that allows for a ray optical treat
ment, r(A-) can be interpreted as redshift. 

FIG. 2. A singular light ray A. in the Einstein cylinder universe. 
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We conclude this section by giving an alternative repre
sentation of the redshift function, which will be used repea
tedly below. 

Theorem 3: The redshift function r of (M.g, V) satisfies 

r(..t) = -~ t (Lvg)(..t'(s),A.'(s» ds, forall..tE2='. 
2 Jo g(..t'(s),VA(S» 

Here L vg denotes the Lie derivative of the metric g. 
Proot Let X denote a vector field having..t as an integral 

curve. (This X is only introduced for notational conven
ience.) Then we find 

r(..t) = In g( V,x) 1.-t(0) -In g( V,x) IA(\) 

t Xg(V,x) I d (1 g(VxV,x) I d 
= - Jo g( V,x) A(S) s = - Jo g( V,x) A(S) s 

_ (1 g(LvX,x) I ds 
Jo g( V,x) A(S) 

= _ ~ t (Lvg) (X,x) IdS. 
2 Jo g( V,x) A(S) • 

This representation of r(..t) has some advantages over 
the representation given in Definition 5: In particular, it pre
serves its form under reparametrization of the light signal. 
This shows immediately that the redshift has to be additive 
along every light signal. By the way, this is the main advan
tage of our function rover 

emitted frequency - received frequency z = ----~-.::......--------"----"--
received frequency 

= e' - 1, 

which is used by astronomers. Furthermore, Theorem 3 
demonstrates the well-known fact that rvanishes identically 
iff V is a conformal Killing field. [The renormalization con
dition g( V, V) = - 1, which has not been used up to now, 
then requires Veven to be a Killing field.] Finally, Theorem 
3 allows for relating the redshift to kinematical quantities by 
the well-known formula 

!L vg = «(} /3 )g + «(} /3 )g( v,.) V g( v,.) 

+ u-g(VvV,.) Vg( v,.). (4.3) 

Here (} and u denote the volume expansion and shear of V, 
respectively, and V stands for the symmetrized tensor prod
uct. If we introduce the one-form 

p:=g(Vvv,.) - «(}/3)g(V,.) (4.4) 

into (4.3) and insert this result into the representation of the 
redshift function given by Theorem 3, we arrive at 

r(..t) = i p - t u(..t , (s),A. '(s» ds. 
A Jo g(..t'(s),VA(S» 

(4.5) 

For infinitesimally short..t, the redshift (4.5) formula has 
already been given by Ehlers.8 

V. PARALLAXES 

In order to make precise what we will mean by the term 
"parallaxes" here and in the following, let us recall Defini-
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tion 3 of a message {:J from r to r. In a typical situation, the 
image of such a map {:J is a two-surface Y bounded by rand r and spanned by the light signals {:J( .,t). In the general case, 
the observer field V will not be tangential to Y, with the 
exception of the boundary curves r and r. If we fix a light 
signatA. = {:J(.,to) and consider all those integral curves of V 

A 

that intersect ..t, we obtain a two-surface Y which does not 
coincide with Y generically. In a typical situation, Yand 

A 

.rform a baglike shape, as shown inyig. 3. The aperture of 
this bag, i.e., the fact that Y and Y do not coincide, ex
presses the "parallax effect": Those observers who are seen 
from r exactly before r (i.e., covering r) at one instant are 
not seen exactly before r at a later instant. Therefore, we 
introduce the following terminology. 

Definition 7: A message {:J is called "parallax-free" iff 
{:J(s,.)'(t) is a linear combination of {:J(.,t)'(s) and Vp(s,t) 
for all (s,t) E [0,1] Xl. 

Turning over to an infinitesimal message, the analogous 
definition reads as in the following. 

Definition 8: An infinitesimal message J along any light 
signatA. E.!f is called "parallax-free" iffJ(s) is a linear com
bination of..t ' (s) and VA(S) for all s E [0,1]. 

Furthermore, the property of being parallax-free can be 
assigned to the light signal..t itself. However, we have to be a 
little bit careful to include the case of a light signal that is 
singular in the sense of Definition 6. 

Definition 9: A light signal ..t E .!f is called "parallax
free"iffforeveryregularA E .!fwithimagel ~ image..t the 
uniquely existing infinitesimal message j along l is parallax
free in the sense of Definition 8. 

Before we are ready to present several criteria for a light 
signal to be parallax-free, we have to prove the following 
lemma. 

Lemma 3: Let J be an infinitesimal message along any 
..t E .!f and define U E f!C' A by 

U( ) - (is g(..t '(x),VA'(X) V) d ) V 
s - exp - x A(S) 

o g(..t'(x),VA(X» 

tv 

FIG. 3. The "parallactic bag" fonned by the two-surfaces Y and Y. 

V. Perlick 1965 



                                                                                                                                    

for all s E [0,1]. Then the following properties are satisfied: 
(i) g(A ',U') = 0, 
(ii) g(A '(s),U(s» = g(A '(0), VA(O» for all s E [0,1], 
(iii) (J - U) (0) = (J - U)( 1) = 0, 
(iv) J - UE f¥'i. 
Proof: (i) The proof follows by the usual derivation 

rules from the definition of U. 
(ii) As a consequence of (i), g(A ',U):[O,I] .... R has to 

be a constant function, i.e., g(A '(s),U(s» = g(A '(O),U(O» 
for all s E [0,1]. 

(iii) Here U(O) = V..t(O) and hence, U(O) = J(O) is ob
vious; U(1) = er(..t) V..t( \) and hence, U(1) = J(1) can be 
read from the proof of Theorem 3. 

(iv) From g(A ',U') = 0 and g(A ',I') = 0, we know 
thatg(A ',J - U) has to be a constant function: As a result of 
(iii) it has to vanish. • 

Lemma 3 will be used to show the following thereom. 
Theorem 4: Let J be an infinitesimal message along any 

light signal A E !f and let U E f¥'..t be the vector field defined 
in Lemma 3. Then the following two conditions are equiva
lent: 

(i) J is parallax-free, 
(ii) J - U is a multiple of A'. 
Proof: Since "(ii) :::::} (i)" of Theorem 4 is implied by 

Definition 8 in a trivial manner, we only have to prove 
"(i) :::::} (ii)." By assumption, there is a map v:[O,I] .... R 
such that for all s E [0, 1 ] 

J(s) - v(s) V..t(S) is parallel to A'. 

The boundary condition J(O) = V..t(O) implies 

v(O) = 1. 

The condition g(A ' ,J') = 0 implies 

(5.1) 

(5.2) 

v' (S)g(A '(s),V..t(S» = - V(S)g(A '(s),V..t'(S) JI) (5.3) 

forallsE [0,1]. By integrating (5.3) with the initial condi
tion (5.2), we end up with 

v(s)V..t(S) = U(s) forallsE [0,1], 

which completes the proof as a result of (5.1). • 
Using the concept of Jacobi classes (see Definition 2), 

Theorem 4 can be reformulated in the following way. 

Theorem 5: Let A E !f be any light signal and define 
U E f¥'..t as in Lemma 3. Then the following conditions are 
equivalent: 

(i) A is parallax-free, 
(ii) [U] is a Jacobi class. 
Proof: Since" (i) :::::} (ii)" of Theorem 5 is an immediate 

consequence of Theorem 4, we only have to prove the impli
cation "( ii) :::::} (i)." Without loss of generality, we assume 
A to be regular. Our assumption guarantees the existence of a 
Jacobi field J such that 

J - U is parallel to A'. (5.4) 

For the present, J is unique only up to the transformations 
J(s) t--+J(s) + (as + b)A '(s) with arbitrary real constants 
a and b. We remove this ambiguity by the requirements 
(J - U) (0) = 0 and (J - U) (1) = O. Moreover, this 
unique J satisfies g(A ',J') = g(A ',U') = 0, where the first 
equality follows from (5.4) and the second was proven in 
Lemma 3. Thus we have shown thatJis the (unique) infini
tesimal message along J. This, together with (5.4), com
pletes the proof. • 

Theorem 5 gives a terse and easily remembered crite
rion, but we want to obtain another which is more appropri
ate to practical calculations. To that end, let us bring the 
index form /..t into play. First, we have to prove a lemma, 
which relates /..t to kinematical quantities. 

Lemma 4: Let J be an infinitesimal message along any 
light signal A E !f and define U E f¥'..t as in Lemma 3. Let X 
be a lightlike vector field having A as an integral curve and 
define a two-form t by 

r: = d ( _ 2 u(X,.) + u(X,x) (V..») 
~ p g(V,x) g(V,x)2

g 
, , 

wherep denotes the one-form defined in (4.4), udenotes the 
shear of V, and d stands for the exterior derivative. Then the 
index form /..t satisfies, for all A E f¥' i , 

/..t (A,J - U) =g(A(1),J'(1) - U'(1» 

-g(A(O),J'(1) - U'(1» 

+ 2g(A , (O),V..t(O) ) f t(A '(s),A(s»ds. 

Proof: From representation (3.1) of the index form and 
Lemma 3 (ii) we find 

/..t(A,J- U) =g(A(l),J'(l) - U'(1)-g(A(O),J'(O) - U'(O» 

+g(A '(0) V ) (1 g(A(s),R(A '(s),U(s),A '(s» - U"(s) ds. 
, ..t(0) Jo g(A '(s),U(s» 

Let us concentrate upon the integrand in the last term of the above equation. By calculating explicitly the second derivative U" 
of the vector field U from its definition (given in Lemma 3), this integrand becomes 

g(R(A '(s),U(s),A '(s» - U"(s),.) 

g(A '(s),U(s» 

= [g(R(X,V,x),.) 
g(X,V) 
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_ g(Vx(VxV - [g(X,VxV)lg(X,V)] Y) - [g(X,VxV)lg(X,V) ](Vx v - [g(X,VxV)lg(X,V)] Y),.)] 
g(X,V) 4(S) 

_ [ g(VxV"X - V[X," IX,.) g(V X V - [g(X,VxV)lg(X,V)] v,.)] - - V X ~~_...!O-_~=-----=-__ -=---_ 
g(X, V) g(X, V) 4(S) 

[ 
g(L"X+ [g(X,VxV)lg(X,V)]v,.) g(X,VxV)g(V"X,.) 

= V X + ---=-=----=---
g(X,V) g(X,V)2 

-V[V,XI g(X,.) +multiPlesofg(X,.)] 
g(X, V) A.(s) 

[using the identity V xa = L xa - a (V.X), which is valid for every one-form a] 

_ [ g(LvX+ [g(X,VxV)lg(X,V)] V,.) g(LvX+ [g(X,VxV)lg(X,V)]V,V.X) g(X,VxV) g(X,.) 
- Lx - + V V ...:::....:.-'--''----

g(X, V) g(X, V) g(X, V) g(X, V) 

g(X,.) g(X,V.LvX). ] + LI leX J - + multiples of g(X,.) 
, g(X, V) g(X, V) ,l(s) 

(using the identity LI v,x J = i l v,x Jd + dil v,x J' where i denotes the contraction operator) 

[ 

g(LvX+ [g(X,VxV)lg(X,V)]v,.) g(X,VxV)g(V,V.X) g(X,VxV) ( g(X,.) g(X,V.V)) 
= Lx - + Lv - ----

g(X, V) g(X, V) 2 g(X, V) g(X, V) g(X, V) 
....... ........... . ....... . 

. dg(X,.) dg(X,[V,x)) g([V,x],V.X) g(X,V.LvX) 1'1 f (X)] + I + - - + mu tip es 0 g . 
1 v,x J g( V,x) g(X, V) g(X, V) g(X, V) , 

••• ••••••••• ., •••••••••• • ••••••••• ,l(s) 

[the terms marked by ... cancel since X is lightlike and hence, g(X,V vX) = 0; furthermore, we use the identities 
Lx = ixd + dix and i l v,x J = Lvix - ixLv] 

[
. dg(L"X+ [g(X,VxV)lg(X,V)]v,.) g(X,VxV) g(X,.) 

= Ix + 0 + Lv -="";'-'--'-
g(X, V) g(X, V) g(X, V) 

L . d g(X,.) . L d g(X,.) 1 
+ vi X g(X, V) - I X " g(X, V) - multiples of g(X,.) 

•• , •••••••••• ------------- 4(S) 

[usingg(X,V.X) = 0 in the ... term and the identity Lvd = dL v in the ___ term] 

= [ ixd (g(LvX,.) _ Lv g(X,,) + _g_(X_,_V..;.:,x_V)_g....,(:-V._,._) ) 
g(X, V) g(X, V) g(X, V)2 

(XV V) L V g(X,.) 
g , x Lv g(X,.) + v x g(X,V) 

g(X, V) g(X, V) + 
+ multiples of g(X,.)] 

., •••••• , ••••••••••••• , •••••••••• , •••• , •••••••••• , •••••••••••••••••• ,. ,l(.5) 

[the term marked by". is a multipleofg(X,.); using the representation (4.3) of Lvgresults after an easy calculation in the fol
lowing] 

= [ i xd (g(V v V,.) -.!!...- g( V,.) - 2 u(X,.) + u(X,x)g(;.) + multiples of g(X,.)] 
3 g( V,x) g( V,x) 4(S) 

= 2;(A '(s),,) + multiples of g(A '(s),,). • 
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Having finished this laborious proof, we are ready to 
give a criterion for a light signal to be parallax-free by kine
matical quantities. 

Theorem 6: Assume A. E .!f to be any light signal and 
define the two-form ~ as in Lemma 4. Then the following two 
conditions are equivalent: 

(i) A. is parallax-free, 
(ii) ~(A. ' ,.) is a mUltiple of g(A. ' ,.). 
Proof: Without loss of generality, we assume A. to be 

regular. We denote the unique infinitesimal message along A. 
by I and introduce the vector field U E f!l? A as in Lemma 3. 

For "(i) ~ (ii)" of Theorem 6: Our assumption guar
antees I - U to be a multiple of A. ' as a result of Theorem 4. 
Thus from the definition of the index form, we find 

(5.5) 

for all A E f!l?i. On the other hand, as a consequence of 
Lemma 4, 

(5.6) 

has to hold for all A E f!l? i. (The boundary terms vanish as a 
result of 1- Ubeing parallel to A.', which implies J' - U' 
being parallel to A. '.) Since this consideration remains valid 
for arbitrarily short parts of the light signal, (5.5) and (5.6) 
require ~(A. ',.) to be a multiple ofg(A. ',.). 

For "(ii) ~ (i)" of Theorem 6: As a result of Lemma 
4, the assumption implies /" A (I - U,I - U) = O. (This 
time the boundary terms vanish since I - U vanishes in the 
boundary points, cf. Lemma 3.) From Lemma 1 we know 
that 1- U has to be a multiple of A. ' in this case, which 
completes the proof resulting from Theorem 4. • 

Theorem 6 gives a criterion for a light signal to be paral
lax-free in terms of an eigenvalue equation along A.. Please 
note that the two-form ~ has to be constructed for each 
A. E .!f individually (except in the case of vanishing shear), 
but that the one-form ~(A. ',.) along A. does not depend on the 
extension X chosen for the tangent field. This is not obvious 
from the definition of ~, but it becomes manifest if, by a 
rather tedious calculation, all derivatives are expressed by 
covariant derivatives. 

In concluding this section, let us reformulate the main 
result of our earlier paper I in the terminology ofthe present 
paper. 

Theorem 7: For our kinematical world model (M,g, V), 
the following two conditions are equivalent: 

(i) every A. E .!f is parallax-free, 
(ii) on each simply connected open submanifold of M 

there is a scalar function! such that elV is a conformal Kill
ing field (this implies that the shear has to vanish and that 
the one-form p defined in (4.4) is given by p = dj). 

For a proof, the reader is referred to Ref. 1, with the 
additional remark that this proof can be markedly shortened 
if Theorem 6 is available. 
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VI. MODELS WITH TEMPORALLY CONSTANT 
REDSHIFT 

In this section and for Sec. V we shall apply the forego
ing results to models (M.g, V) with special redshift proper
ties. The present section is devoted to models in which the 
redshift is temporally constant for each pair of observers in 
V. In order to find a characterization of such models, we 
proceed in two steps: First, we characterize the situation that 
an observer sees every infinitesimally close neighbor under 
some redshift remaining constant in time. In the second step, 
we prove that in the case of temporally constant redshift no 
parallaxes can occur. The combination of these two results 
will give the desired characterization. 

Theorem 8: For our kinematical world model (M.g, V), 

the following two conditions are equivalent: 
(i) every observer r in V sees every infinitesimally 

neighboring observer under temporally constant redshift, 
(ii) the shear 0' vanishes and the one-form p defined in 

(4.4) satisfies Lv P = - p( V) p. 
Proof: For "(i) ~ (ii)" of Theorem 8: Consider a light

like vector fieldXwithg(X, V) > 0 andLvX parallel to V. In 
this case, the vector field t 1---+ X Y( I) along any integral curve r 
of V describes a one-parameter family of light signals con
necting r with an infinitesimally neighboring integral curve 
of V. From the representation (4.5) of the red shift function 
we can read that our assumption requires, for every X with 
the aforementioned properties, 

0= V(P(X) _ O'(x,x») 
g( VOX) 

= (Lvp)(X) +p(LvX) 

(LvO')(X,X) O'(X,LvX) 
- -2----

g( V,X) g( V,X) 

O'(X,X) 
+ g(V,X)2 «Lvg)(V,X) +g(V,LvX». (6.1) 

We know that LvX = wV holds with some scalar function 
w. From 0 = Vg(X,x) = (Lvg) (X,x) + 2g(X,LvX) we 
find w =p(X) - O'(X,x)lg( VOX) and (6.1) becomes 

(Lvp)(X) +p(X)p(V) 
(LvO') (X,x) O'(X,x) 2 

-----+ =0. 
g( V,x) g( v,X)3 

(6.2) 

Since (6.2) is purely algebraic in X, it has to hold for all 
lightlike X. Let (E1,E2,E3) denote an orthonormal basis in 
the orthocomplement of V. Then X ± = E; ± V may be in
serted into (6.2) for i = 1,2,3: 

(Lv p)(E;) ± (Lv p)( V) + p(E;) p( V) ±p( V)2 

± (LvO') (EiOE;) ± O'(E;,E;)2 = o. 
The sum and the difference, respectively, of the + and 
versions of the above equation reads as 

(6.3) 

(Lvp) +p( V)2 + (LvO')(E;,E;) + O'(EiOE;)2 = O. 

(6.4) 
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From (6.4) we can deduce that the term 
3 

L u(E;,E;)2 
;=1 

has to take the same value in every orthonormal basis 
(EvE2,E3 ). Since u is trace-free, this implies that the shear 
vanishes. The condition Lv p = - p ( V) p can then be read 
from (6.3) and (6.4). The implication "(ii) :::} (i)" of 
Theorem 8 is shown to hold true by reading the above proof 
in the reverse direction. • 

Ifwe require the vector field V to be complete, then the 
condition Lv p = - p ( V) p can only be satisfied by 
p (V) = 0 and hence, Lv P = 0 (since the only solution to 
the differential equationy' = - yz., which is defined on all of 
R, isy=O). 

It is our aim to characterize those models (M,g,V) in 
which every observer is seen under temporally constant red
shift (not only the infinitesimally neighboring ones). The 
reader might think that this aim has already been achieved 
by Theorem 8, having been misled by the following superfi
cial argument: If every observer in V sees his infinitesimal 
neighbors under temporally constant redshifts, then this has 
to also hold true for neighbors in finite distances as a result of 
the additivity of the red shift function r along every light ray. 
This argument is erroneous since the possible appearance of 
parallaxes has not been taken into account. Indeed, not only 
is the argument erroneous, but so is its result. This is shown 
by the following example: 

M=R\ 

g = dx2 + dy2 + dr - dt 2 - F(X,y,Z)2t 2 dr 

+ 2F(x,y,z)tdz V dt, 

V=~. at 
Here, V denotes the symmetrized tensor product and F 
stands for an arbitrary smooth function of x, y, and z. In this 
case, the shear vanishes and the one-form p is given by 
p = F dz. Hence, condition (ii) of Theorem 8 is satisfied. On 
the other hand, dp =:= dF /\ dz does not vanish if F is as
sumed to be nonconstant with respect to the arguments x 
and y. As a consequence of Theorem 7, this model cannot be 
free of parallaxes. As a result of the following theorem, it 
turns out to be impossible that the redshift in this model is 
temporally constant for every pair of observers. 

Theorem 9: Assume the redshift in (M,g, V) to be tem
porally constant for every pair of observers. Then every 
A. E 2' is parallax-free. 

Proof: Our assumption guarantees the redshift to be 
temporally constant, in particular for every pair of infinitesi
mally neighboring observers. Hence, Theorem 8 implies 

u=O (6.5) 

and the redshift function resulting from (4.5) reduces to 

r(A.) = i p, (6.6) 

: ( p = 0 for all tEl 
t Jp( .. /l (6.7) 

as a result of (6.6). Fix any to E I and apply the Stokes 
theorem to the two-surface Y (~t) bounded by y, y, /3( .,to), 
and /3( .,to + ~t) and lying under the image of /3: 

f dp = f.HAI p(y'(t»)dt + ( p 
.,1 (At) I" )P(.,I" + At) 

- f'+Alp«yo h)'(t»dt- L(.",,/. (6.8) 

As a result of (6.7), the second term on the rhs of (6.8) 
cancels with the last term. Dividing (6.8) by ~t and taking 
the limit ~t ..... 0 results in 

f dp(J(s),A. , (s»ds = p(J(O» - p(J(1», (6.9) 

with A.: = /3(.,to) and J denoting the variational vector field 
along A., which generates the variation /3. Recall that /3 is an 
arbitrary message up to the requirement that it be an embed
ding. Hence, (6.9) has to hold for every A. E 2' which is free 
of conjugate points, with J denoting the unique infinitesimal 
message along A.. Keeping this result in mind, we are now 
going to carry out another construction with the same 
A. = /3(.,to)' Define a map 

8:[0,1] XI ..... M, (s,t) 1---+8(s,t) 

by the following requirements: 
(i) 8(s,.) is some reparametrization of an integral curve 

of V for all s E [0,1], 
(ii) 8(.,t) is lightlike for all tEl, 
(iii) 8(.,to) = jJ(.,to)' 

Let us denote by Y(~t) that part of the image ct 8 that is 
bounded by y, y, 8(.,to), and 8(.,to + ~t). Here Y(~t) co
incides with Y (~t) if /3 is parallax-free, which is unknown 
to us at this time. (The symbols Y and Yare here used in a 
way analogous to Fig. 3.) Note that the integral 

i p (6.10) 
6( .• 1) 

is not allowed to be interpreted as redshift since 8 (.,t) is not 
known to be geodesic. However, any sufficiently short part 
of 8( .,t) differs from a light signal arbitrarily little. Thus by 
writing the integral (6.10) as a limit of summations over step 
functions, 

.!!.-i p = 0 ( 6.11 ) 
dt 6( .• 1) 

turns out to hold true as a consequence of (6.7). As in the 
first part of the proofwit~Y(~t), we carry out the Stokes 
theorem argument with Y(~t) analogously. We arrive at 
an equation similar to (6.9), with J replaced by the vector 
field generating the variation 8. It can easily be checked that 
this generating vector field is given by the vector field U 
defined in Lemma 3. Thus 

Now let us fix two integral curves y: I ..... M and y: ] ..... M of V, (I 
along with a message/3 from yto ywith the message func- Jo dp(U(s),A. , (s»)ds = p(U(O» - p(U(1» (6.12) 

tion h. For convenience, we assume the map /3 to be an em-
bedding. By assumption, has been established. From (6.9) and (6.12) we find 
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f dp(J(s) - U(s),A. '(s»ds = 0 (6.13) 

since J - U vanishes in the boundary points; see Lemma 3. 
Using Lemma 4, (6.5), and (6.13) we arrive at 

/;..(J - U,J- U) =0. 

The above equation has to hold for every A E .!/' without 
conjugate points and with J denoting the infinitesimal mes
sage along A: As a result of Lemma 1, this equation requires 
J - U to be parallel to A " which proves J to be parallax-free 
according to Theorem 4. Since every light signal can be cut 
into pieces which are free of conjugate points, this completes 
the proof. • 

The combination of Theorems 8 and 9 results in the 
following characterization of models with temporally con
stant redshift. 

Theorem 10: For our kinematical world model 
(M,g, V), the following two conditions are equivalent: 

(i) the redshift is temporally constant for every pair of 
observers in V, 

(ii) on every simply connected open submanifold of M 
there is a scalar functionl such that elV is a conformal Kill
ing field and I satisfies Lv dl = - dl( V) df 

Proof' See Theorems 7-9. • 
If V is complete, Lv dl = - dl( V) dl implies dl( V) 

= 0, which means that ef V is a Killing field rather than a 
conformal Killing field. Consequently, a complete model 
with temporally constant redshift has to be stationary. 

VII. MODELS WITH ISOTROPIC REDSHIFT 

This section is devoted to models (M,g, V) in which the 
redshift under which an observer sees his infinitesimal neigh
bors is isotropic. From the representation (4.5) of the red 
shift function we can read that this is the case iff V is freely 
falling and shear-free. This result has been known since 
1961; see Ehlers.8 In this special situation the redshift func
tion reduces to 

rCA) = - r ~g(V,.). 1..3 (7.1) 

For convenience we introduce the following terminology. 
Definition 10: Here (M,g, V) is called a "Hubble model" 

iff u = 0 and V v V = O. A Hubble model is called "proper" 
iff its volume expansion (J (and in consequence its redshift 
function r) is strictly positive. 

Note that (M,g, V) is a Hubble model with (J = 0 iff Vis 
a Killing field. It should be emphasized that by Definition 10 
the redshift in a Hubble model is ensured to be isotropic only 
in the infinitesimal regime. It is not even clear what should 
be meant by isotropy in the large regime since there is no 
natural measure for the distance between emitter and receiv
er. 

The most evident example for a Hubble model is given 
by a Robertson-Walker space-time with its standard observ
er field. However, this is a very special example since it is 
irrotational and free of parallaxes. The rotation ( = vorti
city) of an arbitrary Hubble model need not vanish (we shall 
illustrate this by an example below), but the rotation is 
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somewhat restricted: From the generally valid representa
tion 

cu = - dg( v,.) - g( V,.) /\ g(V vV,.) (7.2) 

of the rotation two-formcu [cf. Ehlers,S Eq. (1.1.15) ] we can 
read that in every Hubble model 

dcu = 0 (7.3) 

has to be satisfied, which may be viewed as a conservation 
law for the rotation. Furthermore, the following theorem 
holds true. 

Theorem 11: Let (M,g, V) be a proper Hubble model. If 
every A E .!/' is parallax-free, then the rotation has to vanish. 

Proof' In the case of a Hubble model, the one-form p 
defined in (4.4) reduces to p = - «(J 13 )g( v,.), which im
plies 

d(J (J 
dp = - - /\ g( V,.) - - dg( V,.). 

3 3 
(7.4) 

Since dp is assumed to vanish as a result of Theorem 7, wedg
ing of (7.4) by g( V,.) results in 

0= «(J13)g(V,.) 1\ dg(V,.). (7.5) 

As a result of the generally valid equation (7.2), on the other 
hand we find 

g( V,.) /\ dg( v,.) = - g( v,.) 1\ cu. (7.6) 

Inserting (7.6) into (7.5) and contracting with Vresults in 

0= «(J13)cu. (7.7) 

Since (J is assumed to be strictly positive, (7.7) implies that 
the rotation vanishes. • 

Note that the converse of Theorem 11 does not hold 
true. An irrotational proper Hubble model might admit par
allaxes. 

As a result of Theorem 11, a nonvanishing rotation im
plies either an isotropy in redshift or the occurrence of paral
laxes (or both). This does not contradict our earlier finding I 
that observations of parallaxes alone (1) do not yield any 
information about the rotation at all. 

Whereas there are obviously many examples of rotating 
Hubble models with vanishing (J (e.g., GOdel's cosmos with 
its standard observer field), the reader might doubt whether 
proper (1) rotating Hubble models do exist. For this reason, 
an explicit example is given: 

M=R4
, 

g = e'(dx2 + dy2 + dr) + F(x, y,z)2(e' - 1 )dr 

- dt 2 + 2F(x, y,z)dz V dt, 

V=~. at 

Here, V denotes the symmetrized tensor product and F 
stands for an arbitrary smooth function of x, y, and z. This 
(M,g, V) turns out to be a Hubble model with (J = ~ and 
cu = dz /\ dF. Hence, the rotation does not vanish if we as
sume F to be nonconstant with respect to the arguments x 
andy. As a result of Theorem 11, this model cannot be paral
lax-free. 
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We end up with a theorem showing the impossibility of 
constructing an example with analogous properties on an 
underlying space-time with constant curvature. 

Theorem 12: Assume (M,g, V) to be a Hubble model 
(not necessarily a proper one) and (M,g) to be a space of 
constant curvature. Then V has to be irrotational and every 
A E .!f has to be parallax-free (Le., the model has to be con
formally static). 

Proof We start from the well-known propagation equa
tion for the deformation tensor along any integral curve 
t ~ r( t) of V. In index notation, this equation reads [cf. Eq. 
(4.25) in Ref. 9] as 

d . . . 
dt ()ij = - Ri4j4 - OJikOJkj - ()ik()kj + V(i;j) + Vi~' 

(7.8) 

where an orthonormal Fermi basis has been introduced (i,j, 
and k running from 1-3 and the summation over k are un
derstood). Since (M,g) is assumed to be of constant curva
ture, the curvature tensor has to satisfy 

R (X, Y,Z) = K(g(X,Z) Y - g( Y,Z)X) (7.9) 

with some constant K, which implies that Ri4j4 is a multiple 
C?f /jij. Since (M,g, V) is assumed to be a Hubble model, 
Vi = (V v V) i = 0 and ()ij = «() /3 )/jij. Hence, (7.8) forces 
OJikOJkj to be a multiple of /jij. Since the antisymmetrical3 X 3 
matrix (OJ kj ) must have a nontrivial kernel, this requires 
OJ ik OJ kj = 0 and, again as a consequence of the antisymmetry, 
OJij = O. In order to prove that every A E .!f is parallax-free, 
consider the vector field U defined in Lemma 3 for an arbi
trary A E .!f. Since the shear, acceleration, and rotation of V 
are known to vanish, U reduces to 

1971 J. Math. Phys., Vol. 31, No.8, August 1990 

( r 1 ,) U(s) = exp - Jo 3 ()A(x)g(VA(X),A (x»dx VA( .. )· 

Explicit calculation of the second derivative of U shows 
U"(s) to be a multiple of A'(S). On the other hand, 
R(A ',U,A ') is a multiple ofA ' asaresultof(7.9). Hence, [U] 
is a Jacobi class, which proves our arbitrary A E .!f to be 
parallax-free as a result of Theorem 5. • 

ACKNOWLEDGMENTS 

I would like to thank Professor K.-E. Hellwig (TV Ber
lin) and his co-workers, Wolfgang Hasse in particular, for 
helpful discussions. 

'W. Hasse and V. Perlick, J. Math. Phys. 29, 2064 (1988). 
2J. Beem and P. Ehrlich, Global Lorentzian Geometry (Dekker, New York, 
1981). 

JH. Weyl, Space, Time, Matter (Dover, New York, 1961); translation from 
Raum, Zeit, Materie (Springer, Berlin, 1923). 

·W. Kermack, W. McCrea, and E. Whittacker, Proc. R. Soc. Edinburgh 53, 
31 (1932). 

'E. Schrooinger, Expanding Universes (Cambridge U. P., Cambridge, 
1956). 

60. Brill, Leet. Notes Phys. 14,45 (1972). 
7R. Herrman, Topics in General Relativity (Interdisciplinary Mathematics 
V, private press, 1973). 

"J. Ehlers, Akad. Wiss. Lit. (Mainz), Abh. Math. Nat. Kl. 1961 ( 11),791 
(196\). 

·S. Hawking and G. Ellis, The Large Scale Structure o/Space Time (Cam
bridge U. P., Cambridge, 1973). 

V. Perlick 1971 



                                                                                                                                    

Internal and external metrics for a perfect fluid cylinder in general relativity 
w. Davidsona) 

Mathematics Department, University a/Otago, Dunedin, New Zealand 

(Received 4 January 1990; accepted for publication 4 April 1990) 

A solution to Einstein's equations describing a perfect fluid cylinder of finite radius is 
presented. The proper density J.l and pressure p of the fluid are physically well behaved in the 
radial coordinate range O<r<rl • On the axis (r = 0) the solution is regular andJ.l andp are 
finite and positive. As r increases J.l and p decrease steadily through positive values, p vanishing 
at r = r I' The ratio pi J.l ( < 1) is also monotonically decreasing, as is also the velocity of sound 
a ( < 1) in the fluid. The equation of state is p = ~ J.l - NJ.l3!1O, where N is a positive constant. 
The matching metric for the vacuum exterior to the cylinder is given, so that the space-time is 
complete and nonsingular. 

I. INTRODUCTION 

Stationary cylindrically symmetric nonvacuum solu
tions of Einstein's equations for nonrotating fluid have been 
quite small in number, I and few of these have related to a 
finite radial distribution. Evans2 succeeded in finding three 
such solutions [his models (ii)-(iv) 1. Model (ii) had the 
equation of state p = ~ J.l + const. Models (iii) and (iv) were 
difficult to analyze with equations of state that were far from 
simple. Kramer3 has solved the problem of perfect fluid hav
ing equation of state p = (r - 1)J.l (r = const) , but the flu
id cylinders are radially infinite (see also Ref. 4). 

Here we give an example of solution for a perfect fluid 
cylinder that has finite radius and reasonable physical char
acteristics. 

II. FIELD EQUATIONS 

The metric for stationary, cylindrically symmetric 
space-time will be taken in the general static form 

d~ =A d,z +Bdr + Cd(p -Ddt 2, (1) 

where A, B, C, and D are functions of the radial coordinate r 
only. The metric admits an Abelian group G3 acting on time
like orbits T3 , the three Killing vectors being an a,p' and az • 

For a perfect fluid the Einstein equations are (primes indi
cating differentiation with respect to r) 

1 _I[B/C' C'D' D'B'] 
Kop=4"A BC + CD + DB ' (2) 

=-A 2 -+- - -+-+--1 -I[ (C" D") (C'2 D,2 A 'c' 
4 C D C 2 D2 AC 

A 'D' _ C'D')] 
+ AD CD' 

(3) 

=-A 2 -+- - -+-+--1 _ I [ (B" D ") (B ,2 D ,2 A ' B ' 
4 B D B2 D2 AB 

A 'D' _ B'D')] 
+ AD BD' 

(4) 

a) Permanent address: 25 Paddock Close, Edwinstowe, Notts, NG21 9LP, 
England. 

1 [((B')' (C')') (B' C') -KoJ.l=4"A -12 Ji + C + Ji+C 

x('!!':" + £ _.£) _ B'C']. 
B C A BC 

(5) 

III. A SOLUTION 

A particular solution to these equations gives for the 
metric coefficients 

A =r17g- l
, B =1-317g, C=I-317,z, D =11217, 

(6) 

where 

1=~+{32,z, II =~+{32ii, g=/~ -4J, (7) 

r I and {3 being positive constants. The pressure and density 
are given by 

Kop = ¥ {32/- 2017 (/~ - J2), (8) 

KoJ.l = ¥ {32/- 2017/t. (9) 

It is clear that the metric is regular at the axis r = 0, and 
since g> 0 in the range O<r<rl the space-time is free of sin
gularity. 

IV. PHYSICAL PROPERTIES 

On the axis J.l = J.lo > 0, P = Po> O. Moreover, dpl 
dr<O, dJ.lldr<O in the range O<r<rl • Thusp andJ.l mono
tonically decrease as r increases in this range, while p vanish
es at r = rl that is therefore the boundary of the fluid cylin
der. At the boundary the density J.l = J.lI > O. 

For the ratio pi J.l we derive 

L=2.(I_ L »O. (10) 
J.l 7 I~ 

Thus 

(11 ) 

and pi J.l steadily decreases as r increases, vanishing at r = r I' 
At the axis the maximum of the ratio plJ.l never exceeds ~ 
regardless of r I' 

The velocity of sound in the fluid, given by a = (dpl 
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d,) I 121 (dJ.tld,) 1/2 has the expression 

o = (~)1I2(1 _ ~ (f'l + fj2 r)2)1I2, 
7 10 (~+p2ri)2 

(12) 

and so is also monotonically decreasing as , increases, lying 
in the range 

(;)112>0>(/0)1/2 (13) 

(velocity of light c = 1). At the axis 0 never exceeds the 
value (,) 1/2. 

The equation of state of the fluid will be seen to be 

p = ; J.t - NJ.t3/1O, 

where N> 0 is a constant. 
The proper radius R of the fluid cylinder is 

i
r , [317 

R= ~d,. 
o g 

(14) 

(15) 

Since the function g remains positive so that the integrand in 
(15) is finite in the range 0";;''';;'1' the integral is well be
haved and finite so that R is finite. 

V. THE EXTERIOR METRIC 

The interior metric to be matched at the boundary' = 'I 
is 

d~ = (~+ p2r)617{(~ + p 2ri)2 - 4(~ +p2r»-ldr 

+ (~+p2r)-317{(~+p2ri)2 

- 4(~ + P2r »dz2 + (~+ P2 r )-317r dt/i 

(16) 

We seek a cylindrically symmetric vacuum exterior 
metric of the form (1). At the boundary, ='1 the metric 
coefficients A, B, C, and D must be continuous. Since the 
pressurep of the fluid vanishes at, = 'I' we see from (2) that 
the first derivatives B " C', and D ' must also be continuous, 
but it is not required that A ' be continuous. This is the same 
situation as in spherical symmetry; in particular, the 
Schwarzschild interior and exterior metrics have a discon
tinuous first derivative in their radial metric coefficients. 

The required external metric having A, B, C, D, B " C', 
and D' continuous at, = 'I is found to be 

d~ = (~+ p 2ri )-I(~ + p 2ri)( -6b'+2Sb-24)l7b(~ + P2r )(6b'-26b+24)l7b'I- 2r dr 

+ (~+p2ri) (~+ p 2ri )(2/7)(8- 3b)(~ + p2 r ) - (6/7)(2-b) dz2 + (~+ p2ri) -3(8-3b)l7b 

X (~+ p2 r ) 12(2- b)17bri dtjJ2 _ (~+ p2r )12/7 dt 2, (17) 

where b is a constant defined by 

b=~p2ri(~ +p 2
ri)-I. 

VI. CONCLUSION 

(18) 

The interior solution presented here is physically well 
behaved, without singularity, and appropriately matched at 
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the fluid boundary by an exterior vacuum space-time. 

'D. Kramer, H. Stephani, E. Herlt, and M. MacCallum, Exact Solutions oj 
Einstein's Field Equations (Cambridge U.P., Cambridge, 1980), Chap. 20. 

2A. B. Evans, J. Phys. A 10,1303 (1977). 
3D. Kramer, Class. Quantum Grav. 5, 393 (1988). 
4A. F. da F. Teixeira and I. Wolk, Nuovo Cimento B 41,387 (1977). 
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A three-parameter family of solutions of Einstein's field equations is given that represents a 
collapsing perfect fluid with outgoing neutrino flux. Solutions with "naked" singularities are 
exhibited. They can be forbidden by requiring pressure less than or equal to the density as a 
condition of cosmic censorship. 

I. INTRODUCTION 

In this work, Wesson'sl spherical, time-dependent, per
fect-fluid solution is extended to include outgoing neutrino 
flux. The neutrino intrinsic angular momentum is neglected, 
and it is assumed that there is no microscopic interaction 
between the fluid matter and neutrinos. The neutrino flux 
interacts gravitationally with the fluid and affects the char
acter of the fluid collapse. 

The energy-momentum tensor for the neutrino flux is 
chosen to be / 1"'1 v, where I'" is an outgoing principal null 
vector of the type D Weyl tensor belonging to the space
times considered here. This form is exact2 for a neutrino 
field adapted to I"', when I'" is geodesic, shear-free, and twist
free (the case here). More generally, one can regard/I"'I v as 
a short-wavelength or "geometrical optics" limit. 

In Sec. II the metric and relevant field equations are 
presented, and in Sec. III a three-parameter family of solu
tions is given. A set of first-order equations (similar to those 
given by Misner3 

) for the pressure, density, and mass is giv
en in Sec. IV. In Sec. V, restrictions are placed on the three 
parameters of the solution such that it represents a physical
ly valid system undergoing gravitational collapse. Proof that 
pressure less than or equal to the density implies the presence 
of a horizon is given in Sec. VI. In the discussion that follows 
it is noted that, when the condition that the pressure be 
smaller than the density is relaxed, the solution admits "na
ked" singularities. We conclude that a necessary condition 
for cosmic censorship is a restriction on the equation of state 
such that the pressure be less than or equal to the density. 
The nonzero components ofthe Einstein tensor are given in 
Appendix A and, for completeness, the condition for match
ing the space-time here to the Vaidya space-time is devel
oped in Appendix B. 

II. METRIC AND FIELD EQUATIONS 

We consider a space-time with spherically symmetric 
metric 

g,..v dx"'dxV=A 2 dt 2 - B2 dr 2 - R 2 d02, (1) 

where A = A(r,t), B = B(r,t), R = R(r,t), and where d02 

is the metric of the unit sphere. The energy-momentum ten
sor for a perfect fluid with neutrino flux is given by 
(G=c= 1) 

T"'V = wu"'UV _ p(g"'v - u,..UV) + /I"'P, (2) 

where p is the isotropic pressure and w is the fluid mass-

energy density. Time is comoving with u,.. a,.. = A - I at. 
Here, I'" is an outgoing null vector I'" a,.. 
= A -I at + B- 1 ar,and/istheneutrinoenergydensityin 
the fluid rest frame. In the following, primes denote a / ar and 
overdots denote a/at. 

The field equation (see Appendix A) arising from pres
sure isotropy is 

A-2[~_!+~!+!(!_~ _!)] 
+B- 2 _+ ___ _ 

[
R" A" A' B' 

R A A B 

R' (R' A' B')] -Ii: Ii:+A+li +R-
2 

+ 2A -IB -I[ ~' -~' ! -~~/] =0. (3) 

The neutrino energy density is given by 

81T/ = 2A - IB - I [~ _ ~ R _ BR ']. (4) 
R A R BR 

The fluid density and pressure are given, respectively, by 

81TW =A -2[ (!r + 2 !!] 
[ 

R" (R ')2 B I R'] _B-
2 

2 Ii: + Ii: -2
li

Ii: 

+ R -2 - 81Tf, (5) 

[(
RI)2 AIR'] 81Tp=B -2 Ii: +2

A
Ii: 

- A - 2[ 2 ~ + (! r -2 ~!] 
-R -2_ 81Tf (6) 

III. THE SOLUTION 

A three-parameter family (a, ko, kl ) of solutions of the 
pressure isotropy equation (3) is given by 

A = r/to, B = h(t), R = rS(t), (7) 

where to scales the time coordinate, and 

h = 1 + at/to, (8a) 

S2=koh2+2/a+klh -2/a+~(1 +a)-lh 2, a=l= -1, 
(8b) 
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(8c) 

Neutrino flux is present when the parameter a is nonzero. In 
the limit a-+O, B-+Bw' and S-+Sw where 

B =1 S2 =k 2t11o+k -2tllo + 1 w , w oe 1 e 2' 

The a-+O limit is Wesson's perfect-fluid solution 1 with the 
equation of state p = w. 

The neutrino energy density is 

41Tf = - aR - 2S2h - 2. (9) 

The mass [see Eq. (18) below] is given by 

2m = RS - 2(2 + a) [ak ~h 2 + 4/a 

+a(l+a)-lkoh 2+2Ia 

+ 1(2 + a) -lh 2 - 2kok l ], a=l= - 1, (10) 

2m = RS - 2 [ko - k ~h - 2 

- 2kokl + 2ko In(h) + h 2/4 h a = - 1. 

For this solution, the mass, pressure, and fluid density are 
related by 

2m = 41T(p + w)R 3, (11 ) 

where the pressure and density are given, respectively, for 
a=l= - 1 by 

81TP= -R -2S-2[a(a+2)k~h2+4/a+akoh2+2Ia 

+ak1h -2/a +1(a-1)(1 +a)-lh 2 

+ 2(a + l)(a + 2)kok l ], 

81TW = R -2S -2[3a(a + 2)k ~h 2 +4/a + a(5 + 3a) 

x(1 +a)-lkoh2+2Ia+aklh -2Ia 

+ 1(3a + 1) (1 + a) - Ih 2 

+ 2(a - l)(a + 2)kok l ], 

and for a = - 1 by 

81TP = R - 2S - 2 [k ~h - 2 + kl h 2 

+ 2ko -h 21n(h) +h2/4], 

(12) 

( 13) 

( 12') 

81TW = R -2S -2[ 4ko In(h) - 3k~h -2 - klh 2 - 4kokl 

+h 21n(h) +h 2/4]. (13') 

The expressions for p and w make clear the presence of a 
curvature singularity at R = O. 

In the limit a -+ 0 the pressure and density equalize to 

81TP = 81TW = R ;;; 2S;;; 2(1- 4kokl ), 

with Rw = rSw' 

IV. DYNAMICAL EQUATIONS 

It is interesting to observe the effect of the neutrino flux 
on the changes in pressure and density. To that end, we write 
the dynamical equations 

(14) 

and the mass change equations. These equations, with an 
equation of state, form a first-order differential set equiva
lenttoEqs. (3)-(6). Wewillwriteull and nil components of 
TIlV;v = 0, where nil dXIl = B dr is a spacelike unit vector 
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normal to r = const surfaces. It is useful to first establish the 
components of 

ell = V v (f/Il/V), 

where /Il = ull - nil. Direct calculation yields eilull 
= ellnll = E, where 

E= ~ +~ +2f [A -I(! + !) +B -I( ~' + ~')]. 
(15) 

Equation (15) can alternatively be written in terms of the 
neutrino flux N = 41TR 2f as 

41TR 2E= /IlVILN - 2N/IlPVll uv' 

where E gives the rate at which neutrino outflow removes 
energy from the system. The ull component ofEq. (14) is 

iii + (p + w)(BIB + 2R IR) +AE= 0, (16) 

and the nil component is 

p' + (p + w)(A 'I A) + BE = O. 

The mass is given by 

2m=R[I+A -2(R)2_B-2(R')2], 

where 

(17) 

(18) 

m' = 41TR 2[R 'w + Bf(R IA + R 'IB)], (19) 

m= -41TR 2[Rp+Af(RIA+R'IB)]. (20) 

The last terms in both Eqs. (19) and (20) represent outgo
ing neutrino energy with /Il V Il R = RIA + R 'lB. 

V. PHYSICAL PARAMETERS 

The values of a, ko, and kl must be restricted to yield 
physically valid solutions. For the neutrino energy density to 
be positive, Eq. (9) implies that a be negative. The fluid 
density and pressure must both be positive [with Eq. (11) 
then assuring positive mass], and the pressure less than or 
equal to the density (causal sound speed). To describe col
lapse rather than expansion, we require the fluid rate of ex
pansion 0 to be negative, where 

O=Vllull=A -1(BIB+2RIR). (21) 

Finally, R must be real and so S 2 must be positive. Thus we 
require the solution to have parameters such that 

f>O, p>O, w>O, p<;w, 0<0, S2>0. (22) 

We will call a parameter set "valid" when restrictions 
(22) are satisfied at t = O. A computer search through the 
values of the parameter set (a, ko, kl ), using Eqs. (8)-(13) 
at t = 0, reveals many valid sets (there are no valid sets for 
a = - 2). Some examples are given in Table I, where solu
tion (7) implies that all the physical quantities listed are 
independent of the r coordinate, and so hold for the entire 
spacelike surface at t = O. Rows 1 and 2 of Table I do not 
contain valid sets. 

VI. HORIZONS 

The fluid rate of expansion 0 can be written as 

RO = as Ih + 2t0 8. (23) 

Since a must be negative, 8 need not be negative for 0 < 0, 
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TABLE I. Parameter sets (a,ko,k, ) and physical values at t = O. All physical quantities are dimensionless (c = G = 1) and independent of coordinate r. 

a ko k, 41TR 2p 

-0.1 0.00 0.1 0.24 
-0.8 - 0.41 0.0 0.50 
-0.8 -0.42 0.0 0.50 
- 1.0 -1.00 1.5 0.75 
- 1.0 -1.00 100.0 0.50 
- 1.0 - 100.00 1.0E1O 0.50 
-3.0 0.50 0.0 0.50 

-10.0 3.00 -2.0 81.37 
-10.0 1000.00 - 800.0 8.8E04 

- 100.0 3.00 -2.0 1.4E04 
- 100.0 100.00 -52.0 3.0E04 

but when 8 < 0 then () is always negative. Thus 8 < 0 is a 
sufficient condition for () < O. 

To find an expression for the difference between p and w, 
Eq. (5) is subtracted from Eq. (6) and the isotropy equation 
( 3) is substituted along with solution (7), yielding 

21T(p - w)R 2 = ( - as Ih)(to8 + S Ih). (24) 

Since S Ih is positive, the con~ition for p<w is 

8<0, It081>Slh. (25) 

The mass equation (18) can be written as 

2mlR = 1 + (t08)2 - (S Ih)2. (26) 

When p< w, condition (25) implies that 2ml R > 1. Thus so
lutions with an equation of state restricted to p<.w are always 
collapsing and always within a trapped surface. Since 2ml R 
is independent of r, the trapped surface is a horizon. 

VII. DISCUSSION 

All the valid parameter sets maintain 2m>R. Thus each 
valid set evolves within a horizon which shields the singular
ity at R = 0 (cosmic censorship). 

In rows 1 and 2 of Table I, the conditionp<w has been 
relaxed. Ultrabaric pressure allows R > 2m at t = 0, and 
consequently those two space-times exhibit a "naked" singu
larity. (There is an unresolved dispute4

,5 over the physical 
necessity of the condition p<w for equilibrium configura
tions.) The parameter set on row 1 determines a spacetime 
which maintains p > wand R > 2m for the entire time evolu
tion leading up to h = 0, where the description of the evolu
tion breaks down. At that time, the r coordinate loses its 
meaning since gl'Vr,l'r,v = - h - 2. (A coordinate labelling 
null surfaces can be used instead of t to continue the evolu
tion.s) 

The space-time associated with the parameter set on 
row 2 has a different evolution. At t Ito = 0.05, 2ml 
R = 1.09, 41TR 2p = 0.51, and 41TR 2W = 0.58. Therefore, 
early in the evolution a horizon appears and the pressure 
falls to less than the density. The remainder of the evolution 
maintains p < wand takes place within the horizon. 

We conclude, because of the examples of "naked" singu
larities given above, that a necessary condition for cosmic 
censorship is a restriction on the equation of state such that 
p<w. 
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41TR 2w 2m/R R9 41TR 2f 

0.14 0.38 -0.5 0.07 
0.49 0.98 -4.0 1.67 
0.51 1.01 -4.0 1.66 
1.75 2.50 - 3.5 0.50 
1.50 2.00 -30.0 99.00 

199.50 200.00 - 3.0E05 1.0E1O 
0.50 1.00 -2.5 0.75 

551.37 632.74 -60.0 9.44 
2.5E05 3.3E05 - 1301.1 1999.44 
7.3E04 8.7E04 - 690.2 99.49 
2.0E06 2.0E06 - 3535.6 4799.50 

APPENDIX A: EINSTEIN TENSOR 

Sign conventions are fixed by Ricci's identity 2u v ;[aP I 

= U I' R I'vaP' and R I'V = R a I'va' The field equations are 
G I'v = - 81TT I'v' The nonzero components of the Einstein 
tensor for metric (1) are given by 

G',= -A -2[(!r +2!!]+B-
2
[2

R

R
" 

(
R ')2 B' R'] + R -2BR -R -2, (Al) 

G' = 2A -2[~_~ R _ iJR'] 
, R A R BR' 

(A2) 

G', = -A 2B -2G'" (A3) 

G', = - A - 2[ 2 ! + (! r -2 ~!] 

+B -2[( ~'r + 2~' ~'] -R -2, (A4) 

GQQ=G~~= _A-2[!+!_~!_!(~ -!)] 
+B- 2 _+ ___ _ 

[
R" A" A' B' 

R A A B 

+ ~' (~' - ~') l (A5) 

APPENDIX B: MATCH TO VAIDYA 

The interior metric ( 1) can be matched6
,7 to an exterior 

Vaidya metric given by 

d~ = [1 - 2M( r)ly ]dr + 2 dr dy - jl d02
• (Bl) 

The boundary three-surface b is expressed in interior coordi
nates by 

r = rb, rb = const 

with unit spacelike normal 

nl'- dxl' = Bb dr. (B2) 

[Subscript b indicates evaluation on boundary b, i.e., 
Bb = B(rb,t). Interior objects will be indicated by a minus 
and exterior objects by a plus.] In the exterior region the 
boundary equation is 

E. N. Glass 1976 



                                                                                                                                    

Y=Yb(T), 

with unit normal 

[ (
dY ) 2M ] - 112 [ (dY )] 

nit dx
P

= 2 d: + 1- Yb
b 

dy- d: dT . 

The intrinsic metric on b is 

dsi, = dT 2 - R ~ d02. 

(B3) 

(B4) 

The junction conditions on b are equality of the interior and 
exterior first and second fundamental forms. For the interior 

d~_ =A~dt2_R~d02, 

and for the exterior 

d~+ = [2(~:) + 1 - 2:
b 

]dr - rl d0
2
. 

Demanding d~_ = dsi, = d~+ yields 

Ab dt= dT, 

Rb (t) = Yb (T), 

-- 2- +1-- . dT _ [ (dYb) 2Mb] -112 
dT dT Yb 

The unit normal (B3) can now be written as 

(B5) 

(B6) 

(B7) 

(B8) 

The mass m (r,t) within r = const, t = const two-sur
faces is given by 

2m = R [1 + g~V(apR)(avR>], 
and M( T) within T = const, Y = const two-surfaces is given 
by 

It follows from (B7) and continuity of the second funda
mental form that 

(B9) 

Junction conditions equivalent to continuity ofthe first 
and second fundamental forms are 

(GpvnPnV)b+ = (GpvnPnV);, 

(GpvnPe;h+ = (GpvnPej);, 

(BI0) 

(Bll) 

where three linearly independent e; span the boundary sur
face. For the interior 
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Gp~= -81T[(w+p)upuv-pgpv+/lplv]' (B12) 

where Ip dxll = A dt - B dr, and for the exterior 

G p+" = FLpLv, (B13) 

where Lp dxll = dT. (The luminosity observed at infinity is 
- !y2F= - dM IdT.) Equations (B8) and (B13) yield 

(GPvnpnvh+ =Fb(:;Y, 

and Eqs. (B2) and (BI2) yield 

(G PVnp nv) b- = - 81T(Pb + f" ). 
It follows from condition (BlO) that 

81T(Pb + /b) = - Fb(:; r (B14) 

This relation expresses conservation of momentum across 
the boundary. 

In the exterior region, a timelike unit vector if orthogo
nal to np+ is given by 

( dT) (dYb) if+ ap = dT aT + dT ay- (B15) 

The exterior and interior vectors if and uP coincide on b: 

(up dxll)b- = (vp dxll)b+ = dT. 

Equations (B2) and (BI2) yield 

(GPvnpuV)b- = -81T/b· 

Equations (B8) and (B 13) yield 

(BI6) 

(GPvnpvV)b+ = Fb(:;r (BI7) 

It follows from Eq. (B14) and the equality of (BI6) and 
(BI7) that 

Pb =0. 

'P. s. Wesson, J. Math. Phys. 19,2283 (1978). 
2 J. Wainwright, J. Math. Phys. 12, 828 (1971). 
lC. W. Misner, Phys. Rev. 137, B 1360 (1965). 
'E. N. Glass, Phys. Rev. D 28,2693 (1983). 
5G. Caparaso and K. Brecher, Phys. Rev. D 28,2694 (1983). 
·P. C. Vaidya, Nature 171, 260 (1953). 

(B18) 

7 The first match of an interior to the Vaidya metric is given in J. L. Synge, 
Proc. R. Ir. Acad. Sec. A 59, I (1957). In that work an incoherent shell of 
radiation is joined to Vaidya. The first correct derivation of the matching 
condition for a collapsing fluid with radial heat flow to Vaidya is given in 
N. O. Santos, Mon. Not. R. Astron. Soc. 216, 403 (1985). 

KThe t coordinate can be replaced by the null coordinate u = - a-'r- a 

(I + at I to). Evalualtion of 2m I R at constant u reveals the naked singular
ity. 

E. N. Glass 1977 



                                                                                                                                    

Numerical procedures for sample structures on stochastic differential 
equations 
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Procedures are discussed for the numerical construction of sample processes on stochastic 
differential equations. Structures of a relevant class of Gaussian white-noise functionals are 
analyzed to some closed forms, and new numerical algorithms for single noise problems are 
presented up to the accuracy of O(h 3), or within errors of O(h 7/2), in the sense of the mean
square norm. 

I. INTRODUCTION 

Stochastic differential equations (SDEs) generate con
tinuous Markov processes,l-6 and give versatile representa
tions in a variety of physical problems4,5,7-11 that involve 
additive as well as multiplicative noise terms. Computa
tional accesses to these problems have also been established 
by several numerical algorithms,12-21 that have so far been 
constructed to give the highest efficiency in reproducing ex
pectation values associated with the solution processes. Re
cent physical trends show, however, the enhanced interest in 
high-precision sample structures, raising problems that 
seem to call for some new approaches. We discuss aspects of 
these problems to show possibilities as well as difficulties in 
the numerical integration procedures on SDEs for sample 
structures and high precision. 

The SDEs of our interest relate realizations of the noise 
to those of the solution processes. In a time step h, the incre
ment of the solution process is composed of a set of noise 
functionals that are characteristic to the numerical algo
rithm chosen. The strategies of the existing algorithms are 
almost unanimous in constructing the set of approximating 
random variables that reproduce relevant expectation val
ues, but branch off to two separate groups in the way of their 
implementation. In one line, originated by Rao et al.13 for 
single noise problems, one constructs approximate noise 
functionals so as for all expectation values associated with 
the increment to be reproduced accurately to O(h 2) or with
in errors of O( h 3), These approximate noise functionals are 
then substituted into the precise expressions constituting the 
increment to a preassigned order in h. The algorithm gives 

lim Prob{ lone time step errorl > c} / h 2 = 0 V E > 0, 
h-O ' 

by the Tchebychev inequality 

(1) 

with ( ... ) for expectation values. 
In the other line, originated notably by Mil'shtein, 14 one 

constructs the process increment as a wholel4-21 to a pre
scribed degree of accuracy in h. This strategy is often real
ized by Runge-Kutta type formulations, and culminates in 
the algorithms of Helfand 18 and of Greenside and Helfand 19 
that give expectation values correctly to O(h 3) or O(h 4) for 
additive noise cases. Even the difficult problems with multi-

plicative, multiple noises are now under the control of the 
O(h 2)-accurate algorithms of Klauder and Petersen20 and 
ofMil'shtein21 in this line for expectation values. 

The computational efficiency and the powerful develop
ment of the latter strategy are conspicuous on comparison. 
As (1) indicates typically, the accuracy in sample structures 
is related to the accuracy of expectation values (though with 
intrications and distances). There are also a few established 
statements in this regard.22,20 It is therefore possible in prin
ciple to use the algorithms in the latter line to obtain sample 
structures (cf. Sec. IV further). However, these methods in 
their original use suffer from one serious drawback in prac
tice in that they intrinsically link the noise-solution interre
lation with the h chosen. Hence their solution processes for 
different h cannot refer to the same realization ofthe noise in 
a simple way. An accuracy test of the adopted scheme for the 
choice of the optimal h or of the very scheme itself, would 
require long time or ensemble averages. This is not only cir
cuitous and inefficient but also can form a true hindrance 
when sample structures are of primary importance or the 
system of SDEs is large. 23 

The points remind us anew of a merit in the method of 
Rao et al. that was in fact set forth to give sample structures. 
By its nature the method preserves the exact noise-solution 
interrelation. With the noise functionals obtained 
samplewise on some fine time points, the method constructs 
sample solutions, for varied choices of h or the algorithm, 
that correspond to the same realization of this noise process. 
We shall then be able to infer firmly on the optimal scheme 
or h for long time runs, with only a few sample runs just as in 
the cases of ordinary differential equations (ODEs). The 
informations so obtained will also have value for the use in 
Runge--Kutta type procedures. The problems in this plot 
are, as stated by many authors, whether the necessary noise 
functionals can be obtained with sufficient accuracy at a rea
sonable numerical cost, and whether the intrications arising 
in high precision schemes could be reduced to a manageable 
size. 

This paper shows that they are surmountable in princi
ple, with the analysis of a pertinent class of Gaussian white
noise functionals. We shall find useful structures in these 
functionals, in the general point of view established by Wie
ner24 and ItO.25 The knowledge will give ways of approxima
tions for SDEs, ending in the procedures for single noise 
problems up to O(h 3) accuracy in the root-mean-square 
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sense and revealing another merit of the Rao-Borwankar
Ramkrishna formulation, the implementability of the main 
procedure in forms independent of the specific SDE chosen. 

The paper is constructed as follows. Section II recapitu
lates the perturbation expansion procedure on SDEs, taking 
a way26 to manage intrications and identifying necessary 
noise functionals to be analyzed. The structures of these 
functionals will be clarified in the central Sec. III by the case 
of scalar noise SDEs. The results will be summarized in Sec. 
IV to construct algorithms that extend the Rao-Borwan
kar-Ramkrishna scheme. An application will give insights 
into the possibilities and the limitations of the methods by an 
explicit comparison of accuracy levels for choices of h. Ex
tensions to more general SDEs will also be discussed, includ
ing some observations on multiplicative multiple noise prob
lems. 

Throughout this work Ito's definition will be adopted 
for stochastic integrals by its fundamental facilities. We 
would say that a stochastic process x(t) has an increment 
x(t + h) - x(t) of magnitude O(h P), implying 

lim Prob{lx(t + h) - x(t) I> h P- Ii} = 0, 'd~> O. (2) 
h-O 

If y(t) is an approximation to this x(t) and if the error 
e(t) = x(t) - y(t) is a process with an increment of 
O(h P + 112) or smaller, then we would state thaty(t) is the 
pth degree accurate or has a (p + !) th or higher error. By the 
Tchebychev inequality (1) this is ensured by 
(e2(h» = O(h 2p

). We denote M2 for the space of random 
variables with finite second moments generated from a Wie
ner process B(t) (or such processes) for tET= [O,h]. The 
M2 norm is IIA II = (A 2) 112. Our aim is the procedures accu
rate up to O(h 3) in this norm. We shall always assume that 
stochastic processes to arise are adapted to the Wiener pro
cess(es), with all necessary moments bounded uniformly in 
t. 

II. PERTURBATION EXPANSION 

Let B(t) denote exclusively a standard Wiener process 
characterized by 

B(O) = 0, (B(t» = 0, (B(s)B(t» = min(s,t). (3) 

Consider an Ito SDE,I-3,6 

dx(t) = a[x(t),t ]dt + b [x(t),t ]dB(t), (4) 

where functions a(x,t) and b(x,t) are assumed to have con
tinuous partial derivatives to any necessary degrees and give 
solutions of ( 4) without explosion to times of our concern. 
The Ito stochastic integral equation (SIE) 

x(t) = Xo + i' a[x(s),s]ds + i' b [x(s),s]dB(s), 
10 '0 

(5) 

for to ,t<;.to + h with Xo independent of B(t) - B(to), 
poses the problem of the integration of (4) in the time step 
to -+ to + h. Since B(t + to) - B(to) is another standard 
Wiener process, we take hereafter to = 0 in (5) by redefini
tions of a(x,t), b(x,t), and B(t). The integral 
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S'ob[x(s),s]dB(s) is O(b[x(t),t])XO(h Il2 ) by the 
Tchebychev inequality (1) and a fundamental property of 
Ito stochastic integrals 

(f ;(s)dB(s) f f/!(t)dB(t») = f (;(s)f/!(s»ds. (6) 

In contrast, the drift term S'oa[x(s),s]ds is 0 (a[x(t),t]) 
X O( h ). Ito SIE (5) admits perturbation expansions in pow
ers of h 112, as is well known. 

AnO(h ") procedure on SDE'sthus corresponds to a far 
more difficult O(h 2,,) problem on ODE's. A systematic pro
cess of analysis is important.27 We adopt the explicit €-ex
pansion method. Introduce a parameter € > 0 to be put even
tually € = 1 and take another SIE for O,t,h, 

x(t) = Xo + € f b [x(s),s]dB(s) + ~ f a[x(s),s]ds. 

(5') 

Assuming the expansion 

x(t) = Xo (t) + €X I (t) + ... + €"x" (t) + O(€" + I), 

XO (t) =xo, n>2, (7) 

substituting (7) into (5'), taking formal Taylor expansions 
ofa[x(s),s] andb[x(s),s] about (xo,s) and comparing both 
sides, we obtain a system of equations: 

Xo (t) =xo, XI (t) = f b(xo,s)dB(s), 

X2 (t) = f bx (XO,s)xI (s)dB(s) + f a(xo,s)ds, (8a) 

x,,(t) = f b(,,-I)(s)dB(s) 

+ f a(,,-2)(s)ds, n>2. (8b) 

Here, a(P) (s) and b (p) (s), respectively, denote coefficients 
of eo in a[x(s),s] and b[x(s),s] for xes) of (7), and all sto
chastic integrals in (8a) and (8b) are in Ito's sense. 

Equations (8a) and (8b) may be solved recursively to 
obtain explicit forms of {x k (t) }. To elucidate the process we 
take for the time being the time homogeneous SDE (4) or 
SIB (5) witha(x,s) andb(x,s) independentofs. Introduce 

(9) 

The corresponding solutions of (8a) and (8b) are summar
ized below: 
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xo(t) = xo, 

x] (t) = boB(t) , 

X2 (t) = (!bob] )B2(t) + (ao - !bob] )t, 

X3 (t) = bo (f,bob2 + f,b] 2)B 3(t) + bo (a] - !b] 2 - !bob2 )B(t)t + (aob] - a] bo - !bo 2b2 )110 (t), 

x 4 (t) =bo(i4b02b3 +i4b~ +f,bob]b2 )B4(t) +bo(!a]b] -bob]b2 -!b~ -!b0
2b3 +!a2bo )B 2(t)t 

+ (a] bob] + aobob2 + !bo 2b] b2 - aOb]2 + !bo 3b3 - a2bo 2)111 (t) - b] (a] bo - aob] - !bo 2b2 )110 (t)B(t) 

+ (!aOa] +!b0
2b]b2 -!aOb]2 + Abob] 3 + Ab0

3b3 -!a2bo
2)t 2, 

Xs (t) = c~S) B Set) + C3 SB 3(t)t + c] SB(t)t 2 + d i~) 120 (t) + d g)l]2 (t) + eg)lll (t)B(t) + eg) 110 (t)B 2(t) + g~g)11O (t)t, 
X6 (t) = C~6) B 6(t) + C.\6) B4(t)t + ci6)B 2(t)t 2 + d ~~)1]3 (t) + d i~) 12] (t) + e~~) 1]2 (t)B(t) 

+ ei~) 120 (t)B(t) + e~~) III (t)B 2(t) + e~~) 110 (t)B 3(t) + f~6)t 3 + g~~) III (t)t + h ~~) [110 (t) ] 2 + i~~) 110 (t)B(t)t. 
(10) 

The derivation will be described further in the Appendix, 
with a list of the coefficients in ( 10) for the important case of 
linear b(x). 

If (10) is substituted into (7) and € is putto 1, approxi
mate one-time-step solutions are obtained in the form 

x(n)(h) = Xo + x] (h) + ... + Xn (h), (11) 

for 2<n<6, which are expressed in terms of 

B(h) =Ioo(h), 110 (h), 120 (h), 

III (h), 1]2 (h), 113 (h), 12dh). (12) 

Ifa(x,s) andb(x,s) dependons, theirTaylorexpansionsins 
should be taken in (8a) and (8b) and (10) is modified ac
cordingly. The expression of x( 4) (h) for such a general case 
was given by Rao et al. 13 as their Eq. (3.2), and (10) repro
duces its specialization. The € expansion to n<4 for time 
homogeneous (4) is thus justified. 

The procedure in fact has a wider domain. Let 
{a(x,s),b(x,s)} satisfy for any relevant p and 
(x,s)eRX [O,h ], 

just as polynomials. Take a C 00 function - 1 <p, (X) < 1 with 
p,(X)=.X for IXI<~ and =.sign(X) for IXI>1. Define 

(::) (x,s) =.Np, [ (i:) (x,s)/N], and 

Finally, assume on (4) the uniform convergence 
Ilx(t) - x N (t) 11 ..... 0 for N - 00, Vte[O,h], as one of the com
putability condition. 

Proposition 1: Let SDE (4) generally be time inhomo
geneous. (i) For any nand O<t<h x(n) (t) of (11) approxi
mates x(t) of (5) within an error ofO(h (n + 1)/2) in the M2 

norm, provided a(xo,s), b(xo,s) and their derivatives give 
0(1) coefficients of noise functionals in x(n) (t). (ii) The 
noise functionals of (12) exhaust those that specify the in
crementx(h) toO(h 3) by (8a) and (8b). 
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The proof will be presented at the end of the Appendix, 
showing the applicability of (a) to many component SDEs. 

In order to see the basic structure of ( 10), to measure to 
some extent the performance levels of algorithms based on it 
and to motivate the efforts for higher-precision algorithms, a 
numerical result will now be presented on an example.]S 
Consider an SDE for x(O) = xo, 

dx(t) = (!b 2)x(t)dt + bx(t)dB(t), (13) 

with a real constant b. Without loss of generality, b = Xo = I 
may be assumed by substitutions b 2t - t, XoX -x. The exact 
solution of ( 13) then takes the form 

x(t) = exp[B(t)], (14) 

by Ito's formula. An induction with (8a) and (8b) or a com
parison ofthe list in the Appendix shows that (10) implies 
the following algorithm for n>2, t = kh, k = 1,2, ... with 
x(n)(o) = 1: 

x(n)(t+h) =x(n)(t)Lto [B(t+h) -B(t)]ilzl}. (15) 

Generating standard, normal, and mutually independent 
random variables (SNIRV's, for short) as increments of 
B(t), we may compare the exact (14) with (15) for2<n<6 
on one and the same realization {B(t); t = k{), k = 0,1, .. .} of 
a Wiener process. Table I shows the result of a run in double 
precision for 0<t<32 and {) = 2 -]3 =~. 

III. WHITE-NOISE FUNCTIONALS 

The structure of M 2 , known by the name of Wiener-Ito 
decomposition,24,2s,28,4,5 is the basis of our analysis. The rel
evant facts are summarized in the statements below for later 
convenience. 

Proposition 2: Let{¢Ji (t); i = O,I, ... } be a complete or
thonormal (CON) set of functions in the real function space 
L2 (T) with T=. [O,h], and define SNIR V's {Si} by Wiener 
integrals 

5i=' f ¢Ji(s)dB(s), i=O,I, .... (16) 
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TABLE I. Precision ofalgorithms for various h on the problem dx = (x12)dt + x dB with x(O) = I. 

Procedure h t= 10 

exact 0.32103694608 

2- 4 0.435 029 307 59 
X(2) 2-' 0.38751248243 

2- 6 0.332 172 726 35 
2 -13 0.321 343 528 88 

2 -4 0.297 376 511 30 
X(3) 2-' 0.305 662 475 76 

2- 6 0.31287069732 

2 -4 0.322 700 102 50 
2 -, 0.32151606598 

X(4) 2-- 0.32101600283 
2 -7 0.32106424658 
2 -8 0.32104376343 
2 -Q 0.32103799994 

2 -4 0.320800 347 53 
x(» 2 -, 0.32096297398 

2-- 0.32101487837 

2- 4 0.32105279268 
X(6) 2-' 0.321038 85486 

2-" 0.32103670665 

exact 0.321 03694608 

(i) Denote Hn (S) for the nth degree Hermite polyno
mial, 

Hn(S)==( -l)n exp (!s2)d nexp( -g2)/dS n
, n;;;.O, 

H o(S)=l, HI(S)=S, H 2(S)=S2-1, (17) 

H3 (S) = S 3 - 3S, H4 (S) = S 4 - 6S 2 + 3. 

Let {i(1),i(2),00.,i(m)} be non-negative indices 
n = 1:;;'= I i(k). The random variables 

( ) lIm H; (k) (Sk ) 
y n [i( 1 ),i(2),00.,i(m)] == 

k=1 i(k)!112 

with 

(18) 

for all such possible indices form a CON basis of a subspace 
M in) of M 2 , which in tum gives the orthogonal decomposi
tion (Wiener-Ito decomposition) of M 2 , 

(19) 

(ii) The orthonormal basis yen) [i(1 ),i(2),00.,i(m)] of 
M in) in (18) has the representation, 

yen) = [i(1)!" 'i(m)!] -112 ih 

dB(sd II dB(S2)'" 

1981 

X ('n-I dB(sn) L <PI (s".(\) )<PI (S".(2) ) ... 
Jo treSn 

X <PI (s".[;( I) ] )<P2 (s".[;(\) + I ] )<P2 (s".[;(\) + 2]) ••• 

X <Pm (S".[n - ;(m) + I])" • <Pm (S".(n) ), 
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(20) 

t= 20 t= 30 

0.18569618823 0.096 766 328 22 

0.300 741 105 31 0.201 555500 18 
0.24215403768 0.14466788214 
0.202075261 34 0.108618964 38 
0.18594392765 0.09695418948 

0.16156503495 0.07663805024 
0.172 217 03327 0.086 127013 67 
0.177 24189261 0.090768 928 73 

0.18700766973 0.097 785 453 76 
0.186046203 30 0.09704702655 
0.185721 39243 0.096787291 74 
0.18570660170 0.09677991947 
0.185697357 52 0.096768 15822 
0.18569647247 0.096 766 403 62 

0.18548504310 0.096 556649 94 
0.18563572737 0.096 717 332 33 
0.18567343695 0.096 750 759 66 

0.185707164 51 0.09677460661 
0.185 697 492 23 0.09676741938 
0.18569615620 0.096 766 32698 

0.18569618823 0.096 766 328 22 

where 1T'ESn moves on all permutations in the nth degree 
symmetric group Sn. 

(iii) Let X(SI ,oo.,sn )EL2 (Tn) be an arbitrary nonran
dom function. An iterated stochastic integral 

(h (SI (,"-I 
1] = Jo dB(sl) Jo dB(S2)'" Jo dB(sn )X(SI ,00.,Sn), 

(21) 

belongs to Min), and exhausts the form of its constituents. 
Notes: Since the subjects are known widely, only some 

notes will be in order. (i) refers first to the fact that the space 
Mil) of Wiener integrals is spanned by SNIRV's {SO,SI ,.oo}, 
which is obvious by the correspondence between Mil) and 
L2 (n given by (6) for Wiener integrals. For n;;;.2 (i) fol
lows24.2s,28 from the structure of Mil) and the complete 
orthonormality of Hermite polynomials {Hn (S)/n!1I2} with 
respect to the weight exp( - g 2)/(21T) 112. (ii) is Theorems 
3.1 and 5.1 ofIto;2s,29 the representation (20) is apparently 
intricate but very useful as we shall find. (iii) is the restate
ment of this Theorem 5.1 itself; 1] may be identified with the 
orthogonal polynomial functional Gn (K) ofWiener4 by re
gardingx(sl ,oo"sn) as the restriction ofa permutation invar
iant n!K(sl ,oo.,sn) to SI ;;;.S2;;;.··· ;;;'sn' • 

Hereafter we fix the CON set {<p; (t);i = O,l,oo.}to be the 
one based on Legendre polynomials: 
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P;(t) = (2;,1) -I d;(t2 ~ 1); 
dt' 

(22) 

The Gaussian functionals /00 (h), /10 (h), and /20 (h) are 
now obtained: 

Corollary 3: Let 

/00 (h) =B(h) = h 112S0 , 
/10 (h) = h 3/2 (So!2 + SI 112112 ), 

/20 (h) = h 5/2(SO + ~ +~). (23) 
3 12112 180112 

Proof: These are manifest by Po (t) = 1, PI (t) = t, 
P2 (t) = ~t2 - ~ and (22). • 
The approximations x(2)(h) and x(3)(h) for x(h) are thus 
realized precisely by generating SNIRV's {So} and {SO,SI}' 
respectively, as is well known. 

The next approximation X(4) (h) requires of the nonlin
ear functional /11 (h) = O(h 2). This is by itself a twice iter
ated stochastic integral, 

/11 (h) = i h 

sdB(s) f dB(t)eM?). (24) 

By Proposition 2, it has an expansion in terms of the second
degree Hermite polynomials of {So ,SI , .. .}. The series nota
bly enjoys analytical expressions for coefficients: 

Theorem 4: Define 

{ij' .. m} = i h 

<P; (s)dB(s) f <Pj (t)dB(t) 

x··· i U 

<Pm (v)dB(v). (25) 

The functional /11 (h) has the construction, 

/11 (h) = lim /l~)(h), 
k_ 00 

+ r;-I,;+I 
k (2) } 

;.?I 4(2; + 1 )(2; + 3) 112(2i - 1) 112 ' 

k;>l, (26) 

where r~;2) and rij2) =rlJ) (i=!=j) are second-degree normal
ized Hermite polynomials in a modified notation of ( 18), 

Proof: The random variables {r}fl;i<k} of (27) exhaust 
the case n = 2 of (18) and their expressions as iterated sto
chastic integrals follow from (20). They form a CON system 
in Mi2

), so that /11 (h) has the expansion 
/11 (h) = h 2 :Ijc;k DJkrJfl with Djk = (h -2/11 (h)rJf». 
Evaluation of Dii with (6), (25), and (27) gives 
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Dii = h -2(2!)112 f s<p;(s)ds f <p;(t)dt 

= 2 -5/2(2i + 1) J~ I (s + I)P;(s)U;(s)ds 

= 2 - 5/2(2i + 1) [4010 - 2 - I J~ I UT(S)dS]. 

where we introduced 

U;(S)=J~,P;(t)dt. (28) 

Rodrigues' formula (22) proves 

UO=PO+PI ' U;=(-P;_I +P;+I)/(2i+l), i;>l, 
(29) 

resulting in the r~/) parts of (26) by the orthogonality of 
Legendre polynomials. Similarly, O<i <j yield 

Dij = Dj; = 8 - 'h 2 [(2i + 1 )(2j + 1)] 112 

X J~ I (s + 1) [P; (s) l0 (s) + U; (s)Pj (s)] ds 

= - 8 -I[ (2i + 1) (2j + 1)] 112 J~ I U;(s) l0(s)ds. 

In view of (29), the proof of (26) is completed. • 
The next functional /12 (h) is ~th degree in h, and has the 

decomposition into iterated stochastic integrals: 

/12 (h) = /20 (h) + 2J(h), /20 (h)eMi l
), 

J(h)= f sdB(s) f dB(t) f dB(u)eMi3). (30) 

By (20) the subspace M i3
) is spanned by thefollowing CON 

basis for distinct i,j, and k in all possible combinations: 

r~;~) = 3! - 112H3 (S;) = 3! - 112(S ~ - 3S;) = 6112{iii}, 

r~J) = 2! - 1/2H2 (S; )HI (Sj) = 2! -1I2(ST - 1 )Sj 

= 2112 ({iij} + {iji} + Un}), 

rW = HI (S; )HI (Sj )H, (Sk) = S;SjSk 

= {ijk} + Uki} + {kij} + {ikj} + {kji} + {jik}. (31) 

Sorry to say, systematic expressions could be found for only 
a portion of expansion coefficients of J(h). Several signifi
cant ones among them have thus to be evaluated, respective
ly. In order to make this and the subsequent procedures re
producible, we prepare two auxiliary statements. 

Auxiliary Lemma A: 

(i) PoP; = Pi> i;>O, 

(ii) PIP; = [iP;_1 + (i + l)P;+ I ]/(2i + 1), i;;d, 

(iii) P2P; =3i(i-l)P;_2/[2(2i+ 1)(2i-l)] 

+ (i + l)iP;I[(2i + 3)(2i - 1)] 

+ 3(i + 2) (i + l)P;+ 2/[2(2i + 3)(2i + 1)], 

i;>2. 
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Proof: These are Neumann's formula proved in pp. 83-
87 of Hobson. 30 The recurrence formula of Legendre poly
nomials will also prove (ii) and (iii) readily with simple 
algebra. • 
Auxiliary Lemma B: There hold 

UOUi = - U - I)Pi_ 2/[(2i + 1)(2i - 1)] 

- Pi _ I I (2i + 1 ) 

-P/[(2i+3)(2i-l)] +Pi+ I /(2i+ 1) 

+ U+2)Pi+ 2/[(2i+3)(2i+ I»), i>O, 

Ui = -(sPo - 1IP2 + i3P4' 

r
(3) r(3) + __ 12_2 _ _ 113 

611284 1411260 

II + 1014 + ,. 1/044( 
3 

) 1/(3 ) ] 

-..;....:...---- E12~12 , 
2112308 31/2280 

Here, ;12EMi3) is a random variable orthogonal to the rest 
of (32) with (;\2) = 0 and (;i2) = 1. 

Proof: Equations (6) and (31) imply 

(Jr~i~» = h 512(2i + 1 )3/26 - 112 

X[6iO -16-
1 f~1 U/(S)dS], 

(Jr~J» = - h 5/2(2i + 1 )(2j + 1) 1122 - 9/2 

X f~ I U/(s) ~ (s)ds, 

(Jrijl» = _h 5/2 [(2i+ 1)(2j+ 1)(2k+ 1)] 1122- 4 

X f~ I Ui (s) ~ (s) Uk (s)ds. 

UI U2 = i3P I - -!3P3 + i3P5' 

UI U3 = - ~Po + iIP2 - -M,P4 + rl1P6' 

U~ = ~Po - tsP4 + 2hP6' 

Proof: Straightforward applications of the preceding 
lemma and (29). • 

We are now at a position to prove the following 
theorem. 

Theorem 5: The functional J(h) in 
1\2 (h) = 120 (h) + 2J(h) has the following orthogonal ex
pansion in terms of the basis (31), arranged in the order of 
decreasing magnitude for coefficients: 

I 

1/(3) 
1023 

(32) 

Some others, such as (Jrm) or (Jrm), vanish identically 
by symmetry. • 

The next functional 121 (h) = O(h 3) is a twice-iterated 
stochastic integral, 

121 (h) = i h 

r dB(s) f dB(t)EMi2). (33) 

In effect, its expansion need be considered only in terms of 
{SO ,51 ,52}' The result is given below. 

Theorem 6: The functional 121 (h) admits an orthogonal 
decomposition, 

E =_1_ 
00 8112 ' 

31/2 
EOl =--, 

10 

It is straightforward to evaluate coefficients in (32) consecu-
tively with (29) and Auxiliary Lemma B. The expression El1 = - 11(2112 10), E\2 = - 11(15112 14), 
(32) was constructed by choosing terms that do not involve 
{si;i>6}. Subtraction of the squares of obtained coefficients E22 = - 11(211284), 
from (J2(h» = h 5110 gives Ei2' Any residual term does 
not exceed EI2 in magnitude and is omitted. Among these are E21 = (247/352800) I12=i= 2.646 X 10 - 2, (34) 

h - 512(Jr~~D = - 11(2112468), 

h - 5/2(JrMD = 11(55112126) 

and so forth, derived by extending Auxiliary Lemma B or by 
direct integrations of products of Legendre polynomials. 
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where ;21 is a random variable in M i2
) with (;21 ) = 0 and 

(;il) = 1. 
Proof: The orthonormal basis {rij2)} of (27) for Mi2) 

gives 
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Eii = (h -312I ri;2» 

= 2!1/2h - 31h ~,p; (s)ds f ,pi (t)dt 

(2~t21) [80;0 - f~ I (s + 1) U;(S)dS] 

(2i + 1) [II ] 80;0 - _ I Uo (s) U; (s) U; (s)ds • 2712 

Eij = (h - 3121 rij2» 

= _ (2i + 1) 112(2j + 1) 112 II U
o 

(s) U. (s) U. (s)ds. 
8 -I I J 

Auxiliary Lemma B at once proves (34). • 
The final functional 113 (h) = O(h 3) is decomposed as 

1\3 (h) = 3121 (h) + 6K(h). 

K(h) = f sdB(s) f dB(t) f dB(u) IoU dB(v)EM~4>. 
(35) 

Again. those Hermite polynomials composed of {50 .51 .52 } 
only are needed practically for the representation of K(h). 
The following forms. for distinct i. j. and k obtained from 
(20). exhaust such relevant orthonormal basis of M ~ 4 >: 

= 3!1I2({iiij} + {iiji} + {ijii} + {jiii}). 

ri~> = 2! -1(5/ - 1)(5/ - 1) 

= 2! ({iijj} + {ijij} + {jiij} 

+ {jjii} + {jiji} + {ijji}) , 

riJ2 = 2! - 112(5/ - 1)5j5k 

= 2!112( {iijk} + {iikj} + {ijik} + {ikij} 

+ {ijki} + {ikji} + {jiik} + {kiij} 

+ {jiki} + {kiji} + {jkii} + {kjii}). 

(36) 

Theorem 7: The functional K(h) in 
1\3 (h) = 3121 (h) + 6K(h) admits the orthogonal decom
position 

K(h) = h 3 [ L Fijkm rij1~ + E\3;\3 ]EM ~4>, 
0<;<J<k<m<2 

where the random variable ;\3 has (;\3) = 0 and 
(;\3 2) = 1. In decreasing order of magnitude, the coeffi
cients are as follows: 

1984 

FOOO2 = 1/(30112 14). F0111 = 3/(21/2280), 

FcYJI2 = - 1/(3011228). Foo22 = - 1/252, 

FOll2 = 1/( 10112 168), FI122 = - 1/924. 
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F2222 = - 5/(6112 12012). F0222 = 5112/(6 112 1848). 

Fl112 = F1222 = O. 

E\3 = (3009 367/64929664 800) 112* 6.808 X 10 - 3. 
(37) 

Proof' The procedure is now a routine. By (6) we have 

Fiiii =4!- 1122- 5(2i+ 1)2[250;0 - f~1 U;4(S)dS]. 

FUij = -3!- 1122- 5(2i+ 1)3/2(2j+ 1)112 

X f~ I U/(s) ~ (s)ds. 

F;ijj = - 2 - 6(2i + 1 )(2j + 1) II u/(s) ~ 2(s)ds. 
-I 

F;ijk = - 2 -11I2(2i + 1)(2j + 1)112(2k + 1)112 

X f~ I U/(s) ~ (s) Uk (s)ds. 

Auxiliary Lemma B consecutively proves (37). 

IV. NUMERICAL PROCEDURES 
AND GENERALIZATIONS 

• 

Define E\f> = h -211111 (h) - 1\}>(h)1I with 1\}>(h) of 
(26). Consider the O(h 2) approximationx(4) (h) tox(h). 31 
An algorithm for the integration ofSDEs is obtained by re
placing 111 (h) in X4 (h) with 1\}>(h). The error is then 
O(h 512) + O(h 2E\f» by Proposition 1 (i) and (10). with 
100 (h) and 110 (h) tenable free of error by Corollary 3. This 
algorithm is thus valid as an O(h 2) scheme if h 2E\}> <..h 512 or 
h;;;'E\}>2 holds true: 

Proposition 8: The O(h 2) algorithm x(4)(h) of (11) is 
obtained by generating k + 2 SNIR V's 
{50.51 ... ·.5k+l;k;;;.0}, constructing 100 (h) and 110 (h) by 
(23) and approximating III (h) with I \~> (h) of (26). For a 
fixed integer k;;;.O the available number 1/ h of division of the 
unit time interval should be in the range 

(38) 

Conversely. the scheme for a given h. i.e .• for the assigned 
nominal precision of O(h 2) or within the nominal error of 
O(h 5/2). is realized by taking 1\}>(h) of (26) for 111 (h) 
with k fulfilling (38). 

Table II shows 1/h ~~ (k) for some relevant values of k. 
Take the algorithm based on X(5) (h) with the nominal 

error of O(h 3). The error in the approximation of III (h) in 
X4 (h) by 1\}>(h) should now satisfy h 2E\}><..h 3. or 

1/h<..1/h ~i~ (k) == 1/E\}>. (39) 

The rhs of (39) is also shown in Table II. For simplicity we 
discuss only the case k;;;.3 for II}>. assuming SNIRV's 
{50.51 ..... 54} to be generated always. Functionals needed 
anew are 120 (h) and 112 (h) in X5 (h). The former is given by 
(23) precisely. The approximation (32) forJ(h) in 112 (h) 
involves an error of O(2h 512EI2 ). requmng 
1/h<..1/(2E12 )2*7652. This is practically not a restriction. 
Also. the error arising from l\f>(h)B(h) in X5 (h) may be 
ignored by B(h) = O(h 112). Altogether we have the follow
ing proposition. 
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TABLE II. The maximum number of division of a unit time interval ad-
mitted in the approximation I:~) of (26) for I". 

k IIh~~ (k) IIh :';i~ (k) IIh ~~ (k) 

0 144 12 5.24 
1 1800 42.43 12.16 
2 6533 80.83 18.69 
3 15876 126 25.13 
4 31363 177.10 31.54 
5 54531 233.52 37.92 
6 86914 294.81 44.30 
7 130050 360.62 50.66 
8 185474 430.67 57.03 
9 254722 504.70 63.39 

10 339329 582.52 69.75 
11 440833 663.95 76.11 
12 560 769 748.85 82.46 
13 700 673 837.06 88.82 
14 862081 928.48 95.17 
15 1046529 1023 101.53 
16 1255553 1120.51 107.88 
17 1490689 1220.94 114.23 
18 1 753473 1324.19 120.59 
19 2045441 1430.19 126.94 
20 2368 129 1538.87 133.29 
21 2723073 1650.17 139.64 
22 3111 809 1764.03 145.99 
23 3535873 1880.39 152.35 
30 7622529 2760.89 196.80 
40 17638528 4199.82 260.31 
50 33952 128 5826.85 323.81 

Proposition 9: The O( h 5/2) algorithm x( 5) (h) of ( 11) is 
implemented by generating SNIRV's {SO,SI "",Sk+ I ;k>3}, 
constructing 100 (h), 110 (h), and 120 (h) by (23), replacing 
111 (h) with I\~)(h) of (26) and constructing J(h) in 
112 (h) = 120 (h) + 2J(h) by (32). The restriction (39) puts 
the lower bound, of available h for a given k or of k for a given 
h. 

Consider x(6)(h) as the final of the algorithms. The er
ror from I \~) (h) in X 4 (h) is now required stringently to be 
less than O(h 7/2), resulting in 

(40) 

whose rhs is given in Table II. Similarly, the error from the 
approximation (32) for J(h) in 112 (h) should fulfill 
1/h< 1/(2E12 ) = 87.47. For 121 (h) and 1\3 (h) in X6 (h) the 
errors in the approximations (34) and (37) give rise to re
strictions 1/h<1/~1 = 1428 or 1/(6E\3)2 = 599, which are 
in effect not restrictive. We conclude: 

Proposition 10: The O(h 3) algorithm X(6) (h) of (11) is 
implemented by generating SNIRV's {SO,SI '''',Sk+ I ;k>3}, 
constructing 100 (h), 110 (h), and 120 (h) by (23), approxi
mating 111 (h) with I\~)(h) of (26), J(h) in 112 (h) with 
(32), and 121 (h) and 1\3 (h) with (34) and (37), respective
ly. The restriction (40) together with 
1/h< 1/(2E12 ) = 87.47 limits the available smallest h or the 
tenable highest total precision O( h 3) > 1.494 X 10 - 6 for a 
given k. 

Proposition 10 calls for a suitable prescaling of time 
t-+tot for the implementation of the x(6)(h) scheme, in or-
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der to make the transformed ( 4 ), 
dx(t) = toa(x,tot)dt + to 1I2b(x,tot)dB(t), fulfill the 
proviso in Proposition 1 (i). The number of terms in x( 6) (h ) 
depends strongly on SOEs, usually increasing very rapidly 
from that of x(5)(h) or x(4)(h) as shown in the Appendix. 
Therefore, a rather small to may be necessitated, spoiling the 
virtue of X(6) (h).20 With this reservation, we may summa
rize that our O(h 3) procedure in general allows for the lar
gest h if a nominal precision 1.494 X 10 - 6 suffices. The 
O(h 5/2) or O(h 2) procedures do not give the largest h for 
this or lower level of accuracy, but their nominal precision 
may be made very high by a small enough h but for the 
accumulation of errors due to many time steps.20 

We now observe an example, in order to see these and 
other problems in rescaling SOEs, to present a systematic 
comparison of the actual precision associated with proce
duresx(4) (h), X(5) (h), andx(6) (h), and also to show a meth
od to construct x(6)(h) for very small h beyond the limit 
h ~~ in (40) . We consider the Stratonovich model,8,32 

dx(t) = [(e + b 2/2)X - x 3 ]dt + bx dB(t) , x(O) = x o , 

(41 ) 

for the case b = e = X o = 1. This corresponds to the Straton
ovich SOE dx = (ex - x 3 )dt + bx dB(t). The parameter 
values stipulate x(t) > 0 for all t, with the stationary proba
bility density peaked at x = 1/2112. 

In order to compare the results for a wide range of hand 
also to realize the procedure x(2)(h) for comparison on a 
very fine time step 8 = 2 - \3 = 1/8192 that divides the 
aimed h into N = h /8 subintervals, noise functional incre
ments were generated at every 8. The precise construction 
with C(s) =B(t + s) - B(t), 

lij(t+8) =Iij(t) + [ (t+s)i[B(t) + C(s)]jdC(s), 

(42) 

of noise functionals was used to obtain them att = k8, k = 1, 
2, ... ,N. The increments tl.lij(8) = SgsiC(S)j dC(s) were ap
proximated by IW)(8) of (26), (32), (34), or (37). These 
were then substituted into (42) to obtain I ij (h) for h = N8. 

Theerrorin/l1 (h) is now 82E\i2)N = 8hEW). This is smaller 
than h 7/2 if 1/h«tJEW» -2/5 = 731. Similarly, the error in 
/12 (h) is 285

/2E12 N = 283
/
2E12h and should be smaller than 

h 712. This gives a nonrestrictive condition 
1/h< (283

/
2E12 ) - 2/5 = 1333. Errors in /21 and 1\3 are esti

mated likewise, and seen to be negligible comparatively. 
Thus the accuracy of x(6)(h), not to mention x(4)(h) and 
X(5) (h), for h> 1/256 = 2 - 8 could be examined without be
ing marred by the errors in the noise functionals. 

Table III shows the results obtained in double precision. 
The third-degree scheme X(6) (h) shows convergence at the 
time step h = 1/256 with excellent stability. Other proce
dures showing traces of oscillations are still on their way to 
convergence in this range of h. For a long run, therefore, this 
problem should be rescaled by t-+t /4, and the approxima
tion X(6) (h) with 1\:°) (h) (say) and h = 1/64 will be the 
best, though its excellence is not so overwhelming as the 
example (13). 
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TABLE III. Results for the stochastic model ofStratonovich dx = (3x/2 - x 3 )dt + x dB with x(O) = I. 

Procedure h t= 10 

X(2) (t) 2 - J3 0.256 382 469 24 

2- 4 0.255981 50881 
2- 5 0.25565062658 

X(4) (t) 2 -6 0.256147 13234 
2 -7 0.256294341 55 
2 -8 0.256320961 89 

2 -4 0.255 406 89022 
2 -5 0.256 324 185 42 

x(S) (t) 2 -6 0.256 289 102 97 
2- 7 0.256 302 139 97 
2- 8 0.25631461606 

2- 4 0.25565371694 
2 - 5 0.255767091 39 

X(6) (t) 2- 6 0.256 278 889 20 
2- 7 0.256 294 239 80 
2- 8 0.256 313 50609 

In so far as the SDEs contain only a single noise, the 
procedures of this section apply even if many degrees offree
dom enter. As the list in the Appendix shows, all functionals 
of ( 12) arise in a general additive noise problem. However, a 
class of physical Brownian motion processes obeying 

dx(t) = u(t)dt, du(t) = - [pu - f(x) ]dt + 0' dB(t) , 

for possibly nonlinear f(x) with constants P > 0 and 0', enjoy 
a drastic simplification; only Gaussian functionals B(h), 
110 (h), and 120 (h) are needed for X(6) (h). This scheme is 
undoubtedly the best to be adopted for them. 

Multiplicative multiple noise problems in general still 
remain difficult,21 however, in the present formulation by 
the appearance of stochastic integrals 

L(h) == f dB(s) f dC(t) 

and 

M(h) == f dC(s) f dB(t) 

in the O(h) terms of the perturbation series, where C(t) is 
now a standard Wiener process independent of B(t). Define 
1]i ==f~¢i (s)dC(s), besides {sJ of (16). 

Proposition 11: L(h) has the orthogonal decomposition, 

L(h) = L (k)(h) + h€(k)Sk' 

k 

L (k)(h) ==h{2 - ISO 1]0 + I [4(2i + 1 )(2i - 1)] - 1/2 

;=1 

X(Si1]i-1 -Si-l1]i)}' (43) 

€(k) = [2(2k + 1)] - 1/2, (Sk) = 0, (s/) = 1. 

The integral M(h) is obtained by interchanging UJ and 
{1]J. 

Proof' The functional L (h) is bilinear in {sJ and {1]j}' 
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t= 20 t= 30 

0.601 45725665 0.432718411 24 

0.595 832987 09 0.42664657169 
0.600 44915039 0.432 14687008 
0.601 21258807 0.432 525 031 63 
0.601272 18986 0.432 709 008 71 
0.601 395083 17 0.432 680 583 51 

0.597028656 14 0.433 72408846 
0.601 006203 14 0.431 800 304 17 
0.60144934243 0.432 511 385 58 
0.601 390 592 25 0.432 597 845 83 
0.60141721645 0.432 666 576 76 

0.598601 87409 0.433 605 266 42 
0.600 798 600 11 0.43165862138 
0.60133140120 0.432 596 268 50 
0.601 38343485 0.43265831290 
0.60141630373 0.432 673 848 02 

and the set {Si1]j; iJ>O} forms a CON basis for the represen
tation L(h) = I.ij GijSi1]j with Gij = (L(h)Si1]j)' Ito's for
mula and (6) give 

Si1]j = f ¢i (s)dB(s) f ¢j (t)dC(t) 

+ Soh ¢j(s)dC(s) f ¢i(t)dB(t), 

Gij = {4 -Ih [(2i + 1)(2j + 1) ]1I2} f~ I Pi(s)~(s)ds. 

The coefficients of L (k) (h) in (43) are obtained by (29), 
together with 

(€(k)2= ([L(h) -L(k)(h)]2)lh 2 

k 

=2- 1{1_!_ I [(2i+l)(2i-l)]-I} 
;=1 

= [2(2k + 1)] -I. • 
Sorry to say, the series ( 43) converges extremely slowly. 

Even for the use in X(2) (h), a given h for the nominal error of 
O(h 3/2) requiresk tofulfillh>1I[2(2k + 1) ],orakchosen 
inevitably introduces an error greater than 
[2 (2k + 1)] - 3/2. The approximation based on (43) is thus 
not useful. Though similar closed forms for L(h) may be 
obtained for different choices of CON system {¢i (t)}, 33 the 
circumstance is not improved. 

Klauder and Petersen20 gave an algorithm accurate to 
O(h 3/2) in the M2 norm, which includes the SDEs 

dL(s) = C(s)dB(s), dM(s) = B(s)dC(s), 

for L(s) and M(s). The algorithm gives an approximation, 
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LKP(t+h) =LKP(t) +hll2[B(t) + (hI2)1I2X ]W, 

MKP(t+h) =MKP(t) +h l12 [C(t) + (hI2)1I2W ]X, 
(44) 

with SNIRV's h,w} for the increments of B(t) and C(t). 
As a numerical procedure the improvement from (43) is 
drastic, as with other possible formulations of Mil'shtein. 21 

If we need to compare, samplewise and at any cost, the 
accuracy of schemes for SDEs with multiple, multiplicative 
noises, it might be advisable to use ( 44) in the context of the 
preceding example to obtain noise functionals, and apply 
them to O( h 2) Rao-Borwankar-Ramkrishna type formula
tion. The existence of Klauder-Petersen and of Mil'shtein 
algorithms is invaluable. The procedures for noise function
als are independent of the structure of the SDE to be treated. 
Their direct installation in computing libraries is possible 
and will greatly facilitate the integration of SDEs as dis
cussed in this work, evoking wider applications. 
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APPENDIX: PERTURBATION SERIES 

Since the system is time homogeneous, the first two 
equations of (8a) are solved at once by Xo (I) and x I (t) of 
(10). The last equation of (8a) then gives 

X2 (t) = C
2 

(2) B 2(t) + II (2)t, 

C (2) - Ib b ~ (2) - a c (2) 
2 - 2 0 » JI - 0 - 2 . 

The explicit form of the equation for X3 (t) is 

it [ b2 xi (s) ] 
X3 (t) = 0 b l X2 (s) + 2! dB(s) 

+ f alxl (s)ds. 

Using Ito's formula, 

(Al) 

B 2(s)dB(s) = jdB 3(S) - d [B(s)s] + sB(s)dB(s), 

we obtain 

X3 (t) = C~3) B 3(t) + C\3) B(t)t + d g) 110 (t), 

with 

C~3) = (2bl ci2) + b ~b2 )/3!, 

C\3) = -bICf)-~b~b2 +albo, 

d \~) = - C\3) + bd\2). 

The next equation is 

1987 

X4 (1) = f [b l X3 (s) + b2x I (S)X2 (s) 

b X
3

(S)] + 3 I dB(s) 
3! 
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(A2) 

Substituting the preceding results and reducing all (stochas
tic) integrals to combinations of the functionals of ( 12) by 
Ito's formula, we arrive at the following: 

X4 (I) = c~4)B 4(t) + ci4) B 2(t)t + d \1)111 (I) 

+ e\ri) 110 (t)B(t) + li4)/ 2, 

C~4) = (b6 b3 + 6blc~3) + 6bob2cf»/4!, 

ci4) = - 6C~4) + al ci2) + !a2b~, e\ri) = bl d \6), 

li4) = ~( - ci4) - ejri) + ad\2», 

d \1) = - 2ci4) + bl C\3) + bobJ\2) - e\ri). (A3) 

Equations (AI )-(A3) are solved to the first half of (10), 
the result of Rao et al. 13 

The procedure continues straight, but terms increase 
very rapidly. We note only the generating formulas for coef
ficients. The functionals for X5 (t) are as noted in (10). Their 
coefficients satisfy: 

c;S) = H bl C~4) + bob2C~3) + !b2 (ci2»2 

+ ~b~b3Cf) + brib4/4!], 

u\S) =alcp) +a2boci2) +ia3b 6, 

C(5) - _ 10c(5) + U(5) e(5) - I (b e(4) + b b d (3» 
3 - S I' 10 -2 I 10 0 2 10 , 

eli) = bId \1), uiS) = !(a l C\3) + a2bof\2», 

C\5) = 15c;5) - !e\i) - e\g) - ~u\S) + uiS), 

g\g) = - e\g) + al d \6), 

dig) = - 15c;5) + bdi4) + ~b2 (/\2»2 

+ ~e\i) + 2e\g) + ~u\S) - uiS) - al d g), 
d g) = 30C;5) + bl ci4 ) + bob2cP) + b2c?)/\2) 

+ ~b~b3/\2) - !e\i) - e\g) - 3U\5). (A4) 

Finally, using one intricate result of Ito's formula 

110 (s)B 2(s)dB(s) 

= d{ - j/l3 (s) + 2/21 (s) - !B 2(s)r 

+ js3 + jllO (s)B 3(S) - 110 (s)B(s)s + H 110 (s)] 2}, 

which is confirmed by taking the differential of the rhs, we 
arrive at the following: 

C(6) - I [b C(5) + b b C(4) + b C(2)C(3) + Ib 2b C(3) 
6 -ij ISO 2 4 2 2 3 2 0 3 3 

+ !bob3 (ci2»2 + ib6b4C?) + bgbsI5!], 

U(6) - a C(4) + a b C(3) + la (C(2»2 
1-14203222 

+ ~a3b~ci2) + a4 bri/4!, 

- 15c(6) + U(6) e(6) - I(b e(S) + b b d (4» 
6 I' II -2 I 11 0 2 11 , 

e(6) - I(b e(S) + b b e(4) + b c(2)d (3) + Ib 2 b d (3» 
10 - J I 10 0 2 10 2 2 10 2 0 3 10 , 

U(6) - a C(4) + a b C(3) + a C(2) ~(2) + la b 2 ~(2) 
2-12 201 22JI 23oJI. 

e\~) = bl d g), eig) = bl dig), 

C(6) - 45c(6) _ le(6) _ e(6) _ 3e(6) 3U(6) + IU(6) 
2- 6212 11 210- 122' 

g\~) = - e\~) + a l d \1), 
U~6) = !(blg\g) + bJ\2)d \~», 
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ui6) = a l e\~) + a2 bod \6), i\8) = - e\8) + ui6), 

h \8) = U~6) - !i\8), 

d \~) = 6OC~6) + b l c~S) + bob2 ci4
) + b2 ci2)cl J

) 

+ b2C~J)f\2) +!b ~bJc\J) + bobJci2)f\2) 

+ Ib 3 b r(2) _ e(6) _ e(6) e(6) _ 4U(6) 
6 0 4J I 12 II - \0 I , 

d if) = - 90C~6) + bl ciS) + bobJi4) + bJl2)cP) 

+ !bobJ (/\2»)2 - ei8) + e\~) + 3e\~) + 6el8) 

+ 6U\6) - ui6) - al d \~) - ui6), 

f~6) = - 15c~6) - jei8) + ie\~) + je\f) + e\8) - ju~6) 

+ U(6) _ IU(6) + la f(4) + la (/{2»)2 _ IU(6) 
I 62 312 62 I 64' 

(A5) 

Generating Eqs. (AI)-(A5) were solved with RE

DUCE26 on a FACOM M-780/30 System at Kyoto Universi
ty. Since the expressions are massive, we note below only the 
significant case of linear b(x), with bk = 0 for k>2: 

1988 

ci2
) = bl bo/2!, f\2) = ao - !bl bo' 

cf) = b f bo/3!, c\J) = bo (a l -!b f), 
d\6)= -albo+aobl , 

ci4
) = b ~ bo/4!, ci4

) = bo (!a l bl -!b ~ + !bOa2), 

d\~)=alblbo -aobf -b~a2' 

e\~) = - bl (a l bo - aobl ), 

fi4) =!alao -!aobf +!b~bo -!b~a2' 

c~S) = b ~ bo/5!, 

c~S) = bo (ial b f - i2b ~ + !bl bOa2 + ib ~a3 ), 

cIS) = bo qaf - !al bf + !aOa2 + !b~ 
-!blboa2 -!b~a3)' 

d i~) = !af bo - !al aobl - !aObOa2 

+ !bl b~a2 + !b6a3' 

dg) = -!b~(bla2 +bOa3), 

e\~) = bl (alblbo - aobf - b~a2)' 

el~) = -!b f (a l bo - aobl ), 

g\~) = -afbo +alaobl +!albfbo -!aobL 

C~6) = b ~ bo/6!, 

ci6
) = Jsbo (2a l b ~ - b i 

+ 14bfboa2 + 12blb~a3 + 2b6a4)' 

ci6)=!afblbo -!alb~bo +ialb~az 

+!aob~ +!aoblboaz +!aOb~a3 +-ft.b~bo 

-!bib~az -jbl b 6a3 -ibcia4, 

di~)= -!afblbo +!alaobf +!alb~bo +!alb~az 

-!aob~ -!aOblboa2 -!aob~aJ -!bfb~az 

+ ibl b6a3 + !b~a4' 
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d\~) = -jalb~bo +!aob~ +!bfb~az 

- jb l b 6aJ - ib ~a4' 

ei8) = bl qaf bo - !al aobl - !aoboaz 

+!blb~a2 +!b6a3), 

e\~) = - !bl b ~ (b l a2 + boaJ), 

elf)=!bf(alblbo -aobi -b6az), 

e\8) = - ib ~ (a l bo - aobl ), 

f~6) =iafao +i2aiblbo -jalaobf +f4alb~bo 

-ialb 6a2 +ia6az +i2aob~ -!aOblboa2 
-i2aob~aJ -Jsbibo +!bfb~az +!blb6aJ 

+f4b~a4' 

g\~) =afblbo -alaobi -!alb~bo -alb~a2 

+ !ao b i + !b i b ~ a2 , 

h \8) = !boaz (a l bo - aobl ) 

i\8) = -aiblbo +alaobi +!alb~bo 

- al b ~az - !aob i + aobl boaz· 

The work is closed by the proof of Proposition 1. 
(i) The formal Taylor expansion used was 

a [xo + EXI + cXz + ... + EnXn + ... ,s] 

= a(xo,s) + L a(j)(s)(EX I + cXz 
j;;d 

+ ... + EnXn + ... )j 

== L Ekak (s), 
k>O 

ao (s) = a(xo,s), al (s) = a{\)(s)x l , 

ak (s) = L cpq ... r (s)xpXq ... Xr, 
p+q+"'+r=k 

(A6) 

with a(j) (s) ==aja(xo,s)laxio, where cpq ... r(s) is a linear 
combination of a a(j) (s)'s. Similarly we have 

b [xo + EX I + cX2 + ... + EnXn + ... ,s] = L Ekbk (s), 
k>O 

bds) = L dpdq ... r(s)xpXq·"xr' (A7) 
p+q+"'+r=k 

These give (Sb) an explicit form: 

Xn (S)· = p+ ... .f;= n _ 2 f Cp ... r (t) Xp (t) .. 'Xr (t)dt 

+ p+ '" .f;=n-I f dp ... r(t) Xp(t)"·xr(t)dB(t). 

(AS) 

Denote D==h (n+ \)/2. By assumption there is No that 
gives IIx(t) - XN (t) II = OeD) for O,t,h, 'tIN>No. We fix 
any such N, and show that the nth iteration xJ;) (t) based on 
(Sa,b) for {aN (x,s),bN(x,s)} approximates x N (t) within 
an error of O( D). This suffices, at least for a fixed realization 
of X O, because the coefficients {cp ... r (s), dp ... r (s)} construct
ed with {aN(xo,s),bN(xO's)} by (A6) and (A7) for SE[O,h] 
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become identical for a large enough N with those of 
{a(xo,s),b(xo,s)} implyingx~) (s) ==x(n) (s). 

By the assumptions on {a(y,s),b(y,s),jt(X)} the func
tions {aN (y,s) ,b N (y,s)} and their y-derivatives are uniform
ly bounded in (y,s)eRX [0, h). From now on the subscript 
Nwill be deleted from aN (y,s) , bN(y,S) andx~) (t). Induc
tion shows that the corresponding x p (t) determined conse
cutively by (AS) is O(h p12) for O<t<h, proving in turn that 
ap (s) and bp (s) are O(h PI2) by (A6) and (A7). Call the 
rhs of (5) as the Picard mapping of {x(s); O<s<t<h} and 
denote (5) as x(t) = P[x(s) ](t). Just as the existence 
proofs ' -3.6 for SDEs we transform x(n) (t) by P: 

x'(t) ==P [x(n)(s)] (t) 

= Xo + f a[x(n)(s),s]ds + f b [x(n)(s),s]dB(s). 

Define R(t) ==x'(t) - x(n) (t), the residual term, 

R(t) == f {a[x(n)(s),s] - :t: a(P)(s)}ds 

+ f {b [x(n)(s),s] - :t~ b (p)(s)}dB(s). 

Taylor's formula applied on a [x(n) (s),s] and b [x(n) (s),s] 

about (xo's) proves IR (t) I <CN£5, with N dependent but fi
nite CN' Thus P [x(n) (s)] (t) = x(n) (t) + 0(£5) holds true. 
Further P-iterations on x'(t) change the form of R(t), but 
not its order of magnitude. Since P k [x(n) (t)] is known to 
converge in M2 t uniformly to the solution x(t) ==XN (t) of 
(5) as k -+ 00, a sufficiently large k gives for O<J<h, 

P k [x(n) (t)] = x(t) + 0(£5) = x(n) (t) + 0(£5). 

The above was for infinitesimal h. A small but finite h mani
festly necessitates the proviso. 

(ii) The preceding analysis and Ito's formula clarify 
that the general form of a term in the iteration (Sa) and (Sb) 
or (AS) with Taylor expanded ap (s) and bp (s) is as fol
lows:27 

Ih Sk(1) dBI (s) IS Sk(2) dB2 (t) f " ·lu 

sk(m) dBm (v). 

Here, dBj (u) is either du or dB( u) with k(j) >0. Time inte
grals may be deleted by partial integration or by 

f t k - I dt f dB(u)f(u) 

= ~ [Sk f dB(t)f(t) - f t k 
dB (t)f(t) ] , 

for k> 1. Thus any term in the expansion ( 11 ) up to O( h 3) is 
expressed exclusively by combinations of 

f si dB(s), j = 1,2, 

f si dBCs) f t k dB(t), j + k = 1,2, 

fsidB(S) f tkdB(t) f umdB(u), j+k+m= 1, 
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I hsidB(S) f tkdB(t) f umdB(u) l U 

vndB(v), 

j+k+m+n= 1, 

and iterated integrals up to the sixth degree of dB(s) only. 
The latter are Hermite polynomials of B( h) by Proposition 2 
(ii). All of the former are transformed by Ito's formula to 
the combinations of the type 

f si dB(s) f dB(t)··· !au dB(v) f dB(w), 

j>O, 

which are exhausted to O(h 3) by B(h), 110 (h), 120 (h), 
111 (h), /21 (h), J(h), and K(h) of Sec. III. Only the most 
lengthy one of these results will suffice for the proof: 

ih 

dB(s) f dB(t) f dB(u) l U 

v dB(v) 
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The geometric properties of Dirac spinor fields defined over even-dimensional space-time are 
explored with the aim of formulating the associated nonlinear sigma models. A spinor field \II 
may be uniquely reconstructed from the real bispinor densitiesp; = qir;\II, apart from an 
overall phase, so that thep; constitute an alternate representation of the physical information 
contained in \II. For space-time of dimension N = 2n, the corresponding Dirac spinor has 
D = 2n complex components, and the bispinor densities satisfy a system of (D - 1)2 

homogeneous quadratic algebraic equations. The basis elements of the Clifford algebra {rJ 
span aD 2 = 2N-dimensional space whose Cartan metric is flat pseudo-Riemannian; the 
bispinor densities reside in the (2D - 1 )-dimensional curved subspace induced as an 
embedding by the algebraic constraints. The explicit geometric structure of the bispinor spaces 
are examined and found to be generalizations of Robertson-Walker space. In particular, the 
line element may be written as dS 2 = D du 2 + U 2 d02

, where q = qi\ll is the scalar density 
and dO is the line element for the homogeneous space: 
SU(D/2,D/2)/S(U(1) ® U(D/2 - I,D/2». 

I. INTRODUCTION 

Nonlinear sigma models (or, equivalently, harmonic 
mappings 1 

) have been a popular topic in the physics litera
ture since their introduction by Gell-Mann and Levy in 
1960,2 most recently, but certainly not exclusively, in the 
context of string theory. 3 Aside from their practical and 
technical attractiveness, nonlinear sigma models also exhibit 
great aesthetic appeal as the natural generalization of the 
notion of geodesic, and thereby have some similarity with 
general relativity. By a nonlinear sigma model, we mean a 
minimal mapping of space-time into a "target space" whose 
geometric structure is given. Usually (but not necessarily) 
the target space is a homogeneous (or coset) space: G / H, G 
being the isometry group and H being the isotropy group, 
and one natural extension of these models is to gauge the 
isometry group. 

One of the interesting features of many of these models 
is the existence of topological solitons. For example, the 
Skyrme model4 is essentially a nonlinear sigma model for 
the meson fields in which the baryons arise as topological 
solitons (though, admittedly, one must add an additional 
term to the Lagrangian to stabilize the solitons). The possi
bility of generating additional particle states (solitons) with
out the introduction of additional fields is particularly at
tractive in light of the continuing proliferation of 
"elementary" particles. 

Supersymmetry notwithstanding, our current under
standing of the physical realm is based on the complemen
tary notions of matter (e.g., electrons and quarks) and inter
action (e.g., electromagnetic forces), the former represented 
by Dirac (spinor) fields and the latter by Yang-Mills 
(gauge) fields. Therefore, it seems worthwhile to pursue the 
construction of potential physical theories based of the idea 
of a harmonic mapping of the matter fields and then possibly 
adding the gauge fields ofthe isometry group, the hope being 
that the spectrum of states (including especially the soli-

tons) will be rich enough to account for the observed parti
cles without the introduction of an inordinate number of 
"fundamental" matter fields. 

If we are to take this point of view, an immediate and 
important question arises: What specific geometric form 
should we choose for the space associated with the matter 
fields? Fortunately, there is a natural and promising possibil
ity: bispinor geometry. If we assume that the matter fields 
are fundamentally represented as Dirac spinors \II, then the 
bispinor densities p; = qir; \II reside in a curved subspace of 
the space spanned by the Clifford algebra. This "bispinor 
space" may also be viewed as the space of physical observa
bles, for the bispinor densities, by their definition, are qua
dratic functionals of the quantum wave function. 

The intent of this paper is to find and explore the geo
metric structure of the bispinor space. Not only is this a 
crucial step in the construction of the associated nonlinear 
sigma models, but the results are intrinsically interesting in 
that they elucidate the geometric structure of the space of 
physical observables of spino! particles. The construction 
and analysis of the nonlinear sigma models are left for a 
future investigation. 

We organize the material as follows: Section II contains 
a discussion of Clifford, Fierz, and bispinor algebras, includ
ing a discourse on the Dirac spinor metric and automor
phism group. This material sets the stage for the general 
discussion ofbispinor geometry in Sec. III where the case of 
two-dimensional space-time is included as a simple and in
structive example. Section IV contains a summary of the 
main results and a discussion of some outstanding issues. 

II. BISPINOR ALGEBRA 

We begin with some definitions and properties of Clif
ford, Fierz, and bispinor algebras and spinors. Though some 
of this material has appeared elsewhere, S this discussion will 
serve to establish notation and make this exposition reasona-
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bly self-contained. A point of note: the physical condition of 
reality for the bispinor densities and the corresponding 
Dirac spinor metric and Dirac normalization of the Clifford 
algebra basis elements are crucial factors for obtaining the 
Clifford algebra metric and structure factors, the bispinor 
algebra, and Dirac normalization preserving automorphism 
group. 

A. Real Clifford algebra 

The basic defining relation for the Clifford algebra6 

reads: 

{YI"YV} = 2g1'J, p"v=O,I,2, ... ,N-I, (2.1) 

where we shall take gl'v to be the metric of an underlying 
N = 2n even-dimensional space-time, which in Cartesian co
ordinates has the form diag(1, - 1, ... , - 1). The elements 
Y I' (vector) and I (identity and scalar) are the generators of 
the full Clifford algebra and may be represented faithfully by 
D X Dmatrices where D = 2n. The basis for the real Clifford 
algebra &? I,N _ I may be completed by adding elements of the 
following form to the set: 

== (lIMI)EI'I1'2" 'I'NyI'N- M+ 'yI'N- M+ 2 •• -yI'N, (2.2) 

where M = 2,3, ... ,N. Then a set of elements forming a basis 
for the real Clifford algebra may be chosen to be 

(2.3) 

where we have defined r==rI'I1'2"'I'N_ N' However, since we 
will be concerned exclusively with Dirac spinors in the fol
lowing, a different normalization for the rI'I1'2'''I'N_ M shall 
prove to be more convenient [see Eq. (2.8)]. We return to 
this point after considering Dirac spinors and the Dirac 
spinor metric. 

B. Dirac spinor metric 

Spinors may be defined in several different fashions. In 
the context of Clifford algebra, the spinors are defined to be 
elements of a left minimal ideal, whereas in the context of 
group theory we say that the spinors are carriers of the fun
damental representation of the group. The connection 
between the two may be found in the observation that the 
spinors are the carriers of the fundamental representation of 
the automorphism group of the Dirac normalized Clifford 
algebra (see Sec. II F). Here we simply make the pedestrian 
observation that the spinors are D X 1 complex matrices 
upon which the D XD matrices of the Clifford algebra act. 

Physically, a spinor represents the quantum wave func
tion of a spin-~ particle, and as such the physical observables 
are obtained from real quadratic functionals of these fields. 
It is the physical requirement of reality that forces us to 
introduce the spinor metric because the matrices y I' are anti
Hermitian for p, = I,2, ... ,N - 1. We define the spinor metric 
yas follows: 

Invariant length: U== \fI + y\fl == ~\fI = U*, 

Current density: 'I' ==~Yl' \fI = ':. 

The indicated requirement of reality then gives 
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(2.4a) 

(2.4b) 

y+ =y, 

y-Iy,ty= Yl" 

(2.5a) 

(2.5b) 

The unique solution of these equations is found to be y = Yo, 
and we note for future reference that we can always choose a 
representation in which Yo takes the diagonal form: 

Yo = Y = (I 0) = y- 1= y+ , (2.6) o -I 
where here I is the (D /2) X (D /2) unit matrix. The correct 
interpretation of this equation requires comment. In particu
lar, if a,b,c,... represent spinor indices so that \fIa are the 
spinor components, then Yo has matrix components labeled 
as a [ Yo ] b whereas the spinor metric y has matrix compo
nents labeled as a [y] b and the Dirac conjugate spinor has 

- b components \fI a = \fl. b [ y] a' 
Now consider the remaining bispinor densities. We now 

easily find [see Eq. (2.2)] 

(~rI'I1'2' "I'N _ M \fI). 

= ( - 1)M(M- \)/2~';;' \fI (2.7) 
'1'11'2' "I'N - M ' 

and therefore the bispinor densities defined in this way are 
not all real. Thus, it is appropriate to redefine the basis ele
ments of the algebra as follows: 

YI'I1'2'''I'N-M 

== (iM(M- \)/2/MI)EI'I1'2"'I'NyN-M+ I •• 'yN-lyN, (2.8) 

and with this normalization we have 

r;==y-Ir/y= r i , (2.9a) 

pj==~r;\fI=pr. (2.9b) 

Hence, defined in this way, all of the basis elements {rJ are 
Dirac self-adjoint and therefore all of the bispinor densities 
{PJ are real. Notice that as defined in Eq. (2.8) the {rJ 
form a basis for the complex Clifford algebra, and we shall 
refer to this particular choice of basis as Dirac normaliza
tion. 

As a specific example, consider the familiar case of 
N = 4, where we may compare the Dirac normalized basis 
elements with those of Bjorken and DrelU We have 

M = 4 Y = - iys, where Ys = - iyo Yl Y2 Y3' 

M = 3 Yl' = - YsYI" (2.10) 

M = 2 rl'v = iEI'VAKutK, where utK = (i12)[yA,y]. 

This example suggests the following complementary de
finition to Eq. (2.8): 

(2.11a) 

(2.11b) 

The choice between Eq. (2.8) and Eq. (2.llb) is strictly a 
matter of convenience, and often a subset of each is most 
useful. 
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C. Clifford algebra metric and structure factors 

Henceforth we shall always use Dirac normalization 
[Eq. (2.8) ] as our defining relation for the basis elements of 
the Clifford algebra. The dimension of the Clifford algebra 
(total number of elements in the basis) is easily found to be 
d = 2N = D 2, and the natural metric on this space (defined Ii 
la CartanS 

) is given by 

Gij=(lID)tr(rir j ), (2.12) 

which is found to have the signatureofSO(d 12,d 12). Notice 
that the choice of Dirac normalization for the basis elements 
is crucial in determining the signature of this metric. The 
metric may be used to raise and lower the indices of the r i in 
the usual manner. 

We will define the structure factors for the Clifford alge
bra as follows: 

(2.13a) 

rirjr k =Cijkl rl {:::} Cijkl = (lID)tr(rir j r krl)' 
(2.13b) 

Clearly, the four index structure factor is not independent of 
the three index structure factor and has been defined as a 
matter of convenience (see Sec. II D). Also note that both of 
these structure factors are invariant under cyclic permuta
tions of their indices. 

D. Bispinor algebra 

Weare now in position to construct the algebraic system 
that the bispinor densities satisfy. The basic idea may be 
stated very simply. The 1').umber ofbispinor densities that can 
be constructed from a given spinor [Eq. (2.9b)] is the di
mension of the Clifford algebra d = 2N = D 2. However, as 
the spinors are composed of D = 2n complex functions, and 
furthermore, as the overall phase of the spinor does not af
fect the values of the bispinor densities, only (2D - 1) of the 
bispinor densities may be considered independent. There
fore the bispinor densities must satisfy a system of (D - 1)2 
equations, which we will call the bispinor algebra. Note that, 
strictly speaking, the use of the terminology "bispinor alge
bra" is incorrect, since this "bispinor algebra" does not form 
a vector space in which the vector product is defined. How
ever, for the sake of expedient discussion, we will retain this 
imprecise notation. 

The derivation of the bispinor algebra has been present
ed elsewhere,5 but we include it here for the sake of com
pleteness. Consider the Fierz rearrangement9 of the outer 
product of two elements of the Clifford algebra basis: 

a[ri]b ®C[rj]d = Fijk/[rk]d ®C[rl]b' (2.14) 

where a, b, c, and dare spinor indices. Ifwe now contract Eq. 
(2.14) with b [rmL ® d [rnlc and use Eq. (2.12) and 
(2.13), we obtain 

(2.15 ) 

and similarly, 

F,jkl = (lID)Ckilj · (2.16) 

Finally, if we contract Eq. (2.14) with ~a 'I1~c 'I1d and use 
Eq. (2.16), we obtain 
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(2.17) 

This system of quadratic homogeneous equations consti
tutes the bispinor algebra. Note that we are treating the spin
ors as classical fields so that, in particular, we have not as
sumed that they anticommute. 

As a summary and example, consider again the familiar 
case of N = 4-dimensional space-time. In this case, the Clif
ford algebra has d = 16 basis elements [Eqs. (2.10) ] and the 
spinors are composed of D = 4 complex functions. Let us 
define the bispinor densities {Pi} as follows: 

u=~'I1, .IJlv=~uJlv'I1, 1T=~Y'II, 

JJl =~rJl '11, KJl =~rJl '11. (2.18) 

Then,acompletesetof(D - 1)2 = 9 equations may be writ
ten as 

JJlJ =u 2 +r= -KJlK JJlK-O Jl Jl' Jl - , 

u.IJlV = - ~ EJlVAr{1Tl:Ar + (JAKr -rKA)}. (2.19) 

These equations have been found and discussed previously 
by several authors. 10.11 

E. Reconstruction theorem 

We now prove a theorem concerning the reconstruction 
of a spinor from the associated bispinor densities.5.11.12 With 
the definition 

p=pir;. (2.20) 

where {Pi} is any set of functions satisfying the bispinor alge
bra, we have the identity 

k I k I' . 
priP = P P r k rir l = P P CkiljP = DpiPjP = DpiP, 

(2.21 ) 

and here we have made use of Eq. (2.17). Furthermore, any 
spinor may be written in the following form: 

'I1=e-'fJRTj, (2.22) 

with R being an element of the bispinor algebra [as in Eq. 
(2.20)] and Tj being an arbitrary constant spinor. If we now 
construct the bispinor densities, 

Pi = ~ri'l1 = ijRriRTj =DRjijRTj, 

we see that 

Ri = Op;. 0 2 = {DijpTj} - 1, 

(2.23) 

(2.24) 

and therefore the Ri are uniquely determined from the Pi 
and the arbitrary constant spinor Tj. In other words, the 
spinor '11 may be uniquely reconstructed, apart from an over
all phase, from the associated bispinor densities, and there
fore the {Pi} constitute an equivalent representation for the 
physical content of the spinor. Of course, this must be the 
case, since the bispinor densities are precisely the densities of 
the physical observables of the spinor field. 

F. Dirac automorphism group 

Finally, we close this section with a discussion of the Lie 
algebra and Lie group associated with the Clifford algebra, 
the basis elements of the Clifford algebra having Dirac nor
malization [Eq. (2.8)]. The full automorphism group of the 
complex Clifford algebra is the group of transformations 
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leaving Eq. (2.1) form invariant, and therefore is easily seen 
to be G/(D,c). However, an element of this group will not in 
general leave Eq. (2.9a) invariant. The construction of the 
automorphism group preserving the Dirac normalization 
follows. 

The structure factors for the Lie algebra associated with 
the Clifford algebra are defined in the usual manner as 

[r;,rj ] Et!ijkrk. (2.25) 

Now observe that with the normalization ofEq. (2.8), the 
structure factors of the Clifford algebra [Eq. (2.13a) ] are 
not all real, and we may write 

Cijk ERijk + tlijk' 
and furthermore, 

---- k k ( r;rj) = rjr; = Ctkr = Cj;kr , 

from which we obtain 

/;jk = 2lijk' 

A general element of the Lie group is given by 

A 
tAkrk 

=e , 

where the A; are real parameters, and therefore 

A- - - tAkrk _ A - I -e - . 

Now consider the transformation 

r; = Ar;A. 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31 ) 

These transformations generate automorphisms of the Clif
ford algebra because the forms ofEqs. (2.1) and (2.8) are 
invariant. Furthermore, Eq. (2.9a) is also invariant, and 
therefore these transformations preserve the Dirac self-ad
joint property that guarantees that the bispinor densities 
(physical observables) remain real. Hence these transfor
mations constitute the automorphism group of the Dirac 
normalized Clifford algebra. 

Equivalently, we may consider the transformation of 
the spinors, 

'II' = A'll, 'ii' = 'IIA, (2.32) 

so that, as expected, 

p; = 'iiT;'II' = 'IIAr;A'II = 'iir;'II. 

As a special case of this equation, we have 

a' = 'ii''II' = 'IIAA'II = 'ii'll = u. 

(2.33 ) 

(2.34) 

This result justifies the terminology "invariant length" used 
in Eq. (2.4a), and along with inspection ofEq. (2.6), allows 
the identification of the group as U(D 12,D 12) (Ref. 13). 
Finally, observe that the U( 1) factor does not effect a trans
formation of the {r;}, though it does impose a phase shift on 
'II, and therefore the full effective automorphism group 
maintaining Dirac normalization is identified as 
SU (D 12,D 12). This will be important for our discussion of 
the bispinor geometry. Also note that for the case of four
dimensional space-time, this group is the conformal group 
SU(2,2) (Ref. 14). 

III. BISPINOR GEOMETRY 

The basic notion of the bispinor space is rather straight
forward. As we have seen, the dimension of the Clifford 
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spaceisd = 2N = D2, and thephysicalquantityp =p;r;isa 
vector in this space. However, as the bispinor densities p; 
satisfy a system of (D - 1)2 equations (the bispinor alge
bra), the bispinor densities actually reside in the (2D - 1)
dimensional subspace induced as an embedding. It is the 
structure of this space that we now wish to explore. 

A. Two-dimensional space-time 

We will first consider the case of two-dimensional space
time as a simple example. IS It has the advantage of being 
amenable to the intuitive approach to non-Euclidean geome
try first outlined by Gauss. 16 However, before constructing 
the metric on this space, we need to examine the bispinor 
algebra. 

We begin with an explicit representation for the matri
ces Y" satisfying Eq. (2.1): 

Yo=(~ ~1)' YI=(~1 ~), (3.1) 

and making use ofEq. (2.8), we have 

~), (3.2) 

so the basis elements for the Clifford algebra and the corre
sponding bispinor densities are 

{rJ = {I,y",y}, 

{PJ = {U,J",17}. 

(3.3a) 

(3.3b) 

Physically, u is a scalar density, J" is a vector density, and 17" 

is a pseudoscalar density. 
The bispinor algebra [Eq. (2.17) ] for this case consists 

of only one equation and may be explicitly constructed from 
Eq. (2.13b) and the representation given in Eq. (3.1) and 
(3.2). We find 

(3.4) 

Of course, the explicit form of the bispinor algebra may be 
constructed without recourse to a specific representation of 
the Clifford algebra. 

We see then that with four bispinor densities satisfying 
one equation, the bispinor space (the space of physical ob
servables) is three dimensional. To obtain the geometric 
structure of this space, we follow the procedure first set forth 
by Gauss. 16 

Consider a p-dimensional space P with coordinates 
xi(i = 1,2, ... ,p) and metric Gij so that the distance between 
two neighboring points dS is obtained from 

2 ;' dS = Gij dx dx'. (3.5) 

Now consider a q-dimensional space Q (where q <p) that is 
embedded in P and with coordinates ya (a = 1,2, ... ,q). In 
space Q we can write the coordinates of space P (at least 
locally) as 

d ; aX;da 
X=- y. 

aya 
(3.6) 

The distance between two neighboring points in Q is ob
tained by substitution ofEq. (3.6) into Eq. (3.5): 
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dS 2 = G .. axi axi dad b 
IJ ay" ayb Y Y 

= gab dya dyb, (3.7) 

and this generates the metric of the embedded space gab as 
indicated. The choice of coordinates y" is dictated by the 
algebraic constraints (embedding functions) : 

FA (Xi) = 0, A = q + 1,q + 2, ... ,p. (3.8) 

Specifically, the parameteri~tion in Eq. (3.6) is chosen 
such that Eqs. (3.8) are satisfied identically. 

The metric of the Dirac normalized Clifford algebra is 
obtained from Eq. (2.12) and we find 

dS 2 = du 2 + dJp. dJP. - d1?-

= du 2 + dJ~ - dJ~ - d1?-. (3.9) 

One can now easily verify that the bispinor algebra [Eq. 
(3.4 ), the embedding function] is satisfied identically with 
the following parameterization (choice of coordinates) of 
the bispinor densities: 

Jo = ± ucosh(A), J I = ± usinh(A)cos(¢), 

1T= ±usinh(A)sin(¢). (3.10) 

Finally, substitution ofEq. (3.10) into Eq. (3.9) generates 
the metric of the bispinor space: 

dS 2 = 2du 2 _ u 2[dA 2 + sinh2(A)d¢'2]. (3.11) 

This is the main result for the case of two-dimensional space
time. Observe that this space is a three-dimensional hyperbo
lic Robertson-Walker space. 16 More specifically, we may 
write 

(3.12) 

where the quantity dO is the line element for the homoge
neousspaceS0(1,2)/SO(2)~SU(1,1)/U(1) (Ref. 17). 

This example contains the two principle elements of the 
general result to follow. In particular, the "factorization" of 
ufrom the other bispinor densities as in Eq. (3.10), and the 
appearance of the Robertson-Walker metric and internal 
homogeneous space as in Eq. (3.12), are common elements 
of the general case. 

Finally, we comment on the choice of sign in Eq. (3.10). 
In particular, if u < 0, then the minus sign must be chosen to 
insure that Jo > O. This may be easily verified as inspection of 
Eqs. (2.4b) and (2.6) yieldsJo = iiiyolJ1 = 1J1+1J1. 

B. Even-dimensional space-time 

To explore the geometric structure for the general case, 
we need to examine 

dS 2 = Gij d/ dpi, (3.13 ) 

where the Dirac normalized Clifford algebra metric Gij is 
given in Eq. (2.12). If we now attempt to proceed in the 
same fashion as in the example above, we encounter the rath
er difficult problem of the general parameterization of the Pi 
such that not only the bispinor algebra [Eq. (2.17)] is satis
fied identically, but also the geometric content of the result
ing metric is reasonably transparent. Therefore we shall pur
sue a different method, taking clues from the structure of the 
metric found in the two-dimensional case. 
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First, consider the potential "factorization" of u from 
the remaining bispinor densities as in Eq. (3.10). To this 
end, we make the following definitions: 

ij=s,1,2, ... ,D 2 - 1, I,J= 1,2, ... ,D2 - 1, 

rs=I, Ps=iiilJ1=u. (3.14) 

To find the length ofthe vector Pi' consider 

PsPs = (lID)Ckslsp
k/= (lID)GkIPkpl=U 2, (3.15) 

where we have used Eqs. (2.12), (2. 13b), (2.17), and 
(3.14b). It is now straightforward to obtain the length of P I 
as 

GIJp~J = GijPpi - Gsspsps = (D - l)u 2 

so we make the definition (factorization) 

PI = ± Q(l>I ::::} GIJct>Ict>J = (D - 1). 

Next we consider 

(3.16) 

(3.17) 

dPI = ± (ct>I du + u dct>I)' GIJct>I dct>J = 0, (3.18) 

and substitution of Eq. (3.18) into Eq. (3.13) yields 

dS 2 = D du 2 + u 2G IJ dct>I dct>J 

=Ddu 2 + u 2 do2. (3.19) 

So the factorization of u has already generated an expression 
similar to Eq. (3.12). 

It remains to show that dO is the line element of a homo
geneous space S = G / H, where G is the isometry group and 
H is the isotropy group of this subspace. 17 As to the isometry 
group, it is clear from the discussion in Sec. II F that this is 
SUeD /2,D /2), the full Dirac automorphism group, since 
this group acts transitively on the subspace. 

Now the isotropy group is the largest group oftransfor
mations leaving anyone point of a homogeneous space in
variant. Though we may work with the scaled bispinor den
sities {ct>1} directly, the identification of this group is more 
easily obtained from an examination of the spinor. First note 
that the factorization of u from the remaining bispinor densi
ties may be implemented at the spinor level as follows: 

IJ1 = u l12"" ct>I = ± if, ± rI
", ± ' (3.20) 

and we may choose the invariant point (the "origin") to be 

(3.21 ) 

Now it is clear that the largest subgroup of the isometry 
group leaving either point invariant is 
S( U(1) ® U(D /2 - I,D /2»). As a check, we calculate the 
dimension of this space as 

(D2_l) - (D-1)2=2(D-1), 

which is correct. 

(3.22) 

A comment is in order concerning the two possible 
choices for the "origin" in Eq. (3.21). The bispinor space 
actually splits into two subspaces whose only intersection is 
the point u = O. However, the geometric structures of these 
two subspaces are identical, and the isometry group acts 
transitively in each separate slice (u = constant) regardless 
of the sign of u. 
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We summarize this result by stating a theorem whose 
proof is given by the above construction. 

Theorem: The geometric structure of the bispinor space 
is described by the metric dS 2=Ddu 2+u2do.2, where 
dO. is the line element of the homogeneous space SU (D 1 
2,DI2)/S(U(1) ® U(DI2 - I,DI2». 

IV. CONCLUDING REMARKS 

We begin this section with a summary of the basic ideas 
and results. For space-time of dimension N = 2n, the Dirac 
normalized basis elements of the Clifford algebra {ri } span 
a d = 2N-dimensional space whose Cartan metric has the 
signature ofSO( d /2,d 12). The corresponding Dirac spinor 
'I' has D = r complex components and may be uniquely 
reconstructed, apart from an overall phase, from the bi
spinor densities (physical observables) Pi = \iiri'l'. Now 
only (2D - 1) ofthe d = D 2 bispinor densities may be con
sidered independent and in fact satisfy a system (D - 1)2 

quadratic homogeneous equations (bispinor algebra) . 
These equations may be viewed as embedding functions 
from the space spanned by the Dirac normalized basis ele
ments of the Clifford algebra into the (2D - 1) curved sub
space in which the bispinor densities reside (bispinor space). 

Finally, we have found that the bispinor space is a Rob
ertson-Walker-type space in that it has metric given by Eq. 
(3.19) where the line element dO. is ihat of the homogeneous 
space SU(D 12,D 12)/S(U( 1) ® U(D 12 - I,D 12». 

As stated in the Introduction, the construction and 
analysis of the associated nonlinear sigma models has yet to 
be completed, but several general comments are in order. In 
particular, the addition of gauge fields of the isometry group 
now seems to be entirely natural, as this group is simply the 
automorphism group. Demanding that this group be the 
gauge group is equivalent to the condition that the physical 
theory should be independent of the specific representation 
of the Clifford algebra and that this representation may be 
chosen locally. Such a gauge theory has already been consid
ered in a different context by several authors. IS 

This also suggests that we consider the inclusion of in
ternal symmetries. In this case, the construction of the bi
spinor algebra will proceed generally along the same lines as 
developed here, with the interesting additional feature that 
the geometric structure may depend upon the particular rep
resentation of the internal symmetry group that the Dirac 
spinor carries. As an example, if we consider the simplest 
case of two-dimensional space-time with the spinor carrying 
the fundamental representation of SU (2), then the bispinor 
algebra is isomorphic to the bispinor algebra, for the case of 
four-dimensional space-time with no internal symmetry, 
and therefore the bispinor spaces are identical. 

A note concerning the case of odd dimensional space
time is also in order. The additional difficulty here is that the 
basis for the center of the Clifford algebra contains both I 
and y, and this makes the description ofthe representations 
slightly more complicated. This problem is currently being 
addressed, but at this point it appears that the bispinor alge
bra for space-time of dimension N = 2n + 1 splits into two 
disjoint algebras, each one isomorphic to the bispinor alge
bra for space-time of dimension N = 2n, and that the bi-
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spinor space for N = 2n + 1 is identical to two separate 
N = 2n bispinor spaces. 

Finally, we note here with interest, but in passing, that 
in the case of four-dimensional space-time, the isometry 
group is the conformal group SU(2,2), and the homoge~ 
neous subspace of the bispinor space is geometrically equiva
lent to positive projective twistor space. 19 This intriguing 
connection shall be discussed in a future paper. 

The currently prevalent folklore dictates that each dis
tinct elementary particle of matter is represented by an indi~ 
vidual spinor field. It is hoped that spectrum of states ofthe 
sigma model based on bispinor geometry will be rich enough 
to be considered as an alternative. 
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In previous work, Dirac's constraint mechanics and supersymmetry were used to construct 
two-body Dirac equations for particles interacting through world scalar and vector potentials. 
The resulting compatible 16-component wave equations,.)"'1 ¢ = YSI (YI . (PI - AI) 
+ m I + 5't )¢ = 0, .)"'2 ¢ = YS2 (Y2 . (P2 - A2 ) + m2 + S2)¢ = 0, yield Schrodinger-like 
equations in the center-of-momentum (c.m.) system with simpler structure than that 
possessed by the Bethe-Salpeter equation or any of its standard three-dimensional truncations. 
For strong interactions, these equations have yielded a relativistic quark model for meson 
spectroscopy, while for electromagnetic interactions they have yielded a family of exact singlet \ 
positronium solutions. This paper uncovers a hyperbolic interaction structure in these 
equations. This structure is used to generalize these equations to include pseudoscalar, 
pseudovector, and tensor interactions. 

I. INTRODUCTION 

In a series of papers, 1-3 we have used Dirac's constraint 
mechanics and supersymmetry to derive a pair of coupled 
but compatible relativistic wave equations that generalize 
Dirac's equation for a single spin one-half particle in an ex
ternal field to a system of two spinning particles interacting 
through world scalar and vector potentials. We subsequent
ly applied these equations to the quark-antiquark bound 
state4.S -system thought to be governed primarily by vector 
and scalar interactions. The potentials that appeared in that 
application were suggested by phenomenological consider
ations. However, our equations possess a connection to rela
tivistic quantum field theory in which their relativistic po
tentials are determined by field theory.4 A given field theory 
through its characteristic dependences on the spins of matter 
and exchanged particles generates a family of relativistic po
tentials that transform in different ways under the Lorentz 
group. For example, electrodynamics (in the annihilation 
channel) generates, through the Fierz transformation, pseu
doscalar and psuedovector pieces of the interaction in addi
tion to vector and scalar interactions. Thus, if two-body 
Dirac equations really do exist for a given field theory, it 
must be possible to construct such equations for interactions 
and systems of interactions beyond the scalar and vector. In 
a recent paper, Sadzjian6 showed how to achieve this formal
ly by proposing two-body Dirac equations of the form 

(YI'PI +m l - (Y2'P2 -m2)~)'i'=0, (la) 

(lb) 

These equations are weakly compatible for arbitrary ~. 
Sadzjian then parametrized his choices for ~ as 
~ =YSI YS2 11 = S, YSI YS2 &, Y!'I11 r, YSI YS2 Y!'I11A, 
uI!'vdtvy, for scalar, pseudoscalar, vector, pseudovector, 
and tensor interactions, structures suggested directly by the 

corresponding interactions of the Bethe-Salpeter equation. 
On the other hand, the relativistic potential structures of our 
equations are two-body extensions of ordinary external po
tentials of the one-body Dirac equation (to which they auto
matically degenerate in the infinite-mass limit). In this pa
per, we develop a new form of our equations for scalar 
interactions closely related to the form we generated with 
the use of supersymmetry. This new form of the equations 
depends on an invariant matrix function II that can be ex
tended to interactions beyond the scalar (by modifying the 
matrix structure of ll). We then investigate the connection 
between Sazdjian's coupled Dirac equations and ours. We 
find that the two sets of equations are connected by a trans
formation that depends nonlinearly on the potential (in fact, 
a hyperbolic transformation). Because of this nonlinear de
pendence, Sadzjian's equations are equivalent to ours for ar
bitrary interactions only in the weak potential limit. How
ever, due to the matrix structure of the interactions we find 
that for interactions that do not possess spacelike parts (like 
scalar, pseudoscalar, timelike vector, and timelike pseudo
vector) the equations are identical after a redefinition ofthe 
invariant potential function [i.e., ll--+tanh(ll) since, for 
those interactions, 112n + I and II have the same matrix coeffi
cients, those matrices being square roots of unity ]. For inter
actions that contain spacelike pieces (and whose matrix co
efficients are not roots of unity), the higher-order terms in 
our equation produce additional pieces of the interaction 
with a different Lorentz character than those appearing in 
Sazdjian's equation. For example, our vector equation, in 
the next to lowest order in ll, produces what turns out to be a 
pseudovector interaction in addition to the vector interac
tion of Sazdjian's approach. In the same fashion, our new 
form of the equations explains (through its hyperbolic struc
ture) Sadzjian's need to include unusual cubic structures in 
his treatment of spacelike interactions in order to produce 
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equations devoid of complicated momentum-dependent ten
sor terms in the corresponding reduced Schrodinger-like 
forms. Furthermore, because of their hyperbolic structure, 
the conserved norm defined by our equations does not con
tain nonlinear dependences on the interaction such as appear 
in the norm defined by Sazdjian's equations. 7.8 

In Sad7jian's form, the equations are almost trivially 
compatible (weakly) but difficult to reduce to the usual 
heavy-particle limits without additional direction from field 
theory. In our equations, the interactions take the form of 
external potentials (hence, we will say that our equations are 
in "external potential form") but render the verification of 
compatibility more difficult. One would like to be able to 
realize Sazdjian's compatibility for arbitrary forms of inter
action-but in the equations written in our external poten
tial form (so that they easily generate the usual the heavy 
particle limits). We find that we can achieve this result by 
generalizing the spin-dependent potential structure a that 
serves as the argument of the nonlinear transformation that 
connects our equations with Sazdjian's. As a result, we are 
able to extend the interaction structures of our equations to 
include pseudoscalar, pseudovector, and tensor interactions. 

In order to make the particular forms of our equations 
corresponding to each of these interactions intelligible to the 
reader, we first review the basic variables and structures that 
appear in the analogous wave equations for spinless parti
cles. We then review an algebraic formalism for dealing with 
manipulations of combinations of Dirac matrices that one 
encounters in the construction of two-body Dirac equations. 
We then use the method to construct the known equations 
that govern scalar and vector interactions. After noting the 
presence of hyperbolic structure in these equations, we use 
its generalization to construct two-body Dirac equations for 
a collection of relativistic interactions of physical interest. 

II. REVIEW OF CONSTRAINT MECHANICS: SPINLESS 
PARTICLES 

Following Todorov,3·9 we use the following dynamical 
and kinematical variables in the constraint description ofthe 
relativistic two-body problem: 

(i) Relative position, XI - X 2 • 

(ii) Relative momentum,p = (l/w) (€2PI - €IP2)' 

(iii) Total c.m. energy, W = ~ _ p2. 
(iv) Total momentum, p= PI + P2' 
(v) (Conserved) constituent c.m. energies, 

€I = (w2 + mi - m~ )12w, 

€2 = (w2 + m~ - mi )!2w. 

{In terms of these, PI =€IP+P, P2 =€2P-P, where 
P=P!w.) 

(vi) Relativistic reduced mass and energy of a fictitious 
particle of relative motion, 

mw = m l m2!w, €w = (w2 - mi - m~ )!2w. 

(vii) On-shell value of the relative momentum squared, 

b 2(W) = ~ - m~ = ~ - mi = ~ - m~ 

= (l/4W2)(W4 - 2w2(mi + m~) + (mi - m~ )2). 
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To see how one introduces relativistic dynamics into 
these kinematic forms through the constraint 
approach3

•
1
0-

14 consider first two-body Klein-Gordon 
equations. In quantum constraint mechanics these equations 
are treated as simultaneous generalized mass shell condi
tions on the wave function, 

KI 1/J = (Pi + mi + <1>1 (X,PI ,P2 »1/J = 0, (2a) 

K21/J = (P~ + m~ + <1>2 (X,PI ,P2»1/J = O. (2b) 

Classically, KI and K2 are covariant constraints on the 
dynamical variables PI ,P2 ,X = XI - X2. The system Hamil
tonian K = A.I KI + A.2 K2 generates motion in an evolu
tion parameter r. The classical requirement that KI and 
K2 be conserved in r implies that the Poisson bracket, 
{KI ,K2 }, vanish on the surface of solution (weakly). The 
corresponding quantum condition-that [ KI ,K2 ] vanish 
on 1/J--guarantees that the original Klein-Gordon equations 
(operator mass-shell conditions) form a compatible set 
without additional operator conditions on the wave func
tion. This compatibility condition restricts the way in which 
two-particle interactions can appear in such equations. In 
particular, one finds that the vanishing of this commutator 
as an operator (strong compatibility) requires that the inter
action function depend only on the component of X perpen
dicular to the total four momentum:3

•
1
0-

12 

(3) 

whereP= P !w,P= PI + P2,W2 = - p2. One further finds 
that the interaction functions (referred to here as quasi
potentials) must be equal, 

<1>1 =<1>2 = <l>w(X1 ,PI,P2)' (4) 

a relativistic analog of Newton's third law. The invariant 

(5) 

appearing in these potentials is the spatial interparticle sepa
ration only in the center-of-momentum system. The fact that 
X may only appear as Xl means that constraint mechanics 
controls the relative time in a covariant way. Although the 
quasipotential <l>w may depend on other invariant combina
tions of Xl ,PI ,P2' in this paper, we limit our attention to 

invariant func!!ons of rand i=J(x1 Xp)2, where 
(axb)1' = €VKA.I'PVaKbA.' 

The two quantum constraint equations can be recom
bined in two independent ways. Differencing leads to a wave 
equation that controls the relative energy: 

(6) 

The other independent combination, which we define3
,l0 as 

K= (€2KI + €IK2 )!w, leads to the SchrOdinger-like 
form 

K1/J = 0 .... (p2 + <l>w)1/J = b 2(W)1/J = (~ - m~ )1/J. 
(7) 

In the c.m. system, Eq. (6) implies the relation 

p21/J = pi 1/J = p-21/J, 

so that, in this frame, Eq. (7) has a three-dimensional Schro
dinger-like form. However, Eq. (7) is a fully covariant equa
tion (with a c.m. energy-dependent potential). 

In our applications, we have taken the point of view that 
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each particle's <1>; is constructed from constituent scalar and 
vector potentials produced by the presence of the other parti
cle. We introduce vector and scalar interactions through the 
minimal momentum and mass substitutions 

"-
fit =?' + €IPJJ. __ fIt - A f 

= GI (r,/)?, + EI (r,I)PJJ.='11f, 
"-

Pi = -?'+€2 P JJ.--Pi -A~ 

- G2 (r,/)?, + E2 (r,/)PJJ.=.111., 

m l --m l + SI =.MI (r,l), 

m2 --m2 + S2 =.M2 (r,/), 

(8a) 

(8b) 

(9a) 

(9b) 

performed on Jl't'1 = P; + m;. These minimal substitutions 
are straightforward two-body extensions of those generated 
by standard covariant coupling of a single particle to vector 
or scalar external fields. Thus the original free-mass shell 
forms 

~=p;+m;, i= 1,2 

become 

(10) 

K; = 1if + M;, i= 1,2. (11) 

This procedure determines the <1>; in (2a) and (2b) in terms 
of constituent vector and scalar potentials. 

The decomposition ofEqs. (8a)-(9b) associates the in
variant functions GI ,G2 with spacelike vector potentials, 
E I ,E2 with timelike vector potentials, and MI ,M2 with sca
lar potentials. These six scalar functions are not indepen
dent. In fact, the assumption of separate "third law" condi
tions on the scalar (S), timelike (TL) and spacelike (SL) 
vector parts, 

<I> IS = <l>2S' 

<l>IA(TL) = <l>2A(TL)' 

<l>IA(SL) = <l>2A(SL)' 

(12) 

(13) 

(14) 

implies that Mi - Mi = mi - mL Ei - Ei = Ei - Ei, 
and G i = G i =. G 2 so that there are only two invariant 
functions for the vector interaction, one for the scalar. When 
vector interactions are generated through the coupling to a 
field-as in QED-there will be further relations among the 
potentials. In that case, both E; and G; become functions of 
an underlying (generalized) Coulombic potential.!iff. In our 
applications of this technique (for particles with spin) to the 
phenomenological treatment of the meson system, we al
lowed for the presence of both a short-distance (electromag
neticlike) or gauge-vector (containing both timelike and 
spacelike parts) and a long distance timelike vector by para
metrizing E; in terms of two invariant functions .!iff and r, 
and G in terms of .!iff alone. Thus we took 

A r =A r(.!iff(r,/),r(r,/». (15) 

For scalar interactions, 

S; = S;(S(r,/),.!iff(r,/». (16) 

The dependence of S; on .!iff is such that each S; vanishes if S, 
the underlying scalar interaction vanishes. 
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III. CONSTRAINT MECHANICS FOR TWO SPIN ONE
HALF PARTICLES: A REVIEW OF THE RESULTS OF 
SUPERSYMMETRY 

In a recently published work,3 we showed how to use 
supersymmetry to find compatible Dirac operators for two 
spinning particles interacting through a system of relativistic 
scalar and vector interactions. (We had studied the scalar 
interaction alone in earlier work. 1-2 ) In order to examine the 
connection of the resulting forms to those of Sadzjian,6 we 
review these results. For two spin one-half particles, we start 
from two (compatible) free Dirac equations in the forms 

YIO,p = (01 'PI + m l 0SI ),p = 0, (17a) 

Y 20 ,p= (02'P2 +m20S2 ),p=0, (17b) 

which become 
"-

YIO,p= (OI'P+€IOI'P+mIOsl),p=O, 
"-

Y 20 ,p= (-02'P+€2 02'P + m20S2),p=0, 

(17a') 

(17b') 

respectively, in the effective one-body variables of Todorov. 
[In Eqs. (17'), we have divided the momenta P; into timelike 
and spacelike parts PI =€IP+P andp2 =€2P-P,] We 
have written the matrix coefficients of these ordinary Dirac 
equations not in terms of gamma matrices but in terms of 
products of gamma matrices whose algebraic properties per
mit more efficient calculation of the commutation relations 
appropriate to two spinning bodies. These "theta" matrices 

Or=.i.JIrs;r't, J.l = 0,1,2,3, i = 1,2, 

L) -'rr 
(75; =1"2rS; 

satisfy the fundamental anticommutation relations 

[Or,On + = _gI'v, 

[Os;,Or] + = 0, 

[Os;.Os;] + = - 1. 

[Projected theta matrices then satisfy 

(18a) 

(18b) 

(19a) 

(19b) 

(19c) 

[O;·p,O;·P] + = 1, (20a) 

[0; ·p,O~] + = 0, (20b) 

where O~ = O;v(gI'v + pJJ.pV).] The algebraic significance 
of the theta matrices in the dynamical description provided 
by Eqs. (17 a) and (17b) is that they ensure that the Dirac 
operators Y 10 and Y 20 are exact operator square roots of 
the corresponding mass-shell forms -! (pi + mi) and 
- ! (pi + mi ). [On occasion we will use covariant (c.m. 
projected) versions of the Dirac a and P matrices here de
fined by 

"- "-
P; = - r;'P= 20s;0;'P, 

ar = 20~0;'P, 
and 

(21) 

(22) 

if; = rs;ar = i2V10SiOi ' POlio (23) 

We have introduced the important but unfamiliar theta 
matrices lS in order to take advantage of their remarkable 
algebraic properties to simplify the otherwise complicated 
consequences of compatibility ([ Y I ,Y 2] _ ,p = 0) when 
interactions are present. The fundamental anticommutation 
relations Eqs. (19a)-( 19c) of the theta matrices lead direct
ly through a "pseudoclassical" correspondence limitl to a 
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graded symplectic structure in which the thetas become two 
commuting sets of Grassmann variables. This space pos
sesses a graded Poisson bracket that takes the differential 
form of Berezin and Marinov.'s When quantized, this 
bracket becomes a generalized quantum bracket that is 
sometimes a commutator, sometimes an anticommutator 
depending on the nature of its operator arguments. In terms 
of this bracket, all necessary commutation relations involv
ing the quantum thetas can be carried out through opera
tions that are isomorphic to those involving the classical 
brackets. The quantum bracket apes the classical graded 
structure by sorting quantum operators into even and odd 
classes. For dynamical variables Aa and Ap that have well
defined character (odd or even) with respect to each spin or 
Grassmann space, the generalized quantum bracket takes 
the form 

(24) 

where2 'YI = ( - ) (EalEp I + '-a2'-P2) The variable E is 0 if A 'lap . A a' a 
is even in space one (likep,x,Os, 0, 'P) and is 1 ifAa is odd in 
space one (like 0, 'x,Os, O2 ·P). (Similarly, Ea2 keeps track 
of parity in space two.) Note that the last variable is then odd 
in both spaces-doubly odd. This sorts the variables into 
those that are even in both spaces, odd in both, even in space 
one while odd in space two, and odd in space one while even 
in space two. In addition, there are additive combinations 
that do not have well-defined character (e.g., 
0, ·X + x'p,O, 'X + O2 'p). For expressions that contain only 
one set of spin variables, when inserted as pairs of arguments 
of the quantum bracket, for two even variables, or one odd 
and one even, - 'YJaP = - and the bracket is a commuta
tor. For two odd variables, - 'YJaP = + and the bracket is 
an anticommutator. We define the product quantum bracket 
such that the bracket of AaAp with Ay is 

[AaAp,Ay] - T/ayTlpy' 

This implies that within the Grassmann space of a single 
particle, the product of an odd with an odd is an even, the 
product of an even with an odd is an odd, and that the prod
uct of an even with an even is an even. Using the definition in 
(24), one finds that 

[AaAp,Ay] - Tlay7}py = Aa [Ap,Ay ] - Tlpy 

+'YJpy[Aa.AY]-TlayAp (25) 

We now use this bracket to construct pairs of compati
ble Dirac equations for interacting particles, Consider what 
happens when we attempt to introduce scalar interactions 
into the two free-particle equations (17'). If we make the 
minimal substitutions (8) of the spinless case, we do not 
obtain compatible two-body Dirac equations. That is, in the 
brackets (25), 

A 

YdJ = (0, 'p + E, OJ .p+ M J Os,)'" = 0, 
A 

Y z '" = ( - O2 'p + Ez O2 ' P + Mz 05Z )'" = 0 

(26a) 

(26b) 

produce an operator that does not vanish on "': 

[YJ,Yz ] -"'= [OJ 'p,MzOsz ] + [MJ OSJ' - Oz 'p]_ 

= - i(aMJ '0, Bsz + aMz 'OzOSJ )"'=1=0. 

In our earlier work, we used supersymmetry arguments to 
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extend the naive Y, and Y z to forms that are compatible. 
The procedure we used had four steps. (a) We found super
symmetries of the pseudoclassical limit of an ordinary free 
one-body Dirac equation. (b) We introduced interactions of 
a single Dirac particle with external potentials that pre
served these supersymmetries. For scalar interactions this 
required the coordinate replacement 

xf.'_XI'=.xf.' + i{Of.'Os/[m + s(.x) n. 
(Since the Grassmann variables satisfy 0 z = 0 this self-re
ferent relation has a terminating Taylor expansion.) (c) We 
found that if we maintained the one-body supersymmetries 
for each spinning particle through the replacement 

x~ = (x, -xz)~-+(i, -iz)~ 

in the relativistic potentials Si' we obtained compatible clas
sical constraints. (d) Finally, we canonically quantized 
these constraints to obtain compatible two-body Dirac equa
tions of the form 

Y, "'= (0, 'p + E, OJ .p+ M J OSJ 

- iBL, '0205Z0SJ )¢= 0, (27a) 

Y z ¢ = ( - Oz 'p + Ez Oz . P + Mz Osz 

+ iaLz 'B, 0S205J)¢ = o. (27b) 

Note that the requirement of compatibility leads to terms of 
relatively simple structure [in fact, recoil terms which are 
functions of Xl that add to the naive forms of (26a) and 
(26b) ]. Here we will assume the existence of such terms and 
use the requirement of compatibility to determine relations 
among the coefficients (potentials) that multiply them. The 
only additional nontrivial commutators needed to check 
compatibility (f Y J ,Y z ] _ t/J = 0) are 

[ - iaL J 'OzOs, 0sz, - Oz .p]_ 

= (iaL J 'p + ~azLJ )OSJ 0sz, 

[OJ 'p,aLz '0, Os, 0sz] _ 

= ( - iaLz'p -1azLz )05J 0sz, 

[ - iaLJ 'OzOSJ Osz,MzOsz ] _ 

= iMZOsJaLJ 'Oz, 

[MJ 05" + iaLz '0, OSJ 05Z] _ 

= iM, OS2BL2 'OJ' 

[E, OJ .p, + iaL2 '0, Os, 052 ] _ 

= [E, 0, ,p, + iaLz '0,] + Os, OS2 
A 

= - iE, p·aLz Os, Osz = 0, 

f - iaL, 'OzOs, OS2,EzBz ·P]_ 
= - [ - iaL2 ·02,EzBz ·P] + 051 B5Z 

A 

= - iE2 P·aL, OS, 05Z = O. 

IThe last two commutators vanish since Li = Li (Xl) and 
p. Xl = 0.] Note that we have used the product rule (25) to 
determine whether to compute commutators or anticommu
tators. Collecting coefficients of independent matrices, we 
find the simple differential equations 

aM, =MzaL" 

aMz =M,aLz, 
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(29) 

(Note that in the static-limit aL --+ 0 so that each of our equa
tions reduces to the standard one-body equation for interac
tion with an external scalar potential.) If we solve these 
while identifying the free-particle rest-masses 
Mi (L = 0) = mi , we obtain 

MI = m l ch L + m2 sh L 

M2 = m2 chL + m l shL. 

(30a) 

(30b) 

In our earlier supersymmetry treatment, the recoil terms at 
the end of Eqs. (27a) and (27b) appeared as the quantum 
remnants of the classical Grassmann-Taylor expansion of 
the mass potential generated by its argument-the super
symmetric position variable i l' Note that this solution of the 
compatibility condition implies 

Mt -M~ =mt -mL (31 ) 

the third law condition already discussed for spinless parti
cles. As we found in our treatment of the scalar interaction 
using supersymmetries, such methods reduce the problem of 
compatibility for spinning particles to those conditions that 
are already needed for compatibility for spinless ones. 

Elsewhere, 3 we have extended our supersymmetric 
treatment to the case of time like vector interactions. Just as 
in the scalar case, the naive replacement 

Ei --+Ei (r,/) 

does not lead to compatible two-body Dirac equations. That 
is, when 

..9"1'" = (01 'p + EI 01 .p+ m l 0SI)'" = 0, 
A 

..9"2"'= (-02'p+E202'P+m20S2)"'=0, 

we find 

[..9"1>..9"2] _ '" 
A A 

= [0Iap,E202'P]_ + [EI 01'P,-02 ap]_ 

= - i(aEI '0102'P + aE2 '°1°1 ·P)"'=I=O. 

This time enforcement of supersymmetries for each spinning 
particle leads to the recoil-corrected forms 

..9"1"'= (OI'p+EIOI'P+mIOsl 

+iaJI '0202'POI 'P)",=0, (32a) 

..9" 2'" = ( - O2 'p + E2 O2 . P + m2 0S2 

(32b) 

The requirement of compatibility ([..9" I ,..9" 2 ] _ '" = 0), 
then yields the simple differential equations: 

aEI =E2aJI , 

aE2 = ElaJz , 

aJI =aJz ' 

(33a) 

(33b) 

(34) 

(Note again that in the static limit aJ --+0, so that each of our 
equations reduces to the standard one-body equation for a 
spinning particle in an external timelike vector potential.) 
Solution of these equations with identification of the usual 
free-particle energies Ei (J = 0) = Ei then gives 

2002 

EI = EI chJ + E2 shJ, 

E2 = E2 chJ + EI shJ. 
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(35a) 

(35b) 

Just as for the scalar interaction, the recoil terms at the end 
ofEqs. (32a) and (32b) appear in the supersymmetric treat
ment as the quantum remnants of the Grassmann-Taylor 
expansion of the energy potential generated by its argu
ment-the supersymmetric position variable i l' Note that 
this solution of the compatibility condition leads to 

E t - E ~ = Et - fj, (36) 

the third law condition for spinless particles interacting 
through a timelike vector potential. 

Finally, for spacelike interaction, the naive choices 

..9"1'" = (GI 01'P + EI 01 .p+ ml 0SI )"'= 0, 
A 

..9"2'" = ( - G2 O2 'p + E2 O2 . P + m2 0S2 ) '" = 0, 

prove incompatible: 

[..9"1,..9"2 ]"'= [GI 01 'p, - GZOl 'p] _ 

= (i(GlaGI '0102 'P - GaG2 '0201 ·p»"'=I=O. 

However, 

..9"1"'= (GIOI'P+EIOI'P+mIOSI 

+ iOl ·aGI Oil '°11 )", = 0, 
A 

..9" 2 '" = ( - G10l 'p + E201 . P + mlOSl 

- iOI aG101l '°11 )", = 0 
are compatible provided that 

GI aGl = GlaGI , 

(37a) 

(37b) 

(38) 

Thus GI and G2 differ by at most a multiplicative constant. 
If the corresponding Dirac equations are to become the usu
al free-particle Dirac equations when the interaction vanish
es, G\ andGl must each become unity (in this limit). Hence, 
the constant of proportionality must be one. Thus 

GI = Gl =G. (39) 

(Note that an attempt to introduce additional spacelike vec
tor interactions by including the additional piece iaQ'OI in 
..9" I and - iaQ' O2 in..9" 1 would not alter the vector interac
tions already introduced through G because such terms can 
be eliminated by the scale change ",--+eQ",.) 

When both scalar and timelike four-vector interactions 
are present,3 the compatible two-body Dirac equations tum 
out to be 

A A A 

..9"1 "'= (OI 'P + EI 01 'P+MIOsl + iaJ·0201 'P02'p 

- iaL'Ol 0SI 0Sl)'" = 0, (40a) 
A A A 

..9"1"'= (- 0l 'P + E201 .p+ M10Sl - iaJ'OIOI 'P01'p 

+ iaL'OI 0Sl 0SI)'" = 0, (40b) 

in which MI , M l , EI , El , L, and J are related by Eqs. (30) 
and (35), 

When all three interactions are turned on at once, the 
solutions (28)-(30), (33)-(35), and (38)-(39) yield the 
compatible two-body Dirac equations3 

A 

..9"1",=(GOI ·p+E\O\·P+MI OSI 

+ iG(02 ·aln GOIl '°11 
A A 

+ 01 ·aJOI . POl' P - 01 ·aLOsl 0Sl »'" = 0, 
(41a) 
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- iG(fJ, ·aln GfJl1 ·fJ21 
A A 

+ fJ, ·aJfJ, . PfJ2P - fJ, ·aLfJs, fJS2 »,p = o. 
(4Ib) 

Note that the requirement of compatibility generates three 
spin-dependent recoil terms at the end of each Dirac equa
tion, which can be written compactly as 

( 

- LfJs, fJs2 ) 
fJ2·a JfJ,·PfJ2·p , 

In GfJl1 • fJ21 

(42a) 

( 

LfJs, fJS2 ) 
fJ,·a -JfJ,·PfJ2·p . 

- In GfJl1 • fJ21 

(42b) 

The physically important case of electromagneticlike 
interactions (related timelike and spacelike interactions) 
deserves special mention. In that case, our compatible two
body Dirac equations reduce to 

Y, ,p = (GfJ, .p + E, fJ, . P + m, fJs, 

+ifJ2·aGfJ,·fJ2),p=0, (43a) 

Y 2 ,p = ( - GfJ2 .p + E2 fJ2 . P + m2 fJS2 

-ifJ,·aGfJ,·fJ2),p=0, (43b) 

in which the compatibility restrictions of (35) and (39) lead 
to 

E, = G(E, - E2 )/2 + w/2G, 

E2 = G(E2 - E, )/2 + w/2G. 

(44a) 

(44b) 

Note that in (43), the recoil terms have combined to yield 
the characteristic factor fJ, ·fJ2 = fJ l1 ·fJ21 - fJ, ·PfJ2 ·P. 

IV. GENERALIZATION OF THE SUPERSYMMETRIC 
FORMS TO OTHER COVARIANT INTERACTIONS 

So far, we have been able to determine appropriate mod
ifications of free Dirac equations that lead to compatible 
two-body Dirac equations in the presence of scalar, timelike, 
and spacelike vector interactions. The resulting dynamical 
forms of the two-body Dirac equations are identical to their 
one-body counterparts in corresponding external fields ex
cept for the presence of recoil terms [see Eqs. (42a) and 
(42b) ] that vanish when either of the particles becomes very 
heavy. But, how can we determine the corresponding correc
tions needed for the construction of compatible Dirac equa
tions containing pseudoscalar, timelike pseudovector, space
like pseudovector, and tensor interactions? Unfortunately, 
our earlier treatments of the scalar and vector interactions 
employed alterations of classical relativistic properties
minimal mass and four-momentum substitutions-not 
available for the pseudovector and pseudoscalar interac
tions. However, we see that regardless of the details of origin 
of the interaction terms for each of the cases treated so far 
(supersymmetry, minimal substitution) they share a com
mon algebraic-in fact, hyperbolic structure. In each case, 
the interactions are generated by hyperbolic functions of the 
potential whose gradient determines the magnitude of the 
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corresponding recoil term. [As we saw in our derivation of 
Eqs. (28)-(31) and (33 )-(36), these structures arise from 
the solution of the compatibility problem and enforce gener
alized third law conditions on the interactions.] As we shall 
see, if we use the hyperbolic structure to rewrite our solu
tions for Y i 's for the three interactions introduced so far in a 
compact form, we find that such hyperbolic structures can 
be readily generalized to incorporate their axial counterparts 
as well as the tensor interactions. 

We first note that using Eqs. (28)-(30), the scalar 
equations (27a) and (27b) can be written in the form 

Y,,p = (fJ, .p + E, fJ, .p+ (m, ch L + m2 sh L)fJs, 

- ifJ2 ·aLfJs, fJS2 ),p, (45a) 

y 2,p=(-fJ2·P+E2fJ2·P+ (m2 chL+m, shL)fJs2 

(4Sb) 

These two Dirac equations can be brought to a more general 
form through the introduction of the matrix 

&,=2~'~2' (%) 

which is a root of unity, &i = I, that is odd in each theta 
space. We then rewrite (4Sa) and (4Sb) as 

Y,,p = (Y 10 + m, (ch(2A) - 1)fJs, + m2 sh(2A)(}s2 

+ifJ2·aA),p, (47a) 

Y 2,p=(Y20 +m2(ch(2A) -1)fJs2 +m, sh(2A)(}s, 

- ifJ, ·aA),p, (47b) 

(48) 

If we rearrange these equations, we find that the combina
tions 

S,,p=(ch(A)Y, -sh(A)Y2),p=0, (49a) 

S2,p=(ch(A)Y2 -sh(A)Y,),p=O (49b) 

take the general forms 

S,,p = (Y IO ch(A) + Y 20 sh(A»,p = 0, (SOa) 

S2,p=(Y20 ch(A) +Y IO sh(A»,p=O, (SOb) 

after we have used simple hyperbolic identities and brought 
the matrices on the left of each Y i to the right. 

Since the new constraints (49a) and (49b) are nothing 
but algebraic rearrangements of linear combinations of the 
old compatible constraints Y if they must themselves be 
compatible. However, we shall verify the compatibility ex
plicitly. We already know that the constraints Y, and Y 2 

are compatible [ Y, ,Y 2 ] _ ,p = O. The commutator 
[S, ,S2] _ is a sum of four commutators. The first, 

[ch(A)Y, ,ch(A)Y 2]-

=ch(A){ch(A)[Y"Y2]_ + [Y"ch(A)]_Y2 
+ [ch(A),Yd _ Y,)~O, (5Ia) 

vanishes weakly [we need to use the constraints Y i ~ 0 (i.e., 
Y,,p = 0)]. Likewise, 

[sh(A)Y2,sh(A)Y;] _ ~O. (SIb) 

We are left with 
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- [ch(a)Y1,sh(a)Y1] _ - [sh(a)Y2,ch(a)Y2]_ 

= - (ch(a)(sh(a)[Y1,Y1]_ 

+ [Yl>sh(a)] _ Y 1) 

-sh(a)[ch(a),Y1] _ Y 1) + (1--+2):::::0. (SIc) 

Thus 

[SI>S2] _ :::::0. 

We now conjecture that the constraints in the general forms 
(SOa) and (SOb) are the proper forms for the introduction of 
relativistic interactions in the sense that all interactions 
known to us appear simply as choices for the invariant form 
a. It is our aim to find compatible constraints of the "exter
nal potential" form Y 1 and Y 2 for more general interac
tions from the SI and S2 constraints. To do this, we must 
first show that the new forms (SI and S2) in (SOa) and 
(SOb) are compatible for arbitrary a(xl ). Then, the proof 
that the constraints Y 1 and Y 2 which we uncover from the 
SI and S2 constraints are compatible is isomorphic to the 
proof given in (SI) but with the roles of Y; and S; inter
changed. 

The new forms (SOa) and (SOb) of the two-body Dirac 
equations can be related to ones recently proposed by Sazd
jian6 of the form (here written in terms of the theta matri
ces) 

SI'I' = (Y 10 + Y 20 ?r)'I', 

S2 'I' = (Y 10 + Y 10 ?r) '1'. 

If we identify 

'I' = ch(a)tP 

and 

(S2a) 

(S2b) 

(S3a) 

(S3b) 

then they are in equivalent form. Note, however, that in 
Sazdjian's equations for a given interaction (say vector) the 
potential ?r has a simple matrix structure (i.e., ()I . ()2 ). On 
the other hand, when our equations are written in his form 
with a a that has the same matrix structure, our ?r may 
contain additional matrix structure since the hyperbolic tan
gent is a nonlinear function of a. These additional terms will 
not appear for interactions whose matrix structures are roots 
of unity since, for such interactions (e.g., scalar, pseudosca
lar, timelike vector and pseudovector), the matrix structures 
of a and th(a) are the same. But, for those interactions 
whose a's are not multiples of roots of unity (i.e., those for 
spacelike interactions), our equations are not equivalent to 
Sadzjian's. Hence, in general, Sazdjian's form of the two
body Dirac equations is a weak-potential version (small a) 
of ours (SOa) and (SOb). Now, Sazdjian's forms ofthe two
body Dirac equations [and our generalized version (S2a) 
and (S2b) are compatible for arbitrary ?r provided that 
?r = ?r(xd. We use this fact to show that our general 
hyperbolic forms (SOa) and (SOb) are compatible for arbi
trary a(xl ). [We have slightly altered Sadzjian's proof of 
compatibility of (S2a) and (S2b).] First, note that the rela
tive energy constraint P'p'I' = 0 follows from 
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(YIOS1 - Y 20 S2)'I' = (Yio - Y~o)'I' 

= -!(pi +mi -p~ -m~)'I' 

= - P'p'I' = O. (S4) 

In order to demonstrate the (weak) compatibility of the two 
constraints, one must calculate 

[ SI ,S2 ] 'I' = [Y IO,Y 20 ] _ 'I' 

+ [Y IO,Y 1O?r] _ 'I' + [Y 20 ?r,Y 20 ] _ 'I' 

+ [Y20?r'YIO?r] _ 'I' 

= (Yio - Y~o)?r'I' - Y 1O?r Y 10 'I' 

- Y 10 ?r Y 20 ?r'I' 
+ Y 20 ?r Y 20 'l' + Y 20 ?r YIO?r'I' 

= - P'p?r(xl )'I' - YIO?r Y 1 'I' 

+ Y 20 ?r Y 2 '1'· 

Using (S2a) and (S2b), (S4), and [P'p,?r(x l )] _ = 0, 
one then finds that each of the terms vanishes. Thus SI and 
S2 are weakly compatible. 

Next we show that compatibility of Sadzjian's con
straints ( [SI ,S2 ] _ 'I' = 0) plus the constraints themselves 
(S; 'I' = 0) imply the compatibility of our forms (SOa) and 
(SOb): [SI ,SI ] tP = O. First, we observe that 

S;tP = S; ch(a)tP = S;'I'. 

Therefore, 

[SI ,S2] tP = (SI ch(a)S2 - S2 ch(a)SI)'I' 

= [SI,ch(a)]S2'1'- [S2,ch(a)]SI 'I' 

+ ch(a) [SI,S2]'I' =0. (SS) 

Hence, our forms (SOa) and (SOb) of the two-body Dirac 
equations are compatible for arbitrary a(xl ). 

Now, from (49a) and (49b), we see that the new con
straints S; are related to our original "external potential" 
ones by 

Y 1 = ch(a)SI + sh(a)S2' 

Y 2 = ch(a)S2 + sh(a)SI' 

(S6a) 

(S6b) 

Even though we used the scalar interaction to carry out the 
compatibility check in (Sla)-(Slc), the proofthat the "ex
ternal potential" Y; constraints are compatible/or arbitrary 
a (Xl ) given the compatibility of the S; for arbitrary a is 
virtually identical to (Sla)-(Slc). 

As we shall show for eight invariant forms for a (Xl ), 
the corresponding "external potential" form Y; constraints 
can actually be written in a form that looks like that of a one
body Dirac equation; that is, 

Y1tP=(Y IO +Zdxl ,p»tP 

= «()I 'p + EI ()I .p + m l ()SI + ZI (xl,p» 

=(R'(xl )()I 'P + .fr 1 (Xl »tP = 0, (S7a) 

Y 2tP=(Y20 +Z2(Xl ,P»tP 
A 

= (- ()2'P + EI ()2 .p+ m2()S2 + Z2 (x l ,p» 

= (- R'(xl )()2'P +.fr 2 (Xl »tP = o. (S7b) 
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(Unlike the Si or Si forms ofthe two-body Dirac equation, 
these external potential forms have no cross kinetic terms 
depending on OJ'P i=/=j. This property simplifies the reduc
tion to Schrooinger-like form.) Even at this stage, we see the 
importance of the hyperbolic structure of the equations 
(which the reader will recall emerged automatically for the 
scalar in our supersymmetry approach) in bringing Eqs. 
(56a) and (56b) to the "external potential" form through 
the identity ch2(a) - sh2(a) = 1. Recall also the impor
tance ofthis structure in guaranteeing a physical principle
the third law. 

Such properties ofthe hyperbolic structure are classical 
in that they are necessary to guarantee consistency even at 
the (relativistic) classical level. But, the hyperbolic struc
ture has a relativistic quantum-mechanical consequence as 
well. In two recent papers,7-8 Sazdjian has shown how to 
construct scalar products that accompany his form of the 
two-body Dirac equations given in Eqs. (52a) and (52b). 
The result he obtains is (rewritten here in the notation of our 
paper) 

('11 P',a' '11 P,b) 

= (21T)J83(P' - P) 

X f d 3
[ '11! (X)( 1- rrz - 4WYIOY20 ~::) 'I1b (X)] 

= (21T)3W83(P' - P)8aJa (w). 

Note that (as pointed out by Sazdjian) this scalar product is 
potential-dependent even if /Y is energy independent. How
ever, using the transformation (53a) and (53b) and a simple 
hyperbolic identity we find that the scalar product that ac
companies our form (50a) and (50b) of the two-body Dirac 
equations is given by 

(t/J P',a' t/J P,b) 

= (21T)383(P' _ P) 

X f d 3
[ t/J! (X)( 1 - 4W

2
YIOY20 ::2) t/Jb(X)] 

= (21T)3W83(P' - P)8aJa (W). 

Note that for energy-independent potentials, this scalar 
product is of the same potential-independent form as that for 
the one-body Dirac equation with energy-independent po
tentials. Perhaps the hyperbolic structure of the two-body 
Dirac equations will turn out to be a consequence of the 
requirement that the scalar product take the simple t/Jtt/J 
form for energy-independent potentials. 

We now investigate the constraints of external potential 
form Sj generated by eight choices for a(xl ). (The first 
three of these will merely reproduce our results for scalar, 
timelike vector, and spacelike vector interactions.) In each 
case, we first construct the new general hyperbolic con
straints (50) and then pass to the corresponding "external 
potential" constraints through (56). For scalar interactions, 
we shall verify that the choice 

a= - &IL(xl)/2= - [l1 12L (xl )/2] &1 (48') 

(where & I = 20s1 0S2) leads to the result given in (27)
(30). For timelike vector interactions, the choice 
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A A 

a=&2J(xl)/2= [rl'Prl'PJ(xl)/2]&I' (58) 
A A 

where tJ 2 = 201 . P02 • P, will lead to the result (32)-( 35). 
For spacelike vector interaction, the choice 

a = tJ 3 ~ (Xl )/2 = [(ru 'r21 ~ (Xl) )/2] tJ I' (59) 

where tJ 3 = 20u 'O2l' will lead to (37)-(39). The matrices 
& l' &2' and & 3 are "doubly odd" (odd in each spin space) 
and symmetric in the labels of the two spinning particles. 
Here, & I and &2 are roots of unity, &i = &~ = 1. How
ever, since &3 = -/3t/31 u I 'U2 and 
(ul '(2)2 = 3 - 2uI ·U2• one finds that 

&~ = 3g'1 + 2g'2&3' 
A A 

where g'1 = 1, and g' 2 = 4051 052 01 ' P02 . P = /31/32' There 
exists a fourth doubly odd matrix combination 

&4 = g'2 tJ 3' 

which, like & 3' is not a root of unity (&~ = &~ =/= 1). So, we 
uncover a fourth odd interaction, the covariant "polar" part 
of the full tensor interaction: 

a = Y(x l )& 4/2 = [a l 'a2 Y(x l )/2] & I' (60) 

We now construct the two external potential constraints 
Y I and Y 2 corresponding to each of these four interac
tions. In this construction, the theta combinations of the 
Dirac gamma matrices again prove useful. Their characters 
( even or odd) in the general brackets (24) and (25) dictate 
whether one should employ commutators or anticommuta
tors to obtain the external potential forms from (56) and 
(50). First note that for each of these four interactions, 
sh (a) is a doubly odd function of the doubly odd variable a. 
Using (24) to guide us to the proper bracket, we obtain 

Y I =ch(a)SJ +sh(a)S2 

= ch(a)Y IO ch(a) + ch(a)Y2o shea) 

+ sh(a)Y2o ch(a) + sh(a)Y IO shea) 

= ch2(a)Y 10 + ch(a) [Y lO,ch(a)] _ 

+ ch(a) [Y2o ,sh(a)] + 

+ shea) [Y 2o,ch(a)] _ 

+sh(a)[YIO,sh(a)] + -sh2(a)Y IO , 

(61) 

with a similar expression for Y 2' Note how the plus sign in 
conjunction with the odd-odd nature ofsh(a) combine to 
give a negative coefficient for sh2(a), which in turn allows 
one to use the simple hyperbolic identity 
ch2(a) - sh2(a) = 1 in the construction of the external po
tentialform (57a) and (57b) [see (63) below]. We need to 
compute the four quantum brackets [Y .o,ch(a)] _ and 
[Y .o,sh(a)] + for i = 1,2. First, we isolate the derivative 
parts of the constraints by using the product rule (25) to 
decompose the following parts of these four quantum brack
ets: 

[OJ 'p,ch(a)] _ = - iOI ·a(a)sh(a) 

+ [Of,ch(a)] _PI" (62a) 
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[ - O2 'p,ch(A)] _ = i02 ·a(A)sh(A) 

- [0 ~ ,ch (A) ] _ PI" 

[01 'p,sh(A)] + = - iOI ·a(A)ch(A) 

+ [Of,sh(A)] + PI" 

[ - O2 'p,sh(A)] + = i02 ·a(A)ch(A) 

- [O~,sh(A>] +Pw 

Thus the derivative parts of (61) are 

Y I = Y IO + i02 ·a(A) - i([ ch(A),Of] _ sh(A) 

(62b) 

(62c) 

(62d) 

ch(A)( - iOI ·a(A)sh(A) + i02 ·a(A)ch(A» 

+ sh(A)(i02 ·a(A)sh(A) - iOI ·a(A)ch(A» 

= i02 ·a(A) - i([ ch(A),Of] _ sh(A) 

- [ch(A),O~] _ ch(A) - [sh(A),O~] + sh(A) 

+ [sh(A),Of] + ch(A»al' (A). 

Note that the choice of commutators versus anticommuta
tors is dictated by the facts that A is odd in both particles' 
theta matrices and that the hyperbolic sine is an odd function 
(while the hyperbolic cosine is an even function). (Note also 
that [a(A),A] _ = 0.) As a result, 

- [ch(A),On _ ch(A) - [sh(A),On + sh(A) + [sh(A),Of] + ch(A»al' (A) 

along with a similar expression for Y 2' 

In each of the brackets of (63) which contain 01', that 
matrix may be replaced by Oil since it is contracted with 
either ap/(xl ) or PI' (which sati~fies P·p-;::;O). 

Case (i) scalar: A = -!& IL(xl). Consequently, 

ch(A) = 'lll ch(L 12), sh(A) = - & I sh(L 12). 
(64) 

To construct the Y;, one needs to know the elementary 
brackets: 

['llI'O~] _ = ['llI'O;'P] _ = ['llI,OSI] _ =0, 
(65) 

[&I'O~] + = [&I'O;'P] + =0, 

[&1 ,Os;] + = -20sj , i¥=j. 

These imply that 

[ch(A),O~] _ = [ch(A),OI'P]_ 

= [ch(A),Osl] _ =0, 

[sh(A),O~ ] + = [sh(A),O;'P] + 

(66) 

(67) 

(68) 

= 0 [sh(A),OSi] + = 2 sh(A)OSi' 
(69) 

To perform the remaining multiplications, we use the facts 
that 

&IOSI = -OS2' &I OS2 = -OSI' 

along with hyperbolic identities, to obtain 

Y I = OI 'P + €I 01 .p+ m l ch(L&1 )OSI 

- m2 sh(L& I )OS2 - i02' aL & I' 
2 

Similarly, we find that 
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(70a) 

Y 2 = - 01 'p + €2 thl . P + m2 ch(L& I )OS2 

- ml sh(L& I )OSI + iOI . aL & I' (70b) 
2 

Since &1 is a root of unity, ch(&IL) =ch(L), 
sh(&IL) = &1 sh(L). Thus these equations are just the 
scalar equations (27)-(30) that we originally derived 
through supersymmetric techniques. 

Case (ii) timelike four vector: A =!& 2J. Consequent-
ly, 

ch(A) = 'lll ch(J 12), sh(A) = &2 sh(J 12). (71) 

Carrying out steps similar to those given above for the scalar 
interaction, we obtain 

Y I =OI'P+€1 Ch(J&2)02' P +€2 Sh(J&2)02' P 

(72a) 

Similarly, 

(72b) 

Since &2 is a root of unity, these equations are just those 
generated by supersymmetric techniques: (32)-(35). 

Case (iii) Spacelike vector: A = !& 3 [§ (Xl ). This case 
is more complex algebraically since &~ ¥= 1. However, we 
can write 

&3 = 'll2('ll1 -2,gp), 

where 

,gp =!( 'lll - &4)( =!(1 + 0'2 '0'2» 

H. W. Crater and P. Van Alstine 
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is a root of unity (f/l2 = 1). Thus 

(
'ifll f1 ) ch(a) = ch -2- - f/I f1 

= Ch( ~) ch(f1) - f/I Sh( ~ ) sh(f1) 

= Ch
3
( ~) + ~ &4 Sh( ~) sh(f1), 

shea) = 'ifl2 sh('ifl 1 [1/2-f/l[1) 

= 'ifl 2 (Sh( ~ ) ch ( [1) - f/I Ch( ~ ) sh ( f1 ) ) 

= 'ifl2 Sh3( ~) + ~ &3 Ch( ~) sh([1). 

One needs to know the elementary brackets 

['ifl 2,0~d + = 2021 'iflz = 2'ifl 20~l> 

['ifl 2,Oj'P] + = ['ifl 2,05;] + =0. 

Since 'ifl 2 & 4 = & 3 , one also needs to know 

[&3'0~] + = - 20t, i=lj, 

[&3,01'P] + = [&3,05;] + =0. 

In addition, one must use 

[&4'0~]_ = -20~&4+ [&4'0~]+ 
= - 20 ~ & 4 - 20 t 'ifl Z 

=2&40~ +2'ifl20t, i=lj 

[OJ,P'&4] _ = [050&4] _ =0. 

Consequently, 

[ch(a),O~] _ 

= -sh([1/2)sh([1)(0~&4 +Ot'ifl2) 

= sh ( [1/2) sh ( [1 )( & 4 0 ~ + 'ifl 2 0 t ), 
[ch(a),Oj'p] _ = [ch(a),Os)] _ =0, 

while 

[sh(a),O~] + 

= 2 sh3( [1/2)0~ 'ifl 2 - ch( [1/2)sh( [1 )Ot 

= 2 sh3( [1/2) 'ifl 2 O~ - ch( [1 /2)sh( [1 )Ot, 
A 

[sh(a),Oj'p] + = 0 = [sh(a),Osd + . 

One then uses 

&4'ifl2 = &3' &4&3 = 'ifl2&~ =3'ifl2 +2&3' 

&~ = 3 + 2& 4' 

along with the identities 

(75) 

(76) 

(77) 

(78) 

(79) 

(80) 

(81) 

(82) 

(83) 

(84) 

(8S) 

(86) 

(87) 

0fl&3 +Of1'ifl Z +0~1&4 +O~l =0, (88) 

&40fl + 'ifl20~1 + &30~l + Ofl = 0, (89) 

to perform the remaining mUltiplications. After using nu
merous hyperbolic identities one finds 

- [ch(a),Ofl] _ shea) - [sh(a),Ofl] + ch(a) 

= 2 sh(.c9' /2)ch(.c9' 12)0~l' (90) 
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[ch(a),O~d _ ch(a) + [sh(a),O~d + shea) 

= 2 sh2
( f1/2)0~l' 

ch(a) [Ofl,ch(a)] _ + shea) [O~l,sh(a)] + 

= 2 sh2(.c9' 12)Ofl> 

- ch(a) [O~l,sh(a>] + - shea) [O~l>ch( >] _ 

= 2 she [1/2)ch( f1/2)Ofl' 

so that 

.9') =exp([1)O)'P+€JJ)'P+m)05) 

+iexp(f1)02' a.c9' &3' 
2 

Similarly, 

.9'2 = -exp([1)02'P+€ZOz'P+m20S2 

(91) 

(92) 

(93) 

(94a) 

- iexp(.c9')O)· a[1 &3' (94b) 
2 

The external potential forms (94a) and (94b) [ with 
.c9' =In([1)], are just the constraints (37)-(39) that we 
had derived earlier. 

Case (iv) tensor (Polar): a =!& 4Y' In Appendix A, 
we show our method applied to this interaction yields 

A 

.9') = exp(Y'ifl z)O) 'p + €) ch(Y & 4 )0) .p 
A 

+€2 Sh(Y&4)02'P 

+ m) ch(Y & 4 )051 + m 2 sh(Y & 4 )052 

aY 
+ i exp(Y'ifl Z)02' -- tJ 4' (9Sa) 

2 

.9'2 = -exp(Y'ifl2)02'P+€Z Ch(Y&4)02'P 

+ €I sh(Y & 4 )0) .p 
+ m2 ch(Y & 4 )052 + m2 sh(Y & 4 )OS) 

- i exp(Y'ifl 2 )0) . ay &4' (9Sb) 
2 

for the two compatible constraints. The pair of Dirac equa
tions (9Sa) and (95b) for the polar tensor interactions and 
the four pairs of Dirac equations that we shall derive below 
for the axial interactions are new forms which accompany 
the three pairs of Dirac equations that we had found pre
viously through quantization of supersymmetric pseudo
classical forms. 

The axial counterparts to the constraints (S6a) and 
(56b) in the case of polar interactions are 

.9') = ch(a)SI - sh(a)Sz, (96a) 

(96b) 

where SI and S2 are still given by (SOa) and (SOb). Just as 
for the polar (56a) and (S6b), the compatibility of these two 
constraints follows from that ofthe Sj' Note that the minus 
sign [as opposed to the plus sign in (S6a) and (S6b)] com
bines with the fact that a is even-even for the axial interac
tions to give a minus sign coefficient for sh2(a) [see (101) 
below], which, in tum, will allow one to use the simple hy
perbolic identity ch2(a) - sh2(a) = 1 in the construction 
of the external potential form (S7a) and (57b) [see (102) 
below]. These axial a's are 
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ll. = 1f I C =.£ = tJ I C tJ I = _ rSI rS2 C tJ I' (97) 
22·22 

for the pseudoscalar interaction, 
A A 

ll.= _1f2H = _ tJ2H &1 = rSlrl·PrS2r2·PH & 
2 2 2 I> 

(98) 

for timelike pseudovector interaction, 

ll.= _ 1f
3
1 = _ tJ 31 tJ

l 
= rSlrll·rS2r2J tJ

l
, (99) 

222 

for the spacelike pseudovector interaction, and 

ll. = _ 1f 4 Y = tJ 4 Y tJ I = _ 0'1 ·0'2 Y tJ I' 
2 2 2 

( 1(0) 

..9'1 =..9'10 + i02 ·a(ll.) - it[ ch(ll.),Of] _ sh(ll.) 

for the axial part of the tensor interaction. Recall that as in 
the polar cases C, H, I, and Yare functions of Xl. We have 
chosen a minus sign in (96a) and (96b) because shll. is even 
in the number of theta matrices. Since this quantity will ap
pear in commutators instead of anticommutators, we find 
[in contrast to Eq. (61) for polar interactions] that 

..9'1 = ch2(ll.)..9'10 + ch(ll.) [..9'IO,ch(ll.)]_ 

+ ch(ll.) [..9'2o,sh(ll.)] _ - sh(ll.) [..9'2o,ch(ll.)]_ 

- sh( ll.) [..9' lO,sh(ll.)] _ - sh2(ll.)..9' 10. (101) 

Steps analogous to those below (61) (with commutators ap
pearing instead of anticommutators at appropriate places) 
show that the general form of the Dirac operator for the axial 
interaction analogous to (63) for the polar is 

- [ch(ll.),On _ ch(ll.) + [sh(ll.),On _ sh(ll.) - [sh(ll.),Of] _ ch(ll.»ap (ll.) 

+ ch(ll.)([ Of,ch(ll.)] _PI' + [EI 01 ·P,ch(ll.)] _ + [ml OSl>ch(ll.)] _ - [O~,sh(ll.)] _PI' + [E202 ·P,sh(ll.)]_ 

+ [m20S2 ,sh(ll.)] _) + sh(ll.)( + [O~,ch(ll.)] _P,.. - [E202 ·P,ch(ll.)] _ 

- [m20S2 ,ch(ll.)] _ - [Of,sh(ll.)] _PI' - [EIOI·P,sh(ll.)] _ - [mIOsl,sh(ll.)] -), (102) 

along with a similar expression for ..9' 2. 
Case (v) pseudoscalar: ll. = !C. Consequently, 

ch(ll.) = ch(C/2), sh(ll.) = sh(C /2). (103) 

As a result, 

[ch(ll.),O~ ] _ = [ch(ll.),O;· P ] _ 
= [ch(ll.),Os;] _ = 0, (104) 

A 

[ sh (ll.),O ~ ] _ = [sh (ll.) ,0; . P ] _ 

= [sh(ll.),Osl] _ = 0, (105) 

so that 

..9'1 = 01·P + EI 01 .p+ ml OSI + i02 ·a(C/2). ( 106a) 

Similarly, 

..9'2 = -02·P+E202·P+m20S2 -iOl ·a(C/2). (106b) 

Case (vi) Timelike pseudovector: ll. =!1f 2H. Then 

ch(ll.) = ch(H), sh(ll.) = 1f 2 sh H. (107) 

Thus 

[ch(ll.),O~ ] _ = [ch(ll.),O;· P] _ 
= [ch(ll.),Os;] _ = [sh(ll.),O~] _ = 0, 

( 108) 

[sh(ll.),O;·P] _ =2sh(ll.)O;·p, 

[sh(ll.),Osl] _ = 2 sh(ll.){}s;. 

In addition, 
A A 

[1f2'O~]_ =0, [1f2'O;·P]_ = 21f20;·P, 

[1f2'OS;] _ = 21f20SI 

implies that 
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(109) 

(110) 

[sh(ll.),01'i ] _ = 0, 

and that 
A A 

[sh(ll.),O;·P] _ = 2 sh(ll.)O;·p, 

[sh(ll.),Os;] _ = 2 sh(ll.){}s;. 

(111) 

(112) 

When we substitute these brackets into (102), we find 

..9' I = 01 .p + EI ch(H1f 2 )01 • P + E2 sh(H1f 2 )02 . P 

+ ml ch(H1f 2 )OSI + m2 sh(H1f 2 )OS2 

- i02 • aH 1f 2. 

2 

Similarly, 

(113a) 

A A 

..9' 2 = - O2 .p + E2 ch(H1f 2 )02. P + E] sh(H1f 2 )01 • P 

+ m2 ch(H1f 2 ){}S2 + ml sh(H1f 2 ){}SI 

'0 aH a? +11·-e>2· 
2 

( 113b) 

Case (vii) spacelike pseudovector: ll. = - !I(x1 ) 1f 3. 

Using the identity 1f 3 = tJ I tJ 3 = & 2 (1f I - 2~), we find 
that steps similar to those given for the spacelike vector in
teraction and the polar part of the tensor interaction given in 
Appendix A yield 

..9'1 = exp(tJ ]1)01 .p + E] 01 .p + ml ch(/1f 3 )OSI 

Similarly, 

+ m2 sh(/1f 3 )OS2 - i exp( tJ I 1)02. aI 1f 3. 
2 

(114a) 

..9'2 = - exp(& I I )02·p + E2 02·P + m2 ch(/1f 3 )OS2 
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Case (viii) tensor-axial: t::.. = ~Y(Xl) If 4' 
Using the identity If 4 = &2 & 3 = & I (If I - 2fJ(), we find 
that steps similar to those given for the spacelike vector in
teraction and the polar part of the tensor interaction given in 
Appendix A yield 

A 

..9"1 = exp(&2 y)01 'p + £1 ch( ylf 4)01 .p 

+ £2 she ylf 4 )02 .p+ ml 8s1 

-iexp(&2Y) 02' ay 1f4. 
2 

In a similar fashion, we obtain 
A 

..9"2 = -exp(&2Y)02'P+£2 ch(YIf4 )02'P 

+£1 sh(YIf4 )OI'P+m20s2 

+iexp(&2Y) 0I' ay 1f4. 
2 

(lI5a) 

( 115b) 

V. CHARACTERISTIC FORMS OF TWO-BODY DIRAC 
EQUATIONS FOR SINGLE COVARIANT INTERACTIONS 

For each of the eight relativistic interactions that we 
have considered above, our methods lead to a pair of coupled 
but compatible Dirac equations. Each of these "external po
tential" forms contains characteristic minimal extensions of 
structures of the free Dirac equation accompanied by an ap
propriate spin-dependent recoil term that depends on the 
gradient of the potential. For scalar interactions 
[t::.. = - ~L(Xl)& I]' the mass terms become Xl dependent: 

..9"1 t/J = (01 'P + £1 01 .p+ m l ch(L& I )OSI 

- m2 sh(L& I )OS2 - i02' a~ ttl )t/J, 

..9"2t/J = ( - 01 'P + £2 01 .p+ m2 ch(L& I )OS2 

- m l sh(L& I )OSI + iOI ' a~ & I )t/J. 

(70a') 

(70b') 

For timelike vector interactions [ t::.. = Y(x 1 ) & 2 ], the time
like momentum terms become Xl dependent: 

..9"1t/J= (OI'P+£1 ch(J&2)01'P+£2 sh(J&2)02' P 

+ m l OSI + i82 . a: &2 )t/J, (72a') 

..9"2 t/J = ( - 02'P + £2 ch(J& 2 )02'P + £1 sh(Jtt2 )01 .p 

(72b') 

For spacelike vector interactions [t::.. = !Y (Xl) & 3 ], the 
spacelike momentum terms become Xl dependent: 

..9"1 t/J= (exp(Y)OI'P + £1 olap+ ml OSI 

+ i exp( [1 )02 ' a; &3). (94a') 
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..9"2t/J= ( - exp(Y)02'P + £2 02ap + m20S2 

- i exp( [1)01' a: &3 )t/J. (94b') 

For "polar" tensor interactions [t::.. = !Y (Xl) & 4] the 
mass, timelike, and spacelike momentum terms become not 
only Xl dependent but also spin dependent (through the ap
pearance of 011 . 021 in &4): 

..9"1 t/J= (exp (YIf2 )OI 'P + £1 ch(Y &4)OI' P 

+ £2 sh(Y &4 )02'P + m l ch(Y & 4 )Os I 

+ m2 sh(Y &4 )OS2 + iexp(YIf2)02' a~ &4)t/J 

(95a') 

..9"2t/J = ( - exp(YIf 2)02'P + £2 ch(Y & 4)02'P 

+ £1 sh(Y & 4 )01 .p + m2 ch(Y & 4 )OS2 

+ m2 sh(Y &4)OSI - iexp(YIf2)01' a~ &4 )t/J. 

(95b') 

For pseudoscalar interactions [t::.. = ~C(x 1 ) If I] mass, ti
melike, and spacelike momentum terms are independent of 
xl-the potential is entirely contained in the gradient-de
pendent recoil term: 

..9" I t/J = (01 'P + £1 01 . P + m l OSI + i02 ·a ~) t/J 
(106a') 

..9"2t/J= ( - 02'P + £2 02 .p+ m20S2 - iOI·a ~) t/J. 
( 106b') 

For timelike pseudovector interactions 
[ t::.. = - ~H(x 1) If 2 ] mass and timelike momentum terms 
become Xl dependent but not spin dependent (011 . 82! does 
not appear in If 2 ): 

..9"1 t/J = (01 'P + £1 ch(HIf 2 )01 .p+ £2 sh(HIf 2 )02'P 

+ m l ch(HIf 2 )OSI + m2 sh(HIf 2 )OS2 

- i02' a~ If 2 )t/J, (l13a') 

= ( - 82·p + £2 ch(HIf 2)02'P + ci sh(HIf 2 )01 .p 

+ m2 ch(HIf 2 )OS2 + ml sh(HIf 2 )OSI 

+ iOI . a~ If 2 )t/J. (l13b') 

For spacelike pseudovector interactions 
[t::..= -¥(xl )1f3 ], the spacelike momentum terms be
come Xl dependent while the mass terms become Xl depen
dent and spin dependent (through the appearance of 011 . 021 

in 1f3): 
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..9"1 tP = (exP(& 11)01 'p + EI 01 .p + m l ch(l!if 3 )OSI 

+ m1 sh(l!if 3 )OSl - i exp( & 11)01 • ~ !if 3 )tP, 

(114a') 

..9"ltP = ( - exp(& l 1)Ol'P + E101'P + m1ch(l!if 3 )OSl 

+ m l sh(l!if 3 )OSI + i exp( & 11)01 . ~ !if 3 )tP. 

(114b') 

For "axial" tensor interactions [a = - !Y(x1 )!if 4] the 
spacelike momentum terms become Xl dependent while the 
timelike momentum terms become Xl dependent and spin 
dependent (through the appearance of Ou '011 in !if 4): 

..9"ltP=(eXP(&1Y)OI·P+E1 ch(Y!if4)OI'P 

+ E1 sh(Y!if4 )01 .p+ m l 0SI 

-iexp(&2Y) 02' a: !if4 )tP, ( 115a') 

..9"2tP = ( - exp(&2 Y) 02'P + E2 ch( y!if 4)02'P 

+ EI she y!if 4 )°1' P + m2 0S2 

+iexp(&2Y) 0I' a: !if4 )tP. ( 115b') 

Each ofthese equations has the form of (57a) and (57b)
the generic "external potential" form. Note that while the 
minimal extensions appearing in the scalar and vector equa
tions are simple alterations of classical relativistic proper
ties, those appearing in the tensor and axial equations could 
not have been anticipated from simple classical consider
ations. 

VI. TWO-BODY DIRAC EQUATIONS FOR 
COMBINATIONS OF COVARIANT INTERACTIONS 

In physical applications in which the relativistic poten
tials appearing in two-body Dirac equations result from 
quantum field theory, two or more of these eight interaction 
occur in combination. Accordingly, we now generalize these 
equations to include certain important pairs of interactions. 
First, as a pedagogical aid to the reader, we review the treat
ment of the simplest combination, scalar plus timelike four
vector that plays an important role in relativistic phenome
nological treatments4-S of the long-range confining part of 
the chromodynamic interactions of heavy and light quarks. 
[We have treated this pair elsewhere3 using supersymmetric 
methods to obtain Eqs. (40a) and (40b)]. Then, we exam
ine the case of additive timelike and spacelike vector interac
tions-the electromagnetic case-which we have solved ex
actlyl6 for parapositronium (with field theoretic spectrum 
correct to order a4

). Finally, we treat the case of additive 
scalar and pseudoscalar interactions that appears as part of 
the Fierz transformed annihilation channel of electrody
namics-our principle motivation for the generalized treat
ment of interactions that appear in this paper. 
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We return to the general hyperbolic constraint forms 
(50a) and (50b) which we know to be compatible for arbi
trarya: 

SI =..9"10 ch(a) + ..9"20 shea), 

S2 = ..9"20 ch(a) + ..9" 10 shea). 

(50a') 

(50b') 

We examine the case of additive scalar and timelike vector 
interactions: 

a=.aJ + a L = !(& 2J(X1) - & IL(xl ». (116) 

Since both & 1 and & 2 are doubly odd matrices, the general 
form given in (61) for the ..9" 1 constraint (similarly for the 
..9" 2 constraint) is still valid. We use ( 64 ), (71) , and 
& 1 & 1 = !if 2 to obtain 

ch(a) = ch(aJ )ch(aL ) + sh(aJ )sh(aL ) 

(117) 

= & 2 Sh( ~ ) Ch( ~ ) - & 1 Ch( ~) Sh( ~ ) . 

(118) 

We then make use of (68 )-( 69) and similar relations for the 
timelike vector interactions to obtain 

[ch(a),011] _ =0= [sh(a),011] +, (119) 
A A 

[ch(a),O;' P] _ = 2 sh(aJ )sh(aL )0;' P, (120) 

[ch(a),Osd _ = 2 sh(aJ )sh(adOs;, (121) 

[sh(a),O;' P] + = 2 sh(aJ )ch(aL )0;' p, (122) 

[sh(a),Osd + =2ch(aJ )sh(aL )Os;' (123) 

Substitution of these results into (63) then yields after sim
plification 

..9"1 = 01'P + EI ch(&2J )01 .p+ E2 sh(&2 J )02'P 

+ m l ch(&IL)Osl - m2 sh(&IL)Os2 

+ i02·.E.. (J&2 -L&I)' 
2 

Similarly, we find that 

(124a) 

..9"2 = -02'P+E2 ch(&2J)02'P+EI sh(&2 J )OI'P 

+ m2 ch(& IL)OS2 - m l sh(& IL)Osl 

- iOI·.E.. (J&2 -L&I)' 
2 

(124b) 

When we use the fact that &; 's are roots of unity in each 
hyperbolic function, we see that these are just our earlier 
results Eqs. (40a) and (40b). 

Next, we treat the more complicated case of additive 
timelike and spacelike interaction (important for the elec
tromagnetic case) for which 

a=aJ +a;r-

(125) 

When we use 

ch(a) = ch(a.'9 )ch(aJ ) + sh(a.'9 )sh(aJ ), 
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shea) = sh(a.,? )ch(aJ ) + ch(a:§ )sh(aJ ), 

( 68 ), (84), and (86), we find that 

[ch(a),8~] _ = [ch(a.~ ),8~] _ ch(aJ ) 

- [sh(a.'9 ),8~] + sh(aJ ), (126) 

[ch(a),8j ·p]_ =sh(a.'§)[sh(aJ ),8j ·P]+, (127) 

[ch(a),8s;]_ =0, (128) 

[sh(a),8~] + = [sh(a:§ ),8~] + ch(aJ ) 

- [ch(a:~ ),8~] _ sh(aJ ), (129) 

A A 

[sh(a),8j ·p] _ = sh(a.,§ )[sh(aJ ),8j ·P] + ' (130) 

[sh(a),8s;] + = o. (131) 

Substitution of (126)-(131) into (63) with additional sim
plification yields 

'" '" .9'1 =exp(Y)OI·p+ch(&2J)EI81·P+sh(&2J)E282·P 

+m18s1 +exp(Y)i82 ·(a/2) (Y&3 +J&2)· 
( 132a) 

Similarly, 

.9'2 = -exp(Y)02·p+ch(&2J )E282·P 
'" + sh(& 2J)EI81·P 

+m28s2 -exp(Y)i81·(a12) (Y&3 +J&2)' 
(132b) 

For electromagneticlike interactions the potentials are relat
ed through J = - Y so that 

.9'1 = exp(E9)01 .p + ch(&2 Y )E181 .p 
'" -sh(&2Y)E282·P 

+m18s1 +exp(Y)i82·(a12) (Y81·82) (133a) 

and 

.9'2 = exp(Y )82·p + ch(&2 Y)E282·P 
'" -sh(&2 Y )EI81·P 

+m28s2 -exp(Y)i81·(a12) (Y81·82) (133b) 

[since the combination a = (Y & 3 + J & 2 ) /2 
= (Y 81.82 )/2]. IfweidentifyG = exp( Y), we reproduce 
(43 )-( 44) a result that we had derived in an earlier paper 
using supersymmetry methods. 

A weak potential form ofEqs. (133a) and (133b) has 

been derived by Sazdjian from a form equivalent to Eqs. 
(52a) and (52b). Starting with Jr(x1 ) = (!& 3 Y) 
+ !(!& 3 y)3 (in our notation), he works his way to a form 
like Eqs. (133a) and (133b). Viewed from the standpoint of 
our hyperbolic structure, he constructed the Dirac con
straint that contains just the first two terms of the hyperbolic 
tangent. As he pointed out, if the first term is regarded as 
arising from single-vector exchange, the second term (an 
axial vector term) can be regarded as arising (in its covar
iant structure) from a triple-vector exchange. In his inter
pretation, our combination of hyperbolic functions would 
correspond to a sum over vector exchanges of all orders. In 
fact, viewed from the Bethe-Salpeter equation, however, our 
structure is an extrapolated extension of a single-vector ex
change. 

Next, we examine the still more complex structure gen
erated by addition of polar and axial interactions (such as 
produced by electrodynamics when the Fierz transformated 
annihilation channel is included). We wish to construct .9' i 
constraints from combinations of Si that yield the simple 
external potential forms. For the polar interactions, a is an 
odd-odd matrix and .9' i is given by (63), whereas for the 
axial interactions, a is an even-even interaction and .9' i is 
given by (102). We still start from the general constraints 

SI =.9'10 ch(a) + .9'20 shea), (50a') 

S2 = .9'20 ch(a) +.9'10 shea), (50b') 

but with a = a", + at;' == a + . Since a + has a mixed "par
ity," we define a _ = a", - a'lf and are forced to take 

.9'1 = ch(a_ )SI + sh(a_ )S2' (134a) 

.9'2 = ch(a_ )S2 + sh(a_ )S» (134b) 

in order to use the simple hyperbolic identity 
ch2(a_ ) - sh2(a_ ) = 1 to bring (192a) and (192b) to 
external potential form. That is, the plus sign coefficient of 
a", and the minus sign coefficient of a'6' in conjunction with 
theodd-odd nature of a", and sh(a", ) for the polarinterac
tions and the even-even nature of a'lf and sh(a'lf) for the 
axial interactions combine to give a minus sign coefficient for 
sh2(a _ ), which, in turn, allows us to use the simple hyper
bolicidentity ch2(a _ ) - sh2(a _ ) = 1 in the construction 
of the external potential form (57a) and (57b) [see (135) 
below]. Note that (134a) and (134b) generalize our two 
earlier forms (56a) and (56b) and (96a) and (96b) reduc
ing to them when either arl = 0 or a'6' = o. Note that the 
compatibility of these two constraints follows from those of 
the Sdust as did that of (56a) and (56b). Next, we consider 
how to generalize (63) and (102), the equations for the ex
ternal potential forms of the constraints. In Appendix B, we 
show that this generalization is given by 

.9'1 =.9'10 + i82 ·a(a + ) - i([ ch(a", )ch(a'6' ),8)d _ shea + ) - [sh(a", )sh(a'6' ),8)d +sh(a + ) 

- [ch(a", )ch(a'lf ),8~1 ] _ch(a + ) + [sh(a", )sh(a'6' ),8~1] + ch(a + ) 

- [sh(a lY )ch(a'lf ),8~1 ] _ shea + ) 

+ [sh(a'lf )ch(a", ),8~1 ] _ shea + ) + [sh(arl )ch(a'6' ),8)1] + ch(a + ) 
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A 

+ ch(A_ )([ Otl,ch(A", )ch(Ajf')] _PI" + [Otl,sh(A", )sh(Ajf')] + PI" + [EIOI 'P,ch(A"dch(Ajf')] _ 
A 

+ [EIOI 'P,sh(A", )sh(Ajf' )] + + [mlOsl ,ch(A", )ch(Ajf' )] _ + [mlOsl ,sh(A", )sh(Ajf' )] + 

- [O~l,sh(A", )ch(Ajf')] + PI" 
A A 

- [O~l,ch(A", )sh(Ajf' )] _ PI" + [E2 O2' P,sh(A", )ch(Ajf' )] + + [E2 O2 . P,ch(A~ )sh(A~ )] _ 

+ [m2 OS2,sh(A~ )ch(Ajf' )] + + [m2,Os2,ch(A~ )sh(Ajf')] _ ) + shea _ )( - [O~l,ch(A~ )sh(Aw )] _ PI" 
A A 

- [O~l,sh(A~ )ch(Ajf')] + PI" + [E202 'P,ch(A~ )ch(Ajf')] _ + [E202 'P,sh(A~ )ch(Aw)] + 

+ [m2 052 ,ch(A", )sh(Ajf' )] _ + [m2 052 ,sh(A~ )ch(Aw )] + 
A 

+ [Otl,sh(A~ )ch(Ajf')] + PI" + [Otlfsh(Aw )ch(A~)] _PI" + [EI '01 'P,sh(A~ )ch(Aw)] + 

with a similar expression for Y 2' Note that this complicated 
expression simplifies to either (63) or ( 102) if either Aos-, or 
A('J' vanishes. 

We specialize this result to the additive scalar and pseu
doscalar interaction for which 

A('J' = _ L(X1)tJ l , A~ = C(x1) Ifl = C(x1) 
2 2 2 

(136) 

This combination is important not only as part of the Fierz 
transformed annihilation structure of electrodynamics but 
also for phenomenological studies of the two-nucleon prob
lem. This particular case is especially simple since virtually 
all of the commutators and anticommutators in (135) van
ish with the exception of the anticommutators that involve 
the mi factors. These combine to give 

ch(A_ )(2 sh(AL)sh(Ac)m l 051 +2sh(AL ) 

Xch(Ajf' )m20S2 ) + sh(A_ )(2 sh(AL )sh(Adm20s2 

+ 2 sh(AL )ch(Ac )m l ( 51 ) 

= 2 sh2(AL )ml 051 + 2 sh(Ay )ch(AL )m2 052 , 
(137) 

Thus, in this case, 
A 

Y I =OI'P+EIOI'P+ml ch(tJ I L)8sl 

- m2 sh(tJ IL)Os2 

( 138) 

and 

(139) 

VII. CONCLUSION 

Two different points of view about the significance of 
relativistic interactions determine the ways in which they 
appear in two-body constraint equations. One view is that 
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relativistic potentials appear as constituent potentials in the 
constraint equations governing each particle. The other is 
that relativistic potentials originate as "system interactions" 
in forms dictated by the two-body system. In our treatment 
of the system of two spin one-half particles and that ofSazd
jian, these points of view survive as our emphasis on interac
tion via "external potentials" versus Sazdjian's emphasis on 
a single-system interaction for the pair. However, in our 
work, these points of view are actually complementary
both realized in a single structure. Their complementary na
ture arises from two requirements that the two-body system 
ought to satisfy. Mathematical compatibility of the two con
stituent equations requires that in reality there be only one 
independent potential in the system (relativistic version of 
Newton's third law), while the demand that the interactions 
permit the description to degenerate to the usual Dirac equa
tion in a static external potential when one particle has infi
nite mass restricts the acceptable dependences of the system 
potential on masses and c.m. energies. Satisfaction of the 
second requirement is most easily dealt with when the con
straint equations are in "external potential" form. 

For two spinless particles, these two requirements lead 
to a hyperbolic dependence of constituent potentials on the 
underlying system potential-a hyperbolic realization of 
Newton's third law [see Eqs. (30) and (31) and (35) and 
(36)]. When both particles possess spin one-half, satisfac
tion of these two requirements would seem to be more diffi
cult. However, as we showed in our treatment of the world 
scalar interaction between two spin one-half particles, the 
presence of a special structure in spin space-recoil terms 
dictated by (one-body) supersymmetries-takes care of the 
spin-dependent complications and reduces these require
ments to those of the spinless case (hyperbolic solution ofthe 
third law). Recently, Sazdjian found that satisfaction of one 
requirement--<x>mpatibility-is almost trivial no matter 
what the form of the system potential. His constraints are a 
pair of point-dependent "superpositions" of free-particle 
Dirac operators. In order to satisfy the requirement of com
patibility he found a structure in spin space to take the place 
of our supersymmetries. This structure reduces to ours for 
forms of the interaction whose matrix coefficients are roots 
of unity (i.e., for the scalar, pseudoscalar, and timelike vec-
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tor and pseudovector interactions) but not for those whose 
matrix coefficients are not (i.e., the spacelike vector and 
pseudovector interactions, the polar and axial tensor inter
actions). 

In the present work, we have shown how Sazdjian's spin 
structure may be altered to reunite the system and constitu
ent forms of the two-body Dirac equations for general rela
tivistic interactions. The central ingredient is that the point
dependent superposition of free Dirac operators itself be 
hyperbolic. Then, as we have shown for eight covariant in
teractions, the equations are not only compatible (as were 
those ofSazdjian), but also possess forms in which the inter
action appears as a system of "external potentials" (see the 
eight sets of equations in Sec. V). Furthermore, all of these 
potentials appear as minimal substitutions on masses and 
momenta. Thus this procedure generates the minimal substi
tutions for scalar and vector interactions along with new 
minimal substitutions for the pseudovector and tensor inter
actions. Realized in this fashion, the algebraic spin structure 
really does play the role for more general interactions that 
was played by our supersymmetry for the scalar, reducing 
the compatibility condition to the satisfaction of the third 
law for spinless particles in constituent form. 

The fact that our superpositions depend nonlinearly on 
the underlying system interaction not only makes the "exter
nal potential" description possible but also simplifies the in
teraction dependence of the quantum-mechanical norm as 
well. When such equations are used as a quantum-mechani
cal transform of the field-theoretic Bethe-Salpeter equa
tion,5,17-18 they simplify the physical interpretation of inter
action structures generated by a single photon exchange. 
This hyperbolic structure leads directly to an effective "ex
ternal potential" form of interaction, which serves as a non
perturbative extrapolation of the perturbative quantum-me
chanical transform6 of the Bethe-Salpeter equation. 
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APPENDIX A: COMPATIBLE DIRAC OPERATORS FOR 
THE POLAR PART OF THE TENSOR INTERACTION 

For this interaction, a =!& 4Y' Now, since &4 
= If I - 2f!1i, we find that 

(
1f1Y =-) ch(a) = ch -2-- f!liy 

= Ch( ~) ch(Y) - f!Ii Sh( ~) sh(Y) 

(Y) 1 (Y) =ch3 2"" +"2 &4 sh 2"" sh(Y), 

(AI) 
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sh(a) = Sh(~1 Y - f!liY) 

= Sh( ~) ch(Y) - f!Ii Ch( ~) sh(Y) 

(Y) I (Y) =sh3 2"" +"2&4 ch 2"" sh(Y). (A2) 

In addition to the commutators given in (81) and (82) for 
the spacelike vector, we need the anticommutators 

[&4'0~] + = -20'ft1f2 = -21f20'ft, (A3) 
A A 

[&4,Oj'P] + =2&4 0j'P, [&4j05;]+ =2&4 05j' 
(A4) 

With their aid, we find that 

[ch(a),O~] _ 

= - sh(Y 12)sh(Y)(0~ &4 + 8'ft If 2) 

= sh(YI2)sh(Y)(&48~ + 1f20'ft), (AS) 

[ch(a),8j 'p] _ = [Ch( ~) ,85j ] _ = 0, (A6) 

[sh(a),O~ ] + = 2 sh3(y 12)0~ 

- ch(Y 12)sh(Y)0'ft If 2 

= 2 sh3(Y 12)8~ 

-ch(YI2)sh(Y)1f20'ft, (A7) 
A A 

[sh(a),Oj'p] + =2sh(a)Oj'p, 

[sh(a),Osl] + = 2 sh(a)05j' (A8) 

After using these brackets to evaluate (63) and performing 
the indicated multiplications by using (88)-(90) and 

&3 8 fl + 1f20fl + &40fl + O~l =0, 

O~l & 3 + O~llf 2 + Ofl & 4 + Ofl = 0, 

we obtain 

- [ch(a),Ofl] _ sh(a) - [sh(a),8fl] + ch(a) 

(A9) 

(AIO) 

= 2 sh(YIf 2/2)ch(YIf 2/2)O~l> (All) 

[ch(a),O~l] _ sh(a) + [sh(a),O~l] + sh(a) 

= 2 sh2(YIf 2/2)0~l> (AI2) 

ch(a) [Ofl,ch(a)] _ + sh(a) [O~l,sh(a)] + 

= 2 sh2(YIf2/2)Ofl> (A13) 

- ch(a) [O~l>sh(a)] + - sh(a) [O~l,ch( )] _ 

= 2 sh(YIf 2/2)ch(YIf 2/2)Ofl' (AI4) 

which ultimately lead to Eqs. (95a) and (95b) given in the 
text. 

APPENDIX B: GENERALIZATION OF THE COMPATIBLE 
DIRAC OPERATORS FOR SEPARATE POLAR (63) AND 
AXIAL (102) INTERACTIONS INTO ADDITIVE POLAR 
AND AXIAL INTERACTIONS 

We begin with the identity 

ch(a + ) = ch(a", )ch(aw) + sh(a", )sh(aw), 

sh(a + ) = sh(a", )ch(a6,) + ch(al"l )sh(aw )· 

The even or odd character of the functions and their respec-
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tive arguments dictate whether the Y 1) form commutators 
or anticommutators as they pass through ch(d + ) and 
sh(d + ) in (SOa') and (SOb'). To evaluate (SOa'), we use 

Y 20 Sh(d+) = -sh(d_ )Y20 

+ [Y20 ,sh(d", )Ch(dw )] + 

SIO ch(d + ) = ch(d _ )Y 10 + [Y lO,ch(d",. )ch(dw )] _ 
+ [Y20 ,ch(d", )Sh(dw )] _. (B2) 

+ [Y lO,sh(d,,; )sh(dw )] + ' (BI) 
Thus, when we use a similar expression to evaluate (SOb'), 
we find 

Y I = ch2(d_ )Y IO + ch(d_ )([ YIO,ch(dc- )Ch(dif )]_ 

+ [Y lO,sh(dc- )sh(dif )] + + [Y 20,sh(dc- )Ch(dif )] + 

+ [Y20 ,ch(dc- )Sh(dif )] _) + sh(d_ )([ Y 20 ,ch(dc- )Ch(dif )] _ + [Y20 ,sh(dc- )Sh(dif )] + 

+ [YIO,Sh(dc- )ch(dif )] + + [YIO,Ch(dc- )Sh(dif )] _ - sh2(d_ )YIO )' (B3) 

accompanied by a similar expression for Y 2' Just as we did for polar and axial interactions alone, we isolate the derivative part 
of the interaction for this combination. We find 

[01 ·p,ch(d". )ch(d",)] _ + [01 ·p,sh(d". )Sh(d t )] + 

= -;Ol·a(d+ )Sh(d+) + [Ofpch(d,.. )ch(d t )] _PI' + [Ofl,sh(d,... )Sh(d6 )] + PI" 

[ - O2 ·p,sh(d,... )ch(d t )] + + [ - O2 ·p,sh(d,... )sh(d t )] _ 

= i02 ·a(d+ )ch(d+) - [O~l,sh(d,.. )Ch(d t )] + PI' - [O~l,ch(d,.. )sh(d t )] _PI" 

[ - O2 'p,ch(dl" )ch(d6 )] _ + [02 ·p,sh(d,.. )sh(d t )] + 

= ;02 ·a(d + )sh(d + ) - [O~l,ch(d,.. )sh(d t )] _ PI' - [O~l,sh(d,... )sh(d t )] + PI" 

[01 ·p,sh(d,... )ch(d6 )] + + [01 ·p,ch(d,... )sh(d t )] _ 

= - ;01 ·a(d + )ch(d + ) + [Ofl,ch(d,.. )sh(d t )] _ + [Ofpsh(d,... )ch(d t )] + . 

The derivative part of (B3) is 

ch(d_ )(-;Ol·a(d+ )Sh(d+) +i02·a(d+ )ch(d+ »+sh(d_ )(;02·a(d+ )Sh(d+) -;Ol·a(d+ )ch(d+» 

= ;02 ·a(d + ) - ;([ ch(dc- )ch(dif )'Ofd _ sh(d + ) - [Sh(dc- )Sh(dif ),Ofd + Sh(d + ) 

- [Ch(dc- )ch(dif ),O~l] _ch(d + ) 

(B4) 

(BS) 

(B6) 

(B7) 

+ [sh(d~ )sh(dif ),O~l] + ch(d + ) - [sh(dc- )ch(dlf ),O~l] _ Sh(d + ) + [sh(dlf )ch(d~ ),O~l] _ sh(d + ) 

+ [Sh(d~ )ch(dlf ),Ofl] + ch(d + ) - [ch(d,.,. )sh(dw ),Of!] _ ch(d + »al' (d + ). 

Notice how d _ -+ d + when it passes through 0;, allowing us to use the identity ch2 (d _ ) - sh2 (d _ ) = I. Thus, when we 
collect all terms, we find Eq. (13S) given in the text. 
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In this article, a scheme based on recursive generation of connected diagrams is proposed for 
enumerating the connected diagrams in various expansions for lattice field theories. This 
scheme is rigorous and general, and can be applied to the analytical methods in various lattice 
field theories. Some notions and results of the modern graph theory in mathematics are used. 
As examples, the diagram theoretic factors that occur in the average link energy of the lattice 
chiral field model and in the external source parameter of the pure lattice gauge field model are 
calculated. 

I. INTRODUCTION 

The lattice field theory has developed into an important 
field for both particle physics and statistical mechanics. 1 It 
makes it possible to make nonperturbative calculations for 
physical properties of a strongly interacting system. With 
the appearance of the discrete mechanics and the discrete 
quantum mechanics,2 the interest in lattice field theories is 
increasing. 

In Lagrangian formulation of the lattice field theory, the 
measured value of any physical quantity is expressed as the 
mathematical expectation of the corresponding observable 
computed with the Boltzman weight exp [S( U) ] . Therefore, 
to evaluate approximately the infinite multiple integrals 
evolved becomes a central problem of lattice field theories. 
In the numerical Monte Carl03 method, the simulation can 
be performed only on a finite lattice. In a variety of analytical 
methods, the infinite multiple integrals are expanded into 
infinite series of finite multiple integrals. One hopes to calcu
late systematically corrections to some order of approxima
tion in the expansion.4 

In either different physical problems or different analy
tical methods, these diagrams differ much in dimension, 
shape, and criterion of the classification. Also, the number of 
lattice diagrams increases drastically with the order of cor
rection. The result contains a lot of diagrams differing in 
topological structure. Therefore, the above problems of the 
lattice diagrammatic theory are already far beyond the at
tainment of modern graph theory. 5 It is necessary that a 
general scheme for enumerating exactly the lattice diagrams 
be devised starting from fundamental mathematical princi
ples. The present article is devoted to this problem. 

This paper is organized as follows. Section II brings up 
problems of the diagrammatic theory in lattice field theories 
and introduce necessary definitions and notations. Section 
III proves some fundamental theorems and proposes a stan
dard program for solving exactly these problems. Sections 
IV and V apply this standard program to the analytical cal
culation of the diagram theoretic factors in the lattice chiral 

a) Also at Department of Physics, Sichuan University, Chengdu, People's 
Republic of China. 

field model and the pure lattice gauge field model, respec
tively. The concluding remarks are given in Sec. VI. 

II. THE ORIGIN OF PROBLEMS 

To solve exactly the problems of the lattice diagrammat
ic theory mentioned above, we need to clearly understand its 
physical origin, and introduce some definitions and nota
tions. A lattice always contains various lattice constituents, 
sites, links, plaquettes, multiangularities, and so on. On quite 
a few types of the lattice constituents, we place some physical 
quantities. For example, a field variable is defined on each 
site for matter fields, on each link for gauge fields, Wilson's 
action is defined on all of plaquettes. Field variables playa 
special role in configuration integrals, for they are integral 
variables. In order to fix the notation, we write each field 
variable as U

JJ
, where the Greek subscript", indicates both 

species of the field and its location (the position and the 
direction) on the space-time lattice, and the collection of U JJ 
as a set U. The lattice constituent on which the field variable 
UJJ- is placed is called a lattice element. 

We want to present illustratively the integral 

y= f DUY(U'), (2.1) 

of the local observable Y( U ') over the configuration vari
ables, where DUis the corresponding measure normalized to 
1, and can be factorized as the infinite product nJJ dUJJ • "Lo
cal" here means that U' is a finite set of field variables. 

The observable Y( U ') is assumed to take the form 

(2.2) 

where Yi is a monomial offield variables and the integer Ni is 
the number of Y i terms contained in Y. The diagrammatical 
representations for lJ" and Yi are denoted by d( UJJ ) and 
d( Y;), respectively. The d( Yi ) is obtained by drawing 
d( U,,) on the corresponding lattice element in a figure of 
space-time lattice for each factor UI' appearing in the mono
mial Yi • The diagram is labeled by lattice locations of its 
elements. Notice that the constant coefficient and group 
theoretical factors of Yi are neglected in this diagrammatical 
representation. Therefore, the integral Y is represented by 
the union of a set of labeled diagrams denoted by D( y), 
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D(y) = U N;d(Y;). (2.3 ) 
; 

Here, D( Y) can be written schematically as 

D( Y) = U N{n,'} II d 11,.( Up.) , (2.4) 
{n,,} p. 

if Y = const X IT (U ) 11, •• In (2.4) IT" means the collection 
I p. P. r 

of d( Up. )'s appearing in the diagram specified by the inte-
gers nw 

We introduce an algebraic expression for the diagram 
set D( Y). Consider an isomorphic mapping I, from dia
grams to direct products of vectors with integer components. 
Let U be the unit vector corresponding to the field variable p. 

Up. and let I. be defined by 

l,d(Up.)=a(Up.) = Up., 

I, II d( Up.) =a (II Up. ) = II Up. , (2.5) 
p. p. p. 

I. Y N;d(Y;) =/, (~N;Y;) = ~N;a(Y;). 
In the above formula, ITp. denotes the direct product ofvec
tors Up.. Therefore, the algebraic expression of D( Y) in 
(2.4) is 

A( Y) = I N;a( Y;) = ') N{I1,'} II [Up. ]"". (2.6) 
i ~ ~ 

The product of two algebraic expressions A ( Y,) and A ( Y2 ) 

is defined in the usual sense of the direct product of tensor 
spaces. Evidently, 

A(Y,)A(Y2 ) =/,[D(Y,)nD(Y2 )] =A(Y,Yz). (2.7) 

This corresponds to the union of the set of diagrams each one 
of which is composed of two subdiagrams from the two sets 
D(Y,) andD(Y2 ), respectively. 

The algebraic expression is very useful. The one-to-one 
correspondence between A (Y) and D( Y) makes it possible 
to carry out the program of enumeration and other opera
tions on diagrams by analytical calculations. 

The diagrams having the same topological structure but 
differ in labels of lattice locations are said to be equivalent. 
Geometrically, these equivalent diagrams can be brought to 
one another through appropriate symmetric operations. 
Configuration integrals corresponding to equivalent dia
grams are equal in value. The number of the equivalent dia
grams is called the diagram theoretic factor, and these equiv
alent diagrams may be represented by anyone of them 
without label. The problem of grouping the terms contained 
in the configuration integral in classes changes into the clas
sification of the diagrams in terms of topological structure, 
and the problem of calculating the number of terms in each 
class changes into the enumeration of the equivalent dia
grams. This is just what the lattice diagrammatic theory 
needs to cope with. 

Now let us turn to the physics of the lattice field theory. 
We are interested in the path integrals of the partition func
tion 

z= f DUexp[S(U)] , 

and the expectation value 
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(2.8) 

(X) =Z-' f DUX(Ur)exp[S(U)] (2.9) 

of the local observable X( ur) computed with the Boltz
mann weight exp[S( U)], where S( U) is the action govern
ing the dynamics. The action has the following properties: It 
is an infinite sum of the form 

(2.10) 

where each term S; (U;) is a monomial describing the cou
pling among the field variables in the finite subset U;. Hence 
S; is defined on the lattice constituent composed of the ele
ments that correspond to the field variables involved in 
S; ( U;). Here, the Latin subscript iindicates both the lattice 
location (the position and the orientation) of this lattice 
constituent and the particular monomial among those de
fined on the same lattice constituent. 

Due to translation and rotation invariance of the theory, 
the functional form of S; is usually independent of the loca
tion of the lattice constituent. 

Due to the important role and the special form of the 
action, we call the diagram representation of S; the basic 
diagram. To be slightly more general, we shall denote it by 
d(b;) instead of d(s;). The union of the set of all d(b;) is 
denoted by D(B). Correspondingly, the analytical expres
sion for d(b;) and D(B) are denoted by b; and B, J:espective
ly. The b; can be written as the out product of Up.·s corre
sponding to Up. 's contained in S;: 

A (S) = I b; = B . (2.11 ) 
; 

To evaluate the infinite multiple integral, we have to adopt 
various methods of successive approximations. For exam
ple, to expand the Boltzmann weight in powers of the action 

exp[S( U)] = II exp[ S; (U;)] 
; 

(2.12) 

and to integrate term by term over the configuration vari
ables. This is a standard methods of the strong-coupling 
(high-temperature) expansion. Afterward, the k th-order 
correction of the expectation value means the sum of terms 

involving the factor IT; S~i( U), where {kJ satisfies the rela
tion l:; k; = k. 

The diagrammatical representation corresponding to 
the k th correction of (X) is called the k th-order correction 
diagram. The k th-order correction diagram set in the strong 
coupling expansions can be plotted out with the rules de
scribed above. The coefficients of Taylor's expansion that do 
not affect diagrammatical enumeration are temporarily ne
glected just as the convention treatment does. Thus, we have 

D(X (k» = d(X)nD(B k) = D(X (k - I) )nD(B) , 
(2.13 ) 

where D(B k) is the union of the set of k basic diagrams, 
k 

D(B k) = n D(B) = D(B k - ')nD(B) . (2.14 ) 
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That is to say, the k th-ordercorrection diagram setD(X (k» 
is the direct product of D(X) and k sets of basic diagram 
D(B k). The analytical expression of the k th-order correc
tion diagram set can be written as 

A(X(k» =A(X)Ok =A(X(k- 1)0. (2.15) 

This expression underlies the analytical calculation of the 
diagram theoretic factors of (X) . 

The direct evaluation of the expansion in powers of the 
action is not very useful in the actual computation of the 
series. In order to avoid the enumeration of disconnected 
diagrams, let us expand the free energy of the system in pow
ers of the action: 

1 -
F= -lnZ=~-Sn 

~ , e' 
n n. 

where 

s; =S, S~ =S2 - (S)2, 
S3 = S3 _ 3S 2S _ (S)3 e e , 

(2.16 ) 

(2.17) 

which is the so-called comulant expansion.6 This method is 
extensively used in statistical mechanics and lattice gauge 
theory. The following treatment is restricted to connected 
diagrams. 

To decouple the infinite multiple integral, some trial ac
tion in the form of the generalized mean field is used in the 
variational method of Lagrangian formulation. This trial ac
tion simulates the physical behavior of ordering in the region 
of weak coupling. Many results can be obtained with this 
method. Furthermore, making the cumulant expansion of 
the difference between the real action and the trial action, we 
can collect advantages of the two methods mentioned above, 
and can give good results in good agreement with the Monte 
Carlo method. Also in this method, so called the variational
cumulant expansion method,7 the classification and the enu
meration of connected diagrams are needful. 

III. THE SOLVING SCHEME 

In the previous section we have talked about connected 
diagrams. Since the terminology sometimes causes confu
sion, and also because we want to cope with general cases, we 
need to have an abstract definition of connectivity. In var
ious expansions mentioned above, connectivity of two con
nected parts of a diagram refers to overlapping of sets of field 
variables corresponding to them in the multiple integral. 
This can be clearly seen, for example, in (2.17). To define 
connectivity of the diagram made of several connected parts, 
first of all, we have to give the definition of adjacency. Not
ing that any diagram is in fact a finite subset of D( U), we say 
d j and dj are adjacent if and only if there exists a nonempty 
subsetD( Uij) of D( U) in bothdj anddj , i.e., the intersection 
of d j and dj is not the empty set ¢, 

djndj = D( Uij) (¢=I=D( Uij) CDC U». (3.1) 

The diagram is said to be a connected diagram if and only if 
any two of its connected parts are connected through succes
sive adjacent parts. We can make a homomorphic mapping 
of a lattice diagram d = njdj into a graph g in the modern 
graph theory: d ..... g under which each connected part d; of d 
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maps to a point i, and points i and j are adjacent if and only if 
their preimages are adjacent. Thus, g is a ( p,.) graph, where 
p is the number of the connected parts of its preimage. The 
connectivity of diagrams defined above implies that d is a 
connected diagram if and only if its homomorphic g is a 
connected graph in the sense of the graph theory. Therefore, 
we can make use of notions and results in this branch of 
mathematics. 

It is clear from (2.10)-(2.14) that the basic diagram is 
the building block of the diagrams in various expansions and 
describes the coupling among field variables, hence it is re
garded as an elementary connected part. Therefore, the con
nectivity of diagrams in various expansions is precisely de
fined by the above general definition of connectivity. 
Whether the diagram for the local observable X, d(X) is 
considered as a connected part depends on one wants to in
clude or exclude the diagrams in which different parts of it 
are not connected through basic diagrams. We shall consider 
mainly the case in which d(X) can be considered as a con
nected part. 

We want to construct successively the connected dIa
grams occurring in cumulant expansions. Similar to the cut 
point of a connected graph in the modern graph theory, we 
define the cut basic diagram of a connected diagram. For this 
purpose, we introduce the homomorphic mapping Iz: 
d(X(k» ..... g(X(k». Underlz, each connected part dj(X) of 
d(X) = njd;(X) maps into a labeled pointXj(1), thenjth
multiple basic diagram d ni(b j ) into a labeled point b; (n j), 
and a pair of these labeled points is adjacent if and only if 
their preimages are adjacent. Therefore, the homomorphic 
g(X(k» ofd(X(k» underlz is a (p+q,.) graph that is 
labeled by the lattice locations and the multiplicities of all 
the connected parts of its preimage d(X(k», where q andp 
are the numbers ofthe connected parts of d(X) and the lat
tice locations occupied by the basic diagrams of d(X(k», 
respectively. Ifbj (1) is a cut point ofg(X(k», thend I (b j ) is 
called a cut basic diagram of d(X (k». "Cut basic diagram" 
here is a new concept introduced by us. If anyone of its cut 
basic diagrams is removed, a connected diagram becomes 
disconnected. 

From (2.10) we know any de(X(k» in the connected 
kth-order correction diagram set De(X(k» of (X) can be 
constructed from the (k - 1 )th-order correction diagram 
set D(X (k - I» by adding one basic diagram. That is to say, 
the number n [de (X (k»] of the diagram de (X (k» in the 
cumulant expansion is correctly given by the number of 
de (X (K» appearing in the set 

D(X (k - I) )nD(B) . (3.2) 

Let ne [de (X (k»] be the number of de (X (k» that can be 
constructed from the connected (k - 1)th degree correc
tion set De (X (k - I) by adding one basic diagram, i.e., the 
number of de (X (k» appearing in the set: 

De(X(k- l)nD(B) . (3.3) 

The relation between n [de (X (k»] and ne [de (X (k»] is 
given by the following theorem. 

Theorem 1: If c is the number of cut basic diagrams of 
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the connected k th-order correction diagram de (X (k» of 
(X), then 

n[de(X(k») = [kl(k-c)]ne[de(X(k»). (3.4) 

Proof A given de(X(k» belonging to the connected 
k th-order correction diagram set De (X (k» of (X) can be 

expressed algebraically by a(X (k» = a(X) II; b ~;, where 
the set {k;} is determined by de (X (k» and satisfies the con
dition l:; k; = k. To find the algebraic expression of all 
(k - 1 )th-order correction diagrams that can be used to 
construct de (X (k» with respect to each functional argu
mentb;; 

I &(X(k» = I k;a(X)b ~;-I II b;J. (3.5) 
; Db;; j=I-; 

Letting/l be the isomorphic mapping from a diagram to its 
algebraic expression defined above, we have 

11- I[ a(X)b ~,-I}}; b ;J] 

(k; >0), 

(k; = 1), 
(3.6) 

from the definition of the cut basic diagram. Therefore, the 
number of terms on the right-hand side of (3.5) (the term 
with a coefficient k; is counted k; times,) is n [ de (X (k» ] 

while that with k; = 1 ternis excluded is just ne [de (X (k»). 

Thus, we obtain Eq. (3.4). 
The following conclusion can be obtained from the first 

theorem. The diagram de(X(k» of De(X(k» actuallyap
pearing in the expansion of (X) (n [de (X (k»] =1=0) can be 
completely constructed and exactly enumerated from 
De(X(k-I» if and only if ne[de(X(k»] =1=0. In other 
words, the number of the cut basic diagrams is less than the 
number of the basic diagrams, i.e., 

(3.7) 

This leads to the restriction on the diagram representation 
d (X) of the local observable X given by the second theorem. 

Theorem 2: If d(X) is a connected diagram, then any 
de (X (k» (k> 1) contains at least one basic diagram that is 
not a cut basic diagram. 

Proof Under the mapping}; defined above, d(X(k» 

maps into a graph (p + q,.). When d(X) is a connected 
diagram, q = 1. In the language of the homomorph of 
d(X (k» under};, the second theorem is just the theorem of 
the graph theory: Any nontrivial connected graph contains 
at least two points that are not the cut points. Here a trivial 
graph (1,0) corresponds to the connected diagram d(X), 
the connected zeroth-order approximation diagram d (X (0». 

The above two theorems lay a solid foundation for con
structing completely and enumerating precisely the connect
ed diagram set of each order of corrections in the expansion 
of (X) from that ofthe order lower by 1, if the studied local 
observable corresponds to a connected diagram. So, we are 
in the position to design a realizable scheme for constructing 
successively the connected diagram set. 

The operator P( U!-' ) defined by the rule 

P(U!-,)A(U') = I O!-'vA(U') , (3.8) 
UJlEU

t 
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(here, O!-'V is the Kronecker delta symbol) is idempotent, and 
can be taken as a projection operator. The terms depending 
on U!-' are chosen from A ( U ') by the act of P( U!-') upon 
A ( U '). The equation 

P( U!-' )A ( U ') = 0 , (3.9) 

implies that A (U') is independent of U!-" i.e., U!-'EU'. There
fore, we can give and prove the following theorem. 

Theorem 3: If de (a) = 11- la(d) is a connected dia
gram and Dc (A) =/1- 1 A(De) is a set of connected dia
grams, then 

11-
1 [a(de)P(~, )A(De) ]p(U")o(dc),,oO 

= {[ de (a)nDe (A)]e Id( U!-' )ede (a) nDe (A)}, 
(3.10) 

i.e., a(de )P( U!-' )A(De) Ip(U")O(dc),,oO expresses algebraically 
the connected diagram set made of de (a) and De (A) that 
share at least U!-'. 

Proof WhenP( U!-' )a(de) =1=0 indicates that de (U) con
tains U!-" and the act of P( U!-') upon A (De) chooses the 
diagrams containing U!-' from De (A). Thus, de (a) shares at 
least U!-' with Dc (A). Both de (a) and De (A) can be regard
ed as connected parts in the determination of the connecti
vity of diagrams made of them, for they are all connected 
diagrams. So that, from the general definition of the connec
tivity we know that the lhs ofEq. (3.10) is the set of connect
ed diagrams made of de (a) and De (A). 

In the same way, the operator 

P( U r) = II P( U!-' ) , (3.11 ) 
u,IEUr 

is also idempotent and can be taken as a projection operator. 
The act of P( U r) upon Ae (De) results in an algebraic 

A 

expression of diagrams that contain at least the r subset U r 

= {U;" ,V!-" ... } of V. Thus, 
[a(de )P( ur)A (Dc) ] P( U')A(D,.)"oO algebraically expresses 

diagrams that belong to the connected diagram set 
[de (a)IIDe (A)] e and satisfy D( ur) Cde (a) nDe (A), i.e., 

11- 1 [a(de )P( ur)A (Dc)] P( U')o(d,.)"oO 

= ([de(a)nDe(A)]eID(ur)Cde(a)nDe(A)}. 
(3.12) 

Here we have to emphasize the following fact. The r.h.s. of 
Eq. (3.12) is the set of connected diagrams that satisfy 
D(ur)Cde(a)nDe(A) not D(U r) =de(a)nDe(A). 

That is to say, besides every element of D( ur), some ele
ments not belonging to D( ur) are also shared by de (a) and 
De(A). Hence, a lot of diagrams differing in topological 
structure are contained in the rhs of Eq. (3.12), and need to 
be separated. This aim can be reached by means of the sieve 
method in combinatorial mathematics. K 

Theorem 4: If de(a) = It-ta(de) is a connected dia
gram and De(A) = II-tA(De) is a set of connected dia
grams, and ur is a r subset of V(a) = {U!-' IP( U!-') 

ae (de) =l=0}, then 
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a(de ) ,k (- )jP(Uj)P(U')A(De ) 
U(a) 

UiCU(a)/U' 

(3.13) 

(wherej is the number off actors UJ-l in U j,) expresses ana
lytically the connected diagram set made of de (a) and 
De (A) that share only D( U '). 

Proof: The formula (3.12) is just a specific form of the 
principle of inclusion and exclusion in combinatorial math
ematics for our problem. 

The above four theorems are enough to establish a stan
dard program for constructing successively, classifying to
pologically, and enumerating exactly the connected diagram 
set, provided that the local observable corresponds to a con
nected diagram set. To find the diagram theoretic factors of 
cumulant expansions, proceed as follows. 

(i) In Eq. (3.13), taking De (A) to be the basic diagram 
setD(B),de(a) one of the connected (k-l)th-ordercor
rection diagrams de (X (k - I» of (X), D( U') each subset of 
the elements belonging to the diagram de (X (k - I», and de
fining the projection operators according to Eqs. (3.8) and 
(3.11), we obtain all the connected k th-order correction dia
grams [de(X(k-I»nD(B>]e that are constructed from 
de (X (k - I» and classified by the elements shared by 
de (X (k - I) andD(B). When de (X (k - I» runs over all ele
ments of the connected (k - 1) th -order correction diagram 
set De (X (k - I) ), and the terms that are of the same form but 
constructed from different elements of De (X (k - I» are in
corporated, all the connected k th-order correction diagrams 
that can be constructed from De (X (k - I» are worked out. 

(ii) To take the contribution of disconnected 
(k - 1 )th-order correction diagrams into account, for each 
connected k th-order correction diagram de (X (k» obtained 
in step (i), we read out the number of the cut basic diagrams 
c and give each de (X (k» a weight factor k / (k - c) accord
ing to Theorem I. 

(iii) We group diagrams obtained above into classes in 
topological structure. Diagrams with the same topological 
structure can be transformed to each other just by changing 
the labels for lattice locations, we draw a diagram without 
label that represents an equivalent class. We make the sum of 
weight factors k / (k - c) of all diagrams in each class. The 
correct diagram theoretic factors are obtained. 

It is a problem to apply the above program to the case 
that d(X) is not a connected diagram, for the diagrams satis
fying c = p are omitted. At this point, we can construct the 
connected diagrams by the above program starting from any 
connected part of d(X). Then, we choose the diagrams con
taining all the diagrammatical representation for field vari
able belonging to d(X) by means of the projection operator. 

So far we have neglected the property of group theoretic 
factors in our discussion. Diagrams that can be brought to 
each other by transformations of corresponding field vari
ables in the internal symmetry group of the theory should be 
considered as equivalent also. 
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IV. THE LATTICE CHIRAL FIELD MODEL 

In the lattice chiral field models, the chiral field variable 
Un is a given representation of the gauge group, and defined 
on each site Sn = (n l ,n2 , ... ,nd ) of the d-dimensional space
time lattice. 

When calculating the diagram theoretic factors of this 
model, we shall represent the field variable Un in the integral 
with a point d( Un) on the site Sn' Adopting the simple hy
percubic Euclidean lattice, and regarding the lattice spacing 
a as 1, we can take the coordinates of sites n l , n2, ... ,nd to be 
all integers. The action S of the SU (N) lattice chiral field 
model is of the form 

/3 S( U) = - I Tr (Un U!+it + h.c.) , (4.1) 
2N n.J-l 

where /3 = 1Ig2, g is the coupling constant of the chiral 
fields, ~ the unit vector on the x axis direction, and h.c. the 
Hermitian conjugate of the former term. Throwing away the 
constant (/3 /2N) . ~ and the group structure, which have no 
effect on the diagrammatic enumeration, we can straightfor
wardly read out the algebraic expression 

n. J-l 

of the basic diagram set 

D(B) = {d(L n•n + it)} . 

The quantity 
A AA A. A A 

(4.3) 

Ln.n+it = UnUn+j, = Un+itUn = Ln+it.n , (4.4) 

determined by the disorder pair of field variables at neigh
boring sites (s n ,S n + j, ) is represented diagrammatically by a 
line segment d(Ln.n + it) on the link Ln,n + it connecting the 
site Sn with the sites Sn + I~' In the calculation of the group 
theoretic factors, Ln,n + it contributes a factor (/3 /2N) 
xTr( Un U! + it + h,c.) into the integrand of the configura
tion integral. 

In the study of the lattice chiral field model, the average 
link energy is customarily considered to be the order param
eter, by which we detect the phase transition of the system. 
We desire to compute the mathematical expectation of the 
local observable 

X( U') = ( /3 /2N)Tr( uouj + h.c.) . (4.5) 

In the same way, the effect of the group structure and the 
constant /3 /2N can be neglected temporarily in the calcula
tion of the diagrammatic factors. So, the diagram set of the 
zeroth-order approximation 

D(X(O» = d(X) = d(Lo.i ) , 

can be analytically expressed as 

A(X(O» = a(X) = Lo.i , 

(4.6) 

(4.7) 

and the connected diagram set of the k th-order correction of 
(X) becomes the set of the connected diagrams made of k 
links and the link d(Lo.i)' Our task is just the classification 
and the enumeration of these diagrams. 

Let us introduce the projection operators P( Un) on 
d( Un ) at the site Sn and P( U ') on the given r subset D( U ') 
on the site set{sn}in terms of the rule (3.8) and (3.11). It is 
easy to verify that the projection operators have the follow-
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"'-
ing properties: (a) P( Un)B = 1:1L Ln,n+;" (b) If there is a 
site Si,.. satisfying SieLn,n+;' and d(Sm,si) > 1, then 
P( Um )Ln,,, +p = O. (c) Ifthere are two sitessm andsn satis
fying Sm' sneSr and d(sm's,,) > 1 then P( U')B O. Here, 
the notation SieLn,n +;' means that the site Si is one of the end 
points of the link L n,n + ;., and the distance between the sites 
Sm and Sn is defined as below: 

d(sm,sn) = L ImlL - nIL I· 
IL 

(4.8) 

The above properties of the projection operators make it 
convenient to evaluate the quantities P( U')B. 

Now we are in the position to construct the connected 
diagram set in the order by order manner. There is only one 
diagram d (Lo, i ) in the zeroth-order approximation diagram 
set that has only two points at the sites So and Si. Thus, it is 
sufficient to calculate the quantities P( Uo)B, P( Ui)B and 
P( Uo,Ui )B for constructing the first-order correction dia
gram set. By virtue of the sieve method, we find out the 
algebraic expression of the connected first-order correction 
diagram set 

3 

A(x(l) = L AI,m' (4.9) 
m=l 

where 
A A 

AI,! = Lo,iP( Uo,Ui)B = L~,i , 

A1,2 = Lo,l [P( Uo) - P( Uo,Uj)]B 

(4.10) 

Now, we start to construct the connected second-order 
correction diagram set by using the standard program pro
posed in the preceding section. We need to start from every 
diagram in the connected first-order diagram set (4.9). Be
sides that, the points at sites So and Sj are the elements of 
every diagram. Points at the sites sit (j.t i:. 1) and Si +;. 
(wi:. - 1) are also the ones of the diagrams D(A 1,2) and 
D(A I,3)' respectively. Thus, we must calculate the quanti
ties P( U ') B where the corresponding set of sites is s' = {so}, 
{Si}, {s;.}, {Si +;.}, {So,Si}, {so,s;.}, {So,Si +;.}, {Si'S;'}, 
{Si ,Si + ;.}, {So,Si ,sp}' {So,Si,si +;.}. We can obtain all of the 
connected second-order correction diagrams by means of 
the principle of inclusion and exclusion (3.13). In addition, 
when the order of correction k is higher than 1, it is necessary 
to supply the weight factor k / (k - c) for the diagram con
taining c cut basic diagrams according to Theorem 1. From 
the definition given in preceding section, we can determine 
the value of c of each obtained diagram. In this way, it is 
found that the diagrams d(Lo,i 1:1'T' I L o,;' 1:vT' -ILL;.,;, + v) 

and d(Lo,i 1:1LT'-ILU+;.1:VT'-ILLi+;',i+;'+;:') !lre of 
k 2, and contain the cut basic diagrams d(Lo, j.t) and 
d(Ll,i + p), respectively, hence we have to give them the 
weight factor 2. Incorporating the same diagrams construct
ed from different diagrams of the first-order correction, we 
have worked out the analytical expression of the connected 
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second-order correction diagram set 
10 

A{X(2) = L A 2,m' (4.11 ) 
m=l 

where 

A "3 A2,1 = 1,1 P( Uo, UI )B = L 0,1 , 

A 2,2 AI,I [P( Uo) - P( UO,Ui)]B + A I,2 [P( Uo,Ui) 

- P( Uo,Ui ,U;.)]B 

""2 ~ A 

2Lo,i ~ Lo,p, 
I'T'I 

A2,3 AI,I [P( Ui) - P( Uo,Ui)]B 

+ AI,3 [PC Uo,Ui) - P( Uo,Uj ,Uj +;.)]B 

A A 

LO,j L L 5,;' , 
ILT'I 

A2,s AI,3 [P( Ui ,Ut +;.) - P( Uo,Ui ,UI +;.)]B 

A A 

Lo,i L L I.I +;. , 
ILT' -I 

A2,6 A I ,2 [P( Uo) P( Uo,Ui) - P( Uo,U;.) 

+ P( Uo,UI ,U;.)]B 

A2,7 A1,dP(Ui) -P(Uo,Uj} -P(Ui,Ui+;') 

+ P(Uo,Ui,Ui +;.)]B 

A2,9 AI,2 [P( U;.) - P( Uo,U;.) - P( Ut ,U;.) 

+ P( Uo,Ui ,Up)]B + AI,3 [P( Uo) - P( Uo,Uj ) 

- P( Uo, Ui + ;.) + P( Uo, Ui ,UI + p ) ] B 

A A A 

= 2Lo,j L L o,;' L Ll,i + v' 
ILT'I vT' - I 

A2,9 2A 1,2 [PC Up) - P( Uo,Up ) - P( Ui ,Up) 

+ P( Uo,Uj ,U;.)]B 

A A A 

2Lo.i L Lo,p L L p,p +;:, , 
I'T'I vT' -I' 

Auo 2A I,3 [P( Ui +p) - P( Uo,Uj +p) - P( Ut ,Ut +p) 

+ P( Uo,Ui,Ui +p)]B 

Without doubt, the same method can be applied to the 
construction of the connected higher-order correction dia
gram set, However, with the increase of the order k, the 
diagrams belong to the connected (k 1 )th-order correc-
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tion diagram set, and the sites contained in every diagram 
increases rapidly in number. Therefore, the amount of com
putation becomes very large. 

In this example, the diagram d(X) corresponding to the 
local observable X( if) represents the same group theoretic 
factor as the basic diagram d (Lo, i ). So, a lot of diagrams in 
formulas (4.10) and (4.12) are actually equal in value and 
can be added together. Taking the third step of standard 
program, we finish without difficulty the classification and 
the enumeration of the obtained diagrams, and can give the 
result in Table I. 

v. THE LATTICE GAUGE FIELD MODEL 

To check and use our scheme, as the second example, 
the diagram theoretic factors occuring in the cumulant ex
pansion of the pure lattice gauge field model are calculated 
analytically. 

In the lattice gauge field theory, the gauge field variable 
Un'f' is defined on each link Ln,f' that is represented diagram
matically by the unit vector d (Ln,Jt ) from site S n to site S n + P

called the directed link. 
Following Wilson, we take the action ofthe SU (N) pure 

lattice gauge field as the form 

S(U) = ~LTr(Un'f'Un+p-,,,Un++v'f'Un~,, +h.c.). 
n~I'.'V 

(5.1 ) 

Throwing away the factor f3 /2N X land the group structure 
of field variables, we immediately write down the algebraic 
expression 

B = L P(n,ll-,v) , (5.2) 
n./-l.v 

of the basic diagram set 

D(B) = {d(Pn,f',")}' (5.3) 

where 

P(n,ll-,v) = P(n,ll-,v) + P(n,v,ll-) , (5.4) 
A A A A A 

P(n,ll-,v) = Un'f'Un+p-,,,Un+p-+v'-f'Un+v,-,,, (5.5) 

and only {t, v in positive direction are taken in the summation 
i. The quantity p (n,ll-, v) is represented illustratively by the 
diagram d(Pn,f'.v) made of four directed links d(Ln.f')' 

d(Ln+p-.v)' d(Ln+p-+v,-f')' and d(Ln+ v._,,). The dia
gramd(Pn,f"v) is the boundary ofa oriented plaquette, hence 
called the oriented plaquette. The diagram d(Pn,f"") of 
p(n,ll-,v) is the union of two plaquettes having identical posi
tion and opposite orientation. For simplicity, d(Pn,f'.v) is 
drawn as the diagram made of four links without direction 
d(Ln.n+p-)' d(Ln+p-.n+p-+v), d(Ln+v,n+p-+v), and 
d(Ln.n + ,.) and called the plaquette. 

In quite a few analytical methods in the Lagrangian for
malism, the mathematical expectation (X) of any local ob
servable X( if) is calculated by means of various expansions 
and the external source technique. Use is made of the Le
gendre transformation from the single link integral 

Z(J) = IDUeXP(TrJU+ +h.c.), (5.6) 

which can be evaluated exactly. Without any question, the 
convergence can be accelerated by a better choice of the ex
ternal source parameter J. The value of J is determined by 
various methods, such as the self-consistent condition in the 
old-fashioned mean field theory, the system of the saddle 
point equations in the saddle point method, and minimizing 
the linear main part of the free energy in variational meth
ods. These methods are often used, and have been argued by 

TABLE I. The diagram theoretic factors occurring in the average link of the d-dimensionallattice chiral field model. 

order diagrams and their enumerations 

o I 1 

---------------------------------------------------------------------
1 I 1 

---------------------------------------------------------------------

III 
2 

1 IL 6r, 

L/ 6r2. 
I 

r =2d-l 
I ' 

r =d-l 2. • 
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either mathematical or physical reasons. However, we hope 
to find a method by which the external source parameter can 
be determined more exactly. For this purpose, computing 
the functional derivative of the functional integral 

1= f DU exp[~(Tr In.1' U n;1' + h.c.) - S]. (5.7) 

with respect to the functional argument U n;I" we have the 
following Ward identity: 

In.I'=( 8S+ exp(-s») /(exP(-S»J' (5.8) 
8U n.1' J 

where the notation 

xexp[ITr(Jn.,l U n;1' + h.c.)], (5.9) 
n.1' 

represents the expectation value of the local observable 
X( U') computed with the Boltzmann weight 
exp[l:n.1' Tr(Jn.1' U n;1' + h.c.) l. 

In fact, the Eq. (5.8) is the generalization of the self
consistent condition in the mean field theory. If the algebraic 
expressions of both ( (8S 18 U n;1' ) exp ( - S) ) J and 
(exp( - S» J were evaluated exactly, the Ward indentity 
(5.8) would be considered as a precise system of equations 
satisfied by the parameters In.I'' Therefore, we adopt the suc
cessively approximate method of expanding the exponential 
function exp ( - S) into the power series of the action S. 
Since the group theoretic factors occurring in expansions 
can be calculated by means of the external source technique, 
as soon as the diagram theoretic factors are derived correct
ly, we can work out the algebraic expressions of both «8S I 
8U n;1' )exp( - S» J and (exp( - S» J' and obtain the sys
tem of equations determining the parameters {J".I'} in 
successive approximations. It is obvious that the zeroth or
der approximation of this method is equivalent to the saddle 
point method and the variational method in respect of deter
mining the value of the parameter J. 9 There is no problem to 
apply the scheme of determining Jby Ward identity to statis
tical mechanics, but it might conflict with Elitzur's 
theorem \0 when applied to the lattice gauge field theory. In 
spite of the difficulty, we can still take it as an example of our 
scheme for enumerating connected diagrams, in which d (X) 
is different from the basic diagram in shape and property. 

Now let us calculate the diagram theoretic factors oc
curring in the expansion of ( (8S 18 U n;1' ) exp ( - S) ) J' Since 
the minus sign before the action S can be absorbed into the 
expansion coefficients, the basic diagram set of this expan
sion is identical with the one of the cumulant expansions. 
For Wilson's action, due to the unitarity of the gauge group, 
the local observable determining the parameter JO•l is given 
by the formula 

X(U') =~=L L (Uoa Uirl uta)T,(5.1O) 
8U

O
;, zN a ••• 

(Ial",l) 

where Tmeans the transpose of a matrix. We can immediate
ly read out the algebraically expression 
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A(X) = I II(O,a,l), (5.11) 
a 

(lal'" I) 

of the diagram set corresponding to X( U '). Here 
A A A 

II(O,a,l) = Lo.aLa.ILi+a.-a (5.12) 

is represented illustratively by the labeled diagram com
posed of three directed links d(Lo.a)' d(La.l ) and 
d (Li + a. _ a ) and contributes the factor ({3/2N) 
(UO•a Ua,l uta) T into the integrand of the configuration in
tegral. Equation (5.11) expresses algebraically the connect
ed zeroth-order approximation diagram set of (X). 

In order to construct the connected diagram set of high
er order correction, we introduce the projection operator 
p(Ln,l') on the directed link d(Ln.l') and the one P(L') on 
given r links without direction d(L ') according to rules 
(3.8) ad (3.11), respectively, and define the one P(Ln•n +!l ) 

on the link without direction d(Ln.n +!l) as the form 

P(Ln.n+!l) = HP(Ln.l') +P(Ln+!l.-I')]' (5.13) 

In the computation and the simplification of the diagrams 
constructed successively, the following properties are useful: 

(i) 

p(n,jl,v) = p(n + {l,v, - jl) = p(n + {l + ii, - jl, - v) 

=p(n + ii, - v,jl) =p(n,v,jl) =p(n +iI,jl, - v) 

=p(n +{l + ii, - v, -jl) =p(n +{l, -jl,v). 

(ii) P(Ln.n+!l)B = 'i' p(n,jl,a). 
a 

(lal"I"I) 

(iii) If there exist two sites S; and Sj satisfying S; 
EP(n,jl,v)'A SjELm•m + a and d(s;'Sj) >3, then 
P(Lm•m + u)P(n,jl,v) = 0. 

(iv) If there are two sites S; and Sj satisfying So SjEL' 
and d(s;,sj) > 3, then P(L ')B = 0. 

By using the standard program given in Sec. III, we can 
construct, classify, and enumerate all of connected dia
grams. The result obained is listed in Table II. 

In general, these diagrams are inequivalent, because 
II (O,a, 1) is a directed diagram. Since the property of group 
theoretic factors is neglected in our discussion, for some spe
cific gauge groups it might happen that topologically differ
ent diagrams correspond to the same group theoretic factor 
and can be incorporated. 

VI. CONCLUDING REMARKS 

Since the formulation used in our method is rigorous 
and construction, classification, and enumeration of dia
grams are performed analytically, the results obtained with 
this method are rigorous and quite general. The discussion is 
restricted to the diagram theoretic factors, and the result can 
be applied to a variety of models with different group theore
tic factors. The dependence on the number of space-time 
dimensions is automatically absorbed in results, hence the 
standard program is applicable to models with any space
time dimension without any trouble. 

The basic diagrams describing the coupling among field 
variables can be composed of elements differing in number 
and location on the lattice, hence can have different shapes. 
Furthermore, the basic diagram set, as the illustrative repre-
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TABLE II. The diagram theoretic factors occurring in the external source parameter of the pure lattice gauge field model with Wilson action. 

order diagrams and their enumerations 

0 2rll ::J 
1 2r2 tlJ 

2r2rJ 0 :JD a :J 
2 2"2 till 

4"2'" 
g 

DC 8 bilo 0 
2r~r3 9 :Ie a 
lrz r3r.,\ ~ :J~ ~ 0 
8r2r, ~ aJ 

."12,,,.+1) 90:rD DO a JD:JO 
D:J DOD 

ogot3 
4r'olr§ 

:JDO ~ 
:J 0 
D g 0 

Y~=d-I , Ys'= 2d-3 • 
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sentation of action S ( U), can be the union of several basic 
diagram sets with different shapes. So that, our standard 
program is suitable for a variety of physical models having 
different forms of action, such as the model with both near
est-neighbour and next-nearest interactions. 

The "action S( U)" in Sec. III is only the quantity, in 
which the Boltzmann weight is expanded as the power series. 
It may be an effective action instead of the fundamental one. 
This enlarges the range of application of our standard pro
gram. For example, when the integral over fermion field 
variables and the trace of Dirac matrices have been per
formed, the lattice theory with fermion is equivalent to a 
pure lattice gauge field model with an effective action in 
which some terms are added. I I We can calculate the diagram 
theoretic factors with our standard program, if the basic dia
gram set contain all of the diagrams corresponding to addi
tional terms. What is more, S( U) may be the quantity intro
duced for the convenience of mathematical treatment. So, 
the standard program can be applied to the variational-cu
mulant expansion, as long as the basic diagram set represent
ing the trial action is added. 

It appears that our scheme can be applied to cumulant 
expansions only. However, the basic formulation and the 
projection-sieve scheme, as the result of Theorems 3 and 4 is 
general and applicable to a variety of kinds of problems in 
which the classification and the enumeration of lattice dia
grams are needed. 

While our scheme has the advantage of rigor and univer
sality, it has also the disadvantage of tedium of calculation. 

2024 J. Math. Phys., Vol. 31, No.8, August 1990 

However, it can be used as the base of computer programs 
for enumeration of diagrams appearing in higher orders in 
the expansion. Furthermore, it may be used for proving gen
eral relations and theorems in diagram analysis in lattice 
field theories. Considering the property of the group theore
tic factors at first and incorporating equivalent diagrams of 
the (k - 1 )th-degree correction before constructing the 
k th-degree correction diagram set, the amount of computa
tion can be reduced. However, the improvement of the 
scheme is still needful, specially, when the diagrams corre
sponding to the local observable are disconnected. 
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A new set of functions that are given by the coefficients of the character expansion of the 
single-link action in the V(2) lattice gauge theory is studied. The set relies on the introduction 
of the character ofthe mixed term of the normal and adjoint V(2) variables. From the 
Schwinger-Dyson variational method the recursion relations among the functions are derived. 
From the relations the asymptotic behaviors of the function at the inverse coupling --0 and 00 

are derived. Through the combination of the recursion relations and the differentiation the 
linear differential equation of the fourth order is derived. The properties of the solution are 
discussed. 

I. INTRODUCTION 

It has been shown by Brower et al. 1 that the partition 
function of the single-link action in the V (N) lattice gauge 
theory2 is systematically described by the combination of the 
modified Bessel functions. These functions correspond to 
the coefficients of the character of the unit dimension in the 
expansion of the single-link action. 3 Inversely, it appears in
teresting to study systematically the coefficient functions of 
all the characters at a given unitary group. 

In previous papers4
•
5 we have established the properties 

of coefficient functions in SV (3) lattice gauge theory: the 
recursion relations among the functions, the expansion with 
respect to the inverse coupling, the asymptotic behaviors of 
the function, and the differential equation that the function 
obeys. This set of functions is regarded as the SV (3) exten
sion of the modified Bessel function. 

In this group we investigate systematically the coeffi
cient functions of the V(2) group. We first represent the 
exponentiated single-link action in terms of the characters 
and give the general expansion formula with respect to the 
inverse coupling {3 for the coefficient function by direct 
group integration. We then derive the recursion relations 
from the Schwinger-Dyson variational method6 and deter
mine the asymptotic behaviors at {3 .... 0 and {3 .... 00. By the 
combination of the recursion relation and differentiation we 
determine the differential equation of the fourth order and 
discuss the properties of the solutions. 

II. COEFFICIENTS OF U(2) CHARACTER EXPANSION 

We start with the character expansion of the exponen
tiated single-link action for the V(2) link variable U. Let 
X;.J.t ( U) be the usual character of the V (2) group, where A 
and p, denote the numbers of the first and second rows of the 
Young tableau, respectively. The Young tableau is described 
in terms oftr( U) in Ref. 3. We further introduce the charac
ter for the mixed term of U and ut, which is defined by a 
negative value of p, such as X;. _ 1J.t1 (U) (the general expres
sion is given in Appendix A). Then we may write the charac
ter expansion as follows: 

~ ;. 

= Coo ({3) + L L d;.J.t C;.J.t ({3) 
;'=1J.t=0 

X [X;'J.t (U) + tP1J.t ( U)] 

+ ;.tl {d;._;.C;._;. ({3)x;.-;. (U) 

;'-1 

+ L d;'-J.t C;'-J.t({3) 
J.t=1 

X [X;.-J.t(U) + X1-I'(U)]}, 

with 

d;.1' = ,1- p, + 1 (A>p,> - A), 

(2.1) 

(2.2) 

where the symbol d;.1' denotes the dimension. Here C;'I' ({3) 
is the real polynomial of the real variable {3. The symmetry 
property of X;'-I' (U) = XI'-;' (U) (see Appendix A) as
sures the symmetry of C;. _ I' ({3) = CI' _ ;. ({3) (p, > 0) . For 
example, X 1_ I ( U) is given by 

XI-I(U) =tr(U)tr(Ut)-1. (2.3) 

The orthogonality relation reads as 

J dU x1,1" (U)X;'J.t (U) = {j;.;., {jI'I'" (2.4) 

where p" p,' < 0 or >0. With the use of (2.4) the character 
expansion (2.1) is inverted to be 

C;.I' ({3) = _1_ J dU x1'1' (U) 
d;.1' 

Xexp[{3tr( U + ut)] (A>p,> - A), 
(2.5) 

where the integral is taken over the invariant measure for the 
group element U. 

Let us take (A,p,) = (0,0), (1,0), (1,1), and (1, - 1) 
for simple examples. Substituting the respective expressions 
into (2.5) and performing the group integration, we find 

Coo({3) = Zo,o ({:J), (2.6) 

~ (1) 2k CIO({:J) = /3 k~O k {:J ZI - k.k (/3), (2.7) 
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C ll ({3) = {32 ± 2 (1) ± (2 - 2s) 
s=o (2-s)! S k=O k 

X{32k Z2 _ 2s _ k.k + s ({3), (2.8) 

1 1 2 (2) 
C1_ 1({3) =2 CII ({3) +2{32 k~O k 

x{3 2kZ2 _ k.k ({3), (2.9) 

with 

Zk.r ({3) 
00 00 2n{3 2n + 4m 

= n~om~o (n+2m+k+2r+ 1)!(m+r)ln!m!' 
(2.10) 

where Coo({3) is the single-link partition function and is giv
en by Eriksson et al. 7 The successive evaluations of the 
CA.p ({3)'s lead us to the following general formula for J.t>0: 

CA.p ({3) 

={3A.+p i (A. + 1)! (J.t)A.+i-
2S

(A.+J.t-2s) 
S = 0 (A. - S + I)! S k = 0 k 

X{3 2kZA.+P_2S_k.k+s({3) (2.11) 

and for J.t < 0 we find, with setting v = - J.t, 

A. 'v' [ = (A. ~ ~)! CA. + v.O ({3) 

~ (A. + v)!(A. + v- 2r+ 1) C ({3)]. + £.. , A.+v-r.r 
r= I n(A. + v + 1 - r). 

(2.12) 

We note that the {3 series begins with the power of A. + 1J.t I in 
CA.p ({3) (A.>J.t> - A.). In fact, (2.11) becomes, at {3-0, 

CA.p({3)-{3A.+p i (A. + I)! (J.t) 2 
5=0 (A.-s+l)! s (A.+J.t+1)!s! 

_{3A.+p 1, (2.13) 
(A. + 1) !J.t! 

where we have used the relevant mathematical formula with 
respect to the two-term coefficient. On the other hand, 
(2.12) at{3-0 is shown to be 

C ({3) A. Iv! {3 A. + v [ 1 
A.-v -(A.+v)! (A.+v+l)! 

~ (A.+v)!(A.+v-2r+ 1)] 
+ £.. 2 2 r= I [(A. + v + 1 - r)!] (n) 

A. !v!(A. + V)2 {3A. + v 
(A. + v)!(A. + v + I)! 

X [ 1 + (A. + v + 1 ~~A. + v - 3) + ... ] 

_ {3 A. + P 1 , (2.14 ) 
(A. + v + 1)A. !J.t! 

where we have used (2.13) and bracketed the first two terms 
successively. 
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III. THE SCHWINGER-DYSON EQUATION 

We derive the Schwinger-Dyson equation6 for the func
tion containing the multilink variables. Here we consider 
only the case of J.t>0 since the operation between the char
acters is invariant under the transformation of J.t - - J.t, as 
shown in Appendix B. 

We first define the generating function of the single-link 
ensemble average by 

(f(U» = f dUf(U)exp[tr(UJ+Jtut)lIJ=,Bou, 

(3.1) 

where f( U) is a polynomial of the single-link variable U and 
ut. The symbol J stands for an element of the group 
GL(2,C). The symbol aD is the 2X2 unit matrix. Then 
CA.p ({3) in (2.5) is written as 

CA.p({3) = (1ldA.p)(X!p(U», (3.2) 

We consider the following variation: 

(3.3) 

where E denotes the infinitesimal parameter, if (r = 1, 2, 
and 3) denotes the Pauli matrix, and adO, 1, 2, 3}. Here ff' 
has the following properties: 

ff:.mafr = 28nr8mk , tr(ff'ofi) = 28a,B' (3.4) 

Under the variation (3.3) Eq. (3.1) is transformed to 

(f(U» = f d(UEU)f(UEU) 

Xexp[ tr( UEUJ + JtutUEt) lIJ=,Bo" 

= f dU f«(1 + iEcf1U) 

xexp[ tr{(1 + iEff') UJ + c.c.} llJ= ,80", 

(3.5) 

which leads to a variational equation. Explicitly we set 

f( U) = tr(ff'Un)[tr( U) ]k. (3.6) 

Then with the use of (3.4) we obtain 
n-I 

2(tr( un) Uk) + L (tr( Ur)tr( un - r) Uk) 
r= I 

+ k (tr( un + I )Uk - I) + {3 [ (tr( Un+ I )Uk ) 

+ (tr(Un+l)uk)l =0, 

where for simplicity we have used 

u = tr( U). 

(3.7) 

(3.8) 

Equation (3.7) is the Schwinger-Dyson equation for the 
multilink variable in the U(2) group. 

IV. RECURSION RELATION 

A. Derivation of the recursion relations 

We express the Schwinger-Dyson equation (3.7) in 
CA.p ({3). Here we consider only the case of J.t>0 because of 
the symmetrization under the replacement of J.t - - J.t (Ap
pendix B). Hence we make use of the explicit formula of the 
characters shown in Ref. 3. For simplicity we omit the argu
ment {3 of CA.p ({3) below. 
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We take a simple example of n = 1 and k = 0 in (3.7). 
Equation (3.7) is then written in terms of the characters in 
Ref. 3 as 

2(XIO) +,8[(X20) - (XII) -2(Xoo)] =0. (4.1) 

By substituting (3.2) into (4.1), we obtain one of the rela
tions among the C).I' 's: 

4CIO + ,8[3C20 - CII - 2Coo] = O. (4.2) 

In general (3.7) leads to some combination of simple rela
tions. We regard (3.7) as one ofthe simultaneous equations 
for the C).I' 's without the,8 factor. For example, we take two 
setsofparametersof(n,k) = (1,1) and (2,0) in (3.7). Then 
we have two simultaneous equations for C20 and C II: These 
are solved and written in terms ofthe C).I"s with the,8 factor 
as 

CII = -,8[C21 - CIO ], 

9C20 = -,8[4C3o-C21-3CIO]' 

(4.3) 

(4.4) 

Likewise, with successive variations of nand k in (3.7) we 
obtain a series of relations for the C).I' :s. From these relations 
we can find regularities with respect to A and p: They are 
attributed to two recursion relations 

[(A -p + 1)/,8 ] C;'I' - C;..I' + I + C;. + 1.1' 

- C;. _ 1.1' + C;'.I' _ I = 0, 

AC;..I' + I - (p - 1) C;. + 1.1' 

+ pC;. _ 1.1' - (A + 1) C;..I' _ I = O. 

(4.5) 

(4.6) 

where A> 1 is assumed in both formulas. As shown in Ap
pendix A, the character is extended to the character contain
ing the mixed terms of U and ut by making use of the nega
tive value of p. Hence A-I >p> - A + 1 holds in both 
(4.5) and (4.6). Forlater use we consider two variants that 
are given by the linear combinations (4.5) X (A + 1) 
+ (4.6) and (4.5) XA + (4.6), respectively, 

[(A + 1)(,.1. -p + 1)/,8 ]C;'I' - C;"I' + I 

+ (A -p + 2)C;. + 1.1' - (A -p + I )C;. _ 1.1' = 0, 
(4.7) 

[A(A -p + 1)/,8 ]C;'I' + (A -p + 1)C;. + 1.1' 

- (A -p) C;. _ 1.1' - C;..I' _ I = O. (4.8) 

It is of key importance that both (4.5) and (4.6) with the 
replacement P--+ - P are in symmetry with respect to the 
exchange of A and p. 

For p <0 we take an example of (A,p) = (1, - 1). By 
using the symmetry of C;.. _ 11'1 = C11'1. _;., (4.5) is written as 

3CI_ 1 +,8[2C2 _ 1-2CIO ] =0. (4.9) 

B. Behavior of CA,,(P) at P-O 
We check the behavior ofC;.1' (,8) at,8--+0 from the re

cursion relations. Let us first «onsider the case of p>O. We 
start with the knowledge of Coo-l and the assumption in 
(4.7): 

- C;'JL+ I + (A -p + 2)C;. + 1.1' = 0(,8). +1'+ I). 
(4.10) 

With this assumption and from the successive variation of A 
andp we find that C;'I' (,8) -0(,8). +1'). Equation (4.7) then 
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appears at ,8--+0: 

C).I' (,8) - [ 11 (A + 1) ],8C;. _ I.P (,8) 

- {1I [ (A + 1),.1. ... (p + 2) ]},8). -I'CI'I' (,8). 
(4.11) 

Setting A = p in (4.8), we find, with the use of ( 4.1 0), 

CI'I' (,8) - ( lip ),8CI'.1' _ I (,8) 

- [ lip (p + 1)],8 2CI' _ 1.1' _ .<,8) 

- [ lip! (p + 1)!],8 21'COO (,8). 

Combining (4.11) and (4.12), we obtain 

C).I' (,8) - [lIp!(A + 1)!],8). + 1', 

(4.12) 

(4.13) 

which coincides with (2.12) and satisfies the assumption of 
(4.10). 

For p < 0 we assume in (4.8) with v = -p that 

(A +v+1)C).+I._v-C).._v_1 =O(,8)'+V+I). 
(4.14 ) 

Then (4.8) reads as 

C).. _ v (,8) - [(A + V)/A(A + v + 1) ],8C)._I._v(,8) 

-v!(2v + 1)!/A !(2V)!(A + v + 1) 

(4.15 ) 

SettingA = vin (4.15) and using Cv_ l • _ v = Cv. _ (v- I» we 
find 

Cv. _ v (,8) - [2v/v(2v + 1) ],8Cv. _ (v- I) (,8) 

- [(2v)!/v!v!(2v + 1 )!],82vCOO (,8). (4.16) 

From (4.15) and (4.16) we find 

C).. _ v (,8) - [lI(A + v + l)A !v!],8). + V, (4.17) 

which coincides with (2.13) and again satisfies the assump
tionof(4.10). The results of(4.13) and (4.17) giveaconfir
mation ofthe recursion relations (4.5) and (4.6). 

C. Asymptotic behavior at P - 00 

Here we show that recursion relations determine the 
asymptotic behavior of C).I' (,8), starting with the knowledge 
of Coo (,8) at,8--+ 00. Following Brower et al." the single-link 
partition function Coo(,8) is given by 

C (,8) = ,8'/0(2,8)/1(2,8') -,8/1(2,8)/0(2,8') I 
00 ,8'2 ,82 ' - p'=p 

(4.18) 

where ,8 2 and ,8'2 correspond to the eigenvalues of JJt in 
Ref. 1. One can check that (4.18) has the same,8 series as 
given by (2.6) with (2.10). Here/k (z) denotes the modified 
Bessel function, which has the asymptotic behavior at z --+ 00 : 

( 4.19) 

The substitution of ( 4.19) into (4.18) generates, at,8 --+ 00, 

Coo(,8) - (e4P /817-,82)[ 1 + 118,8]. (4.20) 

We further need the asymptotic behaviors of CIO (,8) and 
CII (,8) at the beginning of the recursion relations, which are 
given by, respectively, 

N. Tanimura and O. Tanimura 2027 



                                                                                                                                    

1 d e
4

(J [ 3 ] 
Cw([3) ="4 d[3 Coo({3)- 81T[32 1- 8[3 , (4.21) 

1 d 3 
ClI ([3) = -- Cw ({3) + - Cw ([3) - Coo([3) 

2 d[3 [3 

(4.22) 

Here we have used the relation of differentiation shown in 
(5.3) below. Equation (4.21) is given directly from (5.3) 
with A, = f-L = 0 and (4.22) is given from the combination of 
(4.2) and (5.3) with (A"f-L) = (1.0). Here we define the nor
malized value for the simplicity of the derivation: 

(4.23) 

From (4.20)-(4.22) we find Aw([3) andA II ([3) at [3-+ 00: 

A w([3) - A II ([3) -1 - l/2[3. (4.24) 

From the recursion relations (4.5) and (4.6) we can evalu
ate any A;..I' ((3) at [3-+ 00 with the use of (4.24). For exam
ple, (4.3) generates 

A21 ((3) = A w([3) - (l/[3)A II ([3) -1 - 3/2[3. (4.25) 

Through the successive variations of A, and f-L in the recursion 
relations we easily find the general formula of the asymptotic 
behavior of A;..I' ([3) : 

A;"I'([3)-I- (l/4[3)[A,(A, + 1) +f-L(f-L-1)]. (4.26) 

We prove formula (4.26) for f-L>O by the induction method 
in the following. We first assume that (4.26) holds for 
A, + jl'("n. LetA, + f-L be equal to n. When (4.26) is substitut
edinto (4.8) and divided by C()()([3) apart from C;..+ 1.I',we 
then find 

A;.. + 1.1' ([3) -1 - (1!4[3)[ (A, + 2)(A, + 1) + f-L(f-L- 1)]. 
(4.27) 

Since (4.27) holds for all A, and f-L satisfying A, + f-L = n, the 
validities of (4.27) are brought down successively to those of 
theA;..1' ([3)'s with A, + f-L = 2 and 1, which are apparent and 
seen in (4.2 )-( 4.4). This establishes the proposition. 

Formula (4.26) also holds for f-L < 0, which can be 
proved in the same manner as shown above. Combining 
( 4.26) with (4.20) we obtain the asymptotic behavior of 
C;"I' ([3) : 

C;"I' ({3) - (e4
(J /81T(32)[ 1 - (l/8[3){U(A, + 1) 

+ 2f-L(f-L-l) - I}]. (4.28) 

For simplicity, here we have calculated only the [3 - I term. 
Since we can find the complete [3 -I expansion for Coo([3) 
from ( 4.18), we can also calculate the [3 - I expansion for the 
C;"I' ({3)'s with the use of the recursion relations in the same 
way as shown above. 

D. The U(N) differential equation by Brower et al.1 

We interpret the general differential equation for the 
U (N) group derived by Brower et al. I in terms of our lan
guage. The U(N) differential equation reads as l 
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[ 
1 a 1 2 a 2 1 XkXs 

- \" xk --+-\" xk --+- L 
N *( aXk N 2 *( ax~ N 2 k#s Xk - Xs 

x(~-~) -~ \" Xk] t(xk ) =0, (4.29) 
aXk axs N *( 

wherexk is the kth eigenvalue of JJt and t(xk ) is the parti
tion function. First we investigate the equation for U(2). 
Since our expansion (2.1) is based on the assumption that 
JJthas the equal eigenvalues of[32, wesetx I = X 2 = [32 after 
the differentiation in (4.29) with N = 2. Since t(Xk) is the 
partition function with the different eigenvalues, it becomes 
equal to Coo([3) in the case ofthe equal eigenvalues: 

t(x I = X2 = (32) = Coo([3) = Zo.o ([3), (4.30) 

where we have used (2.6) with (2.10). For the differenti
ation of t(xk ) we find 

a ,. [32 Z [3 [32Z [3 Cw([3) 
aXk ~ (XI = X2 = ) = 1,0 ( ) + 0,1 ( ) = -[3--' 

(4.31 ) 

where we have used (2.7) and set X I = X2 = [32 after the dif
ferentiation. Likewise, we see the following correspon
dences: 

(4.32) 

(4.33 ) 

where we have used (2.11). Substituting (4.30)-( 4.33) into 
(4.29), we obtain 

4Cw + [3[ 3C20 - CII - 2Coo] = 0, 

which is (4.2). That is, (4.29) with the equal eigenvalues for 
U (2) is reduced to the first equation of the recursion relation 
in U(2). 

We next calculate the first equation of the recursion re
lation for the U(N) group, which should correspond to 
(4.29) with the equal eigenvalues. Let us write the 
Schwinger-Dyson equation for f( U) = tr(A, au), where A, a 

is the U (N) Gell-Mann matrix and satisfies the same equa
tionsas (3.4). Then the variation (3.5) with 0" -+A, a leads to 
the following: 

N(tr(U» +[3[(tr(U 2 » -NO)] =0. (4.34) 

Here we introduce the character Xn,n,---nN with the dimen
sion dn,n,---nN in U(N), where nr denotes the number of 
boxes in the rth row of the Young tableau. The coefficient 
function Cn,n,- _ -nN is given by 

(4.35 ) 

Substituting the general expression for the character given in 
Ref. 3 into (4.35), we obtain the first equation of the recur
sion relation in U (N): 

2NCw_ --0 ([3) + [3 [ (N + 1) C20---() ({3) 

- (N - 1) CliO- --0 ((3) - 2Co_ --0 ([3)] = o. (4.36) 

Relation (4.36) is equivalent to (4.29) with the equal eigen
values X k = [32 for all k. 
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V. DIFFERENTIATION 

We examine the relation containing the differentiation 
of CAp ({3) with respect to {3. When operating d / d{3 on (3.1 ), 
we find 

d~ (/(U» = f dUI(U)[tr(U) +tr(Ut» 

Xexp[tr( UJ + Jtut») IJ=Po'" (5.1) 

This means that the differentiation of the average of the mul
tilink variable is equal to the multiplication of 

tr( U) + tr( ut) on the multilink variable. Thus when one 
sets I( U) explicitly, e.g., to be (3.6), and performs the inte
gral in (5.1), one can obtain the differentiation of CAp ({3) in 
the same manner as in Sec. IV A. 

However, we can calculate the differentiation more di
rectly by making use of the Young tableau. As shown in 
Appendix A, the multiplications oftr( U) and tr( ut) corre
spond to the additions of 0 and its adjoint IZl to the original 
Young tableau, respectively. From the rule defined in Ap
pendix A we illustrate d / d{3 (X Ap ( U» schematically as 

). ). ),+1 ). ),+1 
d B:B' am . B:B . i:I:B l 6rn l d~ (11.)=( •• )+("'I)+('I)+<iiii 'I'I ) 

11 (.l+1 (.l (.l+1 (.l 

). ),+1 ),-1 ). (5.2) 

l'rrrI .. kT'1 l &-n l f-n :to. =<iiiii'· >+<WJ'III>+< WJII>+< iii lll» 
11+1 (.l (.l 11-1 

which corresponds to 

d 
d{3 (XAp) = (XA.p+l) + (XA+l.p) 

+ (XA -I,p) + (XA,p - 1)' (5.3) 

With the use of (3.2) we find 

d 
(A - Jl + 1) d{3 CAp 

= (A-Jl)[C..<,p+l +CA_I,p] 

+(A-Jl+2)[CA+ 1,p+CA,p_l]' (5.4) 

Equation (5.4) holds also for Jl < 0 since the multiplication 
between the Young tableaux is invariant under the change of 
Jl .... - Jl, as shown in Appendix B. Therefore, (5.4) holds in 
the region of A'pJl'p - A.. 

VI. DIFFERENTIAL EQUATION 

A. Derivation 

Let (A,Jl) be the two-dimensional index space. In the 
differentiation (5.4) and the symmetrical recursion relation 
( 4.5) the point (A,Jl) is associated with the adjacent four 
points (A + I,Jl), (A,Jl + 1), (A -1,Jl), and (A,Jl-1), 
while in the recursion relation (4.6) the same four points are 
associated with one another without (A,Jl). This indicates 
that (A,Jl) is located at the center in the index space in Eqs. 
(5.4), (4.5), and (4.6): We call it the center. 

We will derive the linear differential equation for 
CAp ({3) from Eqs. (5.4), (4.5), and (4.6). Therefore, we 
should eliminate all Cnm's other than CAp' In order to match 
the number of the unknown Cnm's with Eqs. (5.4), (4.5), 
and (4.6) we introduce (4.5), (4.6), and (5.4) for the fol
lowing four centers: (A,Jl), (A - I,Jl), (A,Jl + 1), and 
(A + 1, Jl + 1): This choice of centers is one possible way to 
do this. Here we assume that the centers (n,m) lie in the 
region of n'pm'pO. Hence the total number of simultaneous 
equations is 3 X 4 = 12. 

On the other hand, the resulting unknown Cnm's are 
gtven by 

2029 J. Math. Phys., Vol. 31, No.8, August 1990 

Cn,p_l' (A-l<n<A), Cn,p, (A-2<n<A+l), 

Cn,p + l' (A - 1 <n<A + 2), Cn,p + 2' (A<n<A + 1). 

It follows that the number of Cnm's is equal to 12. Since these 
Cnm 's are coupled to one another in the simultaneous differ
ential equations, one can in principle solve these equations, 
We eliminate 11 Cnm's (:;6CAp ) from the simultaneous 
equations in the conventional manner, which consists of 
some arithmetic calculations and differentiations with re
spect to {3. After some tedious calculations we find the fol
lowing differential equation of the fourth order: 

{ 
d4 8 d

3 
[ - 2X + 13 ] 

d{34 + Ii d{33 + {32 - 16 

X~- [6X+2d ip -1 ~] 
d{32 {33 + {3 

~ [2X(dip -1) - (dip _1)2 _.E.]} 
X d{3 + {34 {32 

X Cff Ap ({3) = 0, (6.1) 

with 

X=A(A + 1) +Jl(Jl-1), (6.2) 

where we have replaced the expression of the function 
CAp ({3) by Ctf Ap ({3) since the solution of this differential 
equation contains not only CAp ({3), but also the other un
known solutions. For simplicity we write (6.1) as 

± (± {3n+2s- 4Ins(A,Jl») d
n

n Cff Ap ({3) =0. (6.3) 
n=O s=o d{3 

Here we note that Ins (A, - Jl) = I"s (Jl, - A) and I" 1 (Jl,A) 
= 0 for n = 3 and 4. 

For the spectral value of A or Jl the number of coupled 
equations is reduced on account of the properties of C A, _ P 

= Cp, -A (Jl>O). Then the differential equation (6.3) is re
duced to a lower order equation. For example, let us take 
A = Jl = O. Then we find 

{ 
d3 5 d 2 [3 ] d 16} 

d{33 + Ii d{32 + {32 - 16 d{3 -73 Cff oo({3) =(~·.4) 
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Equation (6.4) satisfies the general differential equation 
(6.1) by multiplying the following operator: 

[d~ + ~] [lhs of (6.4)] = [lhs of (6·1)]IA=I'=0· 

(6.5) 

B. Expansion with respect to p 
We solve the differential equation (6.1) by means of the 

expansion method with respect to f3. We set 

C(f AI' (f3) = 1: apf3 p + s. (6.6) 
p=o 

Here 5 is the unknown to be determined from the indicial 
equation 

4 s! 
pes) == n~olno (A,Il) (5 _ n)! 

= [5 - (A + 1l)][S - (A - 1l)][S + A + Il] 

(6.7) 

We thus have four integer solutions: A + Il, A - Il, 
- (A + Il), and - (A - Il + 2) . We take only one solution 
5 = A + Il for 1l#0 or 5 = A - Il for Il < 0, which corre
sponds to the coefficient of character expansion CAl' (f3). 
Then (6.6) with 5 = A + III I shows that the f3 series of this 
solution starts with f3 A + 11'1. 

We next calculate the coefficient ap's for both 1l#0 and 
ft < 0. Substituting (6.6) into (6.1) and then setting the coef
ficient of each power of f3 to be zero, we then obtain the 
following iterative relation: 

a2p _ 2 a =---::!:....----
p P(A + Il + 2p) 

X ± Inl (A,Il) (A + III I + 2p)! 
n=O (A + III I + 2p - n)! 

(6.8) 

We can solve the iterative equation (6.8) as 

ap = (-)P JJI [P(A +~ + 2k) 

X ± Inl (A,Il) (A + III I + 2k)! ] ao. (6.9) 
n=O (A + IIlI + 2k - n)! 

Here we note that ao is not determined from the differential 
equation, but is a multiplicative constant. When we set ao to 
be the coefficient of (4.13) or (4.17), this solution is equiva
lent to CAl' (f3): 

00 p [ 1 2 

C(J AI' ({3) = p~o ( - ) p JI P(A + Il + 2k) n~olnl (A,Il) 

X (A+IIlI+2k)! ]f3A+ll'lao, 
(A + 1ft I + 2k - n)! 

(6.10) 

with 

1l!(A + 1)! ' 

{ 

1 1l#0, 

a

o 

= (A + v ~ l)A !v!' Il < 0. 

(6.11) 

It can be numerically checked that the f3 series of CAl' (f3) 
given by (2.12) is equivalent to (6.1 0). Here we did not treat 
solutions other than CAl' (f3) since we focus on the general 
form of the differential equation. 

c. Asymptotic behavior of the solution 

The resulting differential equation enables us to study 
the asymptotic behavior of the solution. We have seen in Sec. 
IV C that CAl' (f3) at f3 -+ 00 behaves like (4.28). This means 
that (4.28) satisfies (6.1) at f3 -+ 00 and can really be 
checked. Thus one can expand the solution in terms of lIf3 
as 

( 6.12) 

where bo = !1T. Substituting (6.12) into (6.1) and then set
ting the coefficient of each inverse power of f3 to be zero, we 
find the following iterative equation: 

p-I {4 1 ( n ) [n+2s-k+ P -3 ] } L bk L L 2s-k -3 II (-k-2-r+ 1) 4- 2S
+k-

p
+3/"s(A,Il) 

k=q n=Os=O n+ +p r=1 
(6.13 ) 

with 

q= {
a, p<3, 
p- 3, p>3. 

(6.14 ) 

Specifically, for p = 1 we have 

bl = - [(2X - 1 )/8]bo = - [(2X - 1 )/641T], 
(6.15 ) 

which is equivalent to the result given by (4.28). This sug
gests the self-consistence of our treatment. 
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VII. SUMMARIES 

We have studied the coefficient of the extended charac
ter expansion of the exponentiated single-link action in the 
V(2) group, in which we have introduced the character of 
the mixed term of U and ut. Finally, we have reached the 
compact set of mathematical functions with two group in
dices, i.e., a Bessel-type function associated with the V(2) 
group. 
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We have derived the recursion relations, the relation of 
the differentiation, the {3-series expansion, the asymptotic 
behavior at {3 -+ 0 and {3 -+ 00 , and the differential equation of 
the fourth order. 

The resulting differential equation is contrasted with 
that of the corresponding functions in the V ( 1) and SV (2 ) 
groups, i.e., the second-order differential equation of the 
modified Bessel function. The differentiation of I k (2{3) [the 
coefficient function corresponding to the V (1) or SU (2) 
group] generates the two functions with the adjacent integer 
suffices k - 1 and k + 1, while in V(2) the differentiation 
leads to the connection of four functions with adjacent in
dices in the symmetrized equation (5.4). The same fact also 
holds for the point of the recursion relation. It may following 
that the fourth-order differential equation is derived in the 
V(2) group, while in V(1) or SV(2) the second-order dif
ferential equation is derived. In view of this we regard the 
function CAl' ({3) as the V (2) extension of the modified Bes
sel function. 

We have shown that the differential equation for the 
general V (N) partition function derived by Brower et al. I is 
attributed to the first equation of the recursion relation for 
the coefficient function of the V (N) group in the case of the 
equal eigenvalues. 

APPENDIX A: CHARACTERS OF MIXED TERMS OF U 
ANDU+ 

Here we define X A _ v (U) (v> 0) and represent it with 
the Young tableau. First we connect tr( U t ) to a slashed 
tableau: 

tr( UAI') -+ D. 

The property of UU t = 1 assures symmetry with respect to 
A and v for X A. _ v ( U). Therefore, X A, _ v (U) is represented 
by means of the single-row tableau in the following diagram: 

1 A ~ 
X (U) ~ I" .)N0d (Al) 

).,- v 

The rules of the multiplication between the characters con
taining the slashed tableaux are the following: 

(i) The same multiplication rule holds as in the conven
tional rule, 
(ii) the slashed tableau is movable freely in the same 
row and if a normal tableau and a slashed one lie in the 
same column, they are both dropped out. 
Let us take the simple example of the XAO xtr( ut), as 

in the following diagram: 

lA, lA, ",A. 
Ii I I I I X 121 = • I I I I 0 + iii I I " 

< A. A-I 
=0111It+fI:J:D 

It follows that 

XAO Xtr( U t ) = XA, - I + XA -1,0' 

(A2) 

(A3) 

Let us consider the multiplication of X A, _ (v _ I) (v> 0) 
and tr ( U t): It is represented in the Young tableau with the 
use of rule (ii) in the diagram 
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< A • v-I 
I I I I .iMM X IZI 

A. v 1A-l. v-I = (IIII~ + IIII~ (A4) 

which corresponds to 

XA,- (v-I) xtr( U t ) = XA, -v + XA-I,- (v-I)' (A5) 

To calculate XA,-v' we make use of formula (A5) succes
sively as follows: 

XA, - v = XA, - (v- 1) tr( U t ) - XA - I, - (v- I) 

= XA. - (v-2) [tr( U t ) P - 2XA _ 1,- (v- 2) 

xtr(U t ) +XA-2,-(v-2) 

= ± (_ )s(v) [tr(Ut)]V-SXA_s,o. (A6) 
s=O S 

Thus one can evaluate the X A, _I' (U) from the known char
acter3 X A '0 (U) (A' «A ). The dimension is given by setting 
U = 1 in (A.6): 

XA,-v(1) = sto (- )s(;)r-S(..1_s+ 1) 

=..1 +v+ 1, (A7) 

which satisfies (2.2). One can also check the orthonormal 
property of X A, _ v ( U) by the mathematical induction meth
od. 

APPENDIX B: SYMMETRY PROPERTY OF CHARACTER 

We show the symmetry property between X Av (U) and 
XA,-v(U) (v>O). We first note that (2.2) also holds for 
X A, _ v' as shown in (A 7). We calculate the multiplications 
for XA, _ v (U) and XAv (U) in the following diagrams: 

< A ~ <)'-1~ 
A {IZI} {I" " + I". < ~ .,IMIX = At A 

[] ~ •• t •• ~ + (I"'~ 

A , 
fIIj'" + 
v-1 

),+1 , £ulj 111+ 

v 

which correspond, respectively, to 

cHir • 
V 

1 A • 
~IIII ,. 

v+t 

{
xto} _ {XA,-V-I +XA-I,-v 

XA,-v X - , 
XJO XA + I,-v + XA,-v+ I 

{
xto} _ {XA,V-I +XA-I,v 

XA,v X - . 
XJO XA+I,v'+XA,v+1 

(B1 ) 

(B2) 

(B3) 

(B4) 

Comparing (B3) with (B4), we find that the former is given 
by the replacement of V-+ - v in the latter. This establishes 
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the symmetry property of Xliv and XIi,-v in the multiplica
tion of the characters. 
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This paper discusses a modification of the Krichever-Novikov Lie algebra of vector fields on 
the torus in which the two specified points where singularities can occur are points of order 1 
and 2 rather than points of infinite order. 

I. INTRODUCTION 

Krichever and Novikov1 initiated the study of Lie alge
bras of meromorphic vector fields, on compact Riemann 
surfaces of arbitrary genus, which are holomorphic except 
that poles are allowed at two specified points. In genus zero, 
the surface is the Riemann sphere, and one conventionally 
takes the two points to be ° and 00, thus obtaining the (cen
terless) Virasoro algebra, which has been studied in great 
detail. In genus 1, one represents a complex torus l'. as the 
quotient of the complex plane C by a lattice 

A: = Z(2w 1) al Z(2w2 ) (W 1,W2EC, 1m W I/W2 > 0), 

chooses a point Zo in the fundamental parallelogram, and sets 
P ± : = ± Zoo (We shall write z for both a point in C and its 
image in l'..) Using the theory of elliptic functions, together 
with the Riemann-Roch theorem, one determines that the 
Lie algebra in this case has a basis E;: = e; (z)(d /dz) , 

iEZ + !, where e; (z) is defined using the Weierstrass ufunc
tion: 

e; (z): = d - I12(Z - zo)u(z + 2izo)/d + 112(Z + zo). 

(1) 

Thus e; (z) has a zero of order i - ! at P +, a pole of order 
i + ~ at P _, and (as required by double periodicity) another 
zero, this time simple, at - 2izo. The structure constants of 
this Lie algebra can then be expressed in terms of the Weier
strass ~ function. 

One sees easily from (1) that the choice of Zo is not 
completely free: For example, if Zo is a torsion point, say 
nzo = 0, then en _ 112 (z) = en + 112 (z). There is no redun
dancy of this type in ( 1) if and only if Zo is a point of infinite 
order. 

However, one can take both P + and P _ to be torsion 
points, but the resulting Lie algebra will not have the form 
described by Krichever and Novikov. The simplest example 
occurs for P + = 0, P _ = WI + W 2; this is the case that will be 
considered in the remainder of this paper. 

II. BASIS AND COMMUTATION RELATIONS 

Write % for the Lie algebra of meromorphic vector 
fields on l'.: = C/ A, which are holomorphic on l'. '\ {p ± }. 

Let ty> (z) be the Weierstrass ty> function for the lattice A, and 
set w: = WI + W 2, p: = ty>(w). Now ty>(z) - p has a double 
pole at z = 0, a double zero at z = W [since ty>' (w) = 0], and 
no other zeros or poles.2 Thus % must include the vector 
fields 

Ka: = ka (z)~, ka (z): = (ty>(z) - py, aEZ. (2) 
dz 

Calculating commutators of these gives 

[Ka,KbJ = (b-a){ty>(z) _py+b-Ity>'(Z)~, 
dz 

and thus % must also contain 

Ja: = ja (z)~, ja (z): = (ty> (z) - p)a - I ty>' (z), aEZ. 
dz 

(3) 

Proposition: The vector fields Ja and Ka for a EZ form a 

basis of %. 
Proof: On l'. the vector field d / dz has no zeros or poles. 

Thus we have a vector space isomorphism from Y, the field 
of meromorphic functions on l'., holomorphic on l'. '\ {p ± }, 

to %, given by /(z)~/(z) (d /dz). So it suffices to show that 
the functionsja (z), ka (z) for aEZ, form a basis of Y. This is 
an immediate corollary of the Riemann-Roch theorem,3 as 
follows. Consider the positive divisor D: = cP _ + dP + 

(c,dEZ;.o) on l'., and let .5t' (D) be the finite-dimensional 
vector space of merom orphic functions/(z) on l'. such that 
div (j) > - D, together with the zero function. Then 
dim .5t' (D) = c + d. One checks that ka (z) has a pole of 
order 2a at z = 0, a zero of order 2a at z = p, and no other 
zeros or poles, and thatja (z) has a pole of order 2a + 1 at 
z = 0, a zero of order 2a - 1 at z = p, and simple zeros at 
z = WI and z = W 2• Thus 

{k _ [dI21, ... ,ko= 1, ... ,k[c12l} 

U{j _ [(d- 1)/21, .. ·JO .. ·J[(c- 1)12 I}' 

is a set of c + d linearly independent functions/(z) satisfying 
div 1> - D. Q.E.D. 

The ty> function satisfies the differential equation 

ty>' (Z)2 = 4ty> (Z)3 - g2ty> (z) - g3' g; = g; (W I,W2), (4) 

which by differentiation gives 

ty>" (z) = 6ty>(Z)2 - !g2' (5) 

We also have the addition formula 

ty>(ZI +Z2) =J...(ty>'(ZI) - ty>'I(Z2»)2 
4 ty>(ZI) - ty>(Z2) 

- ty>(ZI) - ty>(Z2)' ZI#Z2' (6) 

Proposition: The commutation relations among the Ja 
and Ka are as follows: 
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[Ja,Jb ] = (b-a)«(l2p2_g2)Ja+b_1 + 12pJa+b 

+ 4Ja + b+ 1 ), ( 7 ) 

[Ka,Kb] = (b-a)Ja+b, (8) 

[Ja,Kb ] = (b-a+!)(12p2- g2 )Ka+b_1 

+ (b - a) 12pK a +b 

+ 4(b - a - ~)Ka+b+ I' (9) 

Proof We only give the details for (9); (7) and (8) are 
simpler. Using (4) and (5) we have 

d d d d [Ja ,Kb ] = (p (z) - p)a - 1 p' (z)~p (z) _ p)b - - (p (z) _ p)b ~p (z) _ p)a - 1 p' (z)-
dz dz dz dz 

= (b - a + l)(p(z) - p)a+b- 2p'(Z)2~ _ (p(z) _ p)a+ b-Ip" (z) ~ 
dz dz 

= (b-a+ l)(p(z) _p)a+b-2(4(p(z) _p)3+ 12p(p(z) _p)2+ (l2p2_ g2 )(p(z) _p)~ 
dz 

- (p(z) - p)a+b-I( 6(p(z) - pf + 12p(p(z) - p) + (6p2 - ~ g2))! 

d d =4(b-a-!>(p(z) _p)a+b+I_+ 12p(b-a)(p(z) _p)a+b_ 
dz dz 

+ (l2p2 - g2)(b - a + ~)(p(z) _ p)a+ b-I~, 
dz 

which gives (9). Q.E.D. 
The automorphism of ~ given by z f---+Z + (j) inter

changes P + and P _, and induces an automorphism of ff, 
namely O'j(z)(d Idz)f---+f(z + (j)(d Idz). 

Proposition: The automorphism 0' takes the explicit 
form O'(Ja ) = - {3 - 2aJ _ a' O'(Ka) = {3 - 2aK _ a' where {3 
is a square root of l/(3p2 - !g2)' 

Proof Note that for f(X): = 4X 3 - g~ - g3' we have 
j'(X) = 4(3X 2 - !g2)' By assumption f(X) has distinct 
roots, and sof(p) = 0 impliesj'(p) #0. Thus 3p2 - !g2#0 
and {3 is well defined. Using (4) and (6) we obtain 

1 ' (Z)2 
p(z+(j)-P=- p -p(z)-2p 

4 (p(z) _ p)2 

1 1 ( 2 
- 2 (12p -g2) 
4 (p(z) - p) 

x(p(z) -p)+ (4p3_ g7/J-g3» 

={3 -2 1 
(p(z) - p) 

Differentiating gives 

p'(z + (j) = - {3 -2[p'(z)/(p(z) _ p)2]. 

Thus 

O'(Ja) = (p(z + (j) - p)a-Ip'(z + (j)~ 
dz 

2034 

= - {3 -2a(p(z) - p)-a-Ip'(z)~ 
dz 
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The calculation of O'(Ka ) is similar. Q.E.D. 
ThusifwedefineJ~: = {3aJa,K~: = {3 aKa , then 0' takes 

the more convenient form O'(J ~) = - J'_ a' 
O'(K~) =K'_a' If we further define J;:= -!{3J~, 
K;:= -~{3K~, we still have O'(J;) = -J;, 
O'(K;) = K'~ a' and the commutation relations take a very 
simple and symmetric form. Here, we omit the double-prime 
superscripts, and set y: = 3p{3: 

[Ja,Jb ] = (a - b)(Ja+b_1 + yJa+b + Ja+b+ I)' 
(lOa) 

[Ka,Kb] = (a-b){3Ja+b' (lOb) 

[Ja,Kb ] = (a-b-~)Ka+b_1 + (a-b)yKa+b 

+(a-b+~)Ka+b+I' (lOc) 
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It is shown that the boson operators for the Majorana representation ofSL(2,C) realized as 
hyperdifferential operators in the Bargmann Hilbert space of analytic functions yield, on 
exponentiation, a parametrized continuum of integral transforms. Each value of the group 
parameters yields an integral transform pair. The formula for the inversion of the transform is 
obtained simply by replacing the group element by its inverse. 

I. INTRODUCTION 

The two Majorana wave equations I are based on two 
special unitary representations of the homogeneous Lorentz 
group or its spinor group SL(2,C). In customary notation 
these two unitary irreducible representations (VIR's) are 
denoted by D(o. 1/2) and D( 112.0) • The former is a member of 
the supplementary series of VIR's and the latter belongs to 
the principal series. The infinitesimal generators of these 
representations are contained as a subset in the Dirac real
ization2 of the "remarkable" representation of the 3 + 2 de 
Sitter group, as well as in the Biedenharn and van Dam con
struction3 of a special representation of the symplectic 
group Sp (2,2) in terms of boson creation and annihilation 
operators. Dirac operators were the natural consequence of 
a special simplifying feature of the representation of the 
group when a particular generator has only integral eigen
values. On the other hand, the Biedenharn and van Dam 
construction3 was motivated by the necessity of choosing a 
relative orientation for the Minkowski versus spin space in 
the application of the method of Galilean sUbdynamics de
veloped in connection with their interpretation of the Dirac 
positive energy wave equation.4.5 The boson realization of 
the de Sitter generators has also been introduced by van 
Dam et 01.6

•
7 in their attempt to incorporate some of the 

internal structure of particles in an elegant algebraic frame
work. This structure was shown to exhibit group theoretical
ly defined discrete mass-spin relationships that are stable for 
any given value of a timelike four-momentum. These opera
tors were also used in the formulation of a constrained rela
tivistic Hamiltonian dynamics for composite systems. 

The Majorana representation D(0.1I2) $ D( 112.0) plays a 
very special role in the construction of the infinite-dimen
sional VIR's ofSL(2,C) by the boson operator technique. 8 

It is indeed the basic representation generated by the Dirac
Biedenharn-van Dam-Mukunda2

-
7 operators of SL(2,C), 

just as the metaplectic representation is the basic representa
tion generated by the Holman-Biedenharn-Moshinsky
Quesne8 operators of SL(2,R). The boson creation and 
annihilation operators are conveniently represented by oper
ators defined in a certain Hilbert space of analytic functions 
B( C). This Hilbert space has been introduced and studied in 
detail by Bargmann9 for a finite number of boson operators 
and by SegallO for an infinite number of operators. The basic 
advantage of this procedure is that one obtains explicit ex-

pressions not only for the infinitesimal generators, but also 
for their exponential, the unitary operator of the representa
tion itself. In a previous paper I I we have shown that the use 
of this Hilbert space as the carrier space of the VIR's of 
SL (2,R) leads to a parametrized continuum of integral 
transforms mapping B( C) onto itself. Each value of the 
group parameters yields an integral transform pair. 

It is the object of the present paper to extend this analy
sis to the unitary representations of SL (2, C). The boson op
erators for the Majorana representations are constructed in 
Bargmann's Hilbert space B( C 2 ), which consists of entire 
analytic functions j(zi ,Z2) of two complex variableszl and 
Z2' As noted by Dirac,4 in this realization the generators of 
the space rotation are first-order operators, while the Lor
entz boosts are operators of second order. This simplicity is a 
special feature of the Bargmann realization of SL (2, C). The 
action of a finite element of the group on an element of 
B( C 2 ) yields a parametrized continuum of integral trans
forms mapping B( C 2 ) onto itself. The integral kernel for the 
inversion of this transform is obtained simply by replacing 
the group element by its inverse. Our method of exponentia
tion of the generators is based on an adaption of the Barut 
and Raczka analysis 12 of the "heat equation" on a Lie group 
and analytic vectors. Following Ref. 11 we first factorize the 
unitary operator of the representation into an appropriate 
Baker-Campbell-Hausdorff formula by using a theorem 
due to Wilcox. 13 The successive application ofthe operator 
factors on an element of B( C 2 ) yields the integral transform 
pair. 

II. FINITE ELEMENT OF THE GROUP AND THE 
ASSOCIATED INTEGRAL TRANSFORM 

To make this paper self-contained we first describe some 
basic properties of the Bargmann Hilbert space B( C 2 ), 

where C 2 is the two-dimensional complex Euclidean space. 
The elements of B( C 2) are entire analytic functions j(zi , 
Z2 ) having a finite norm according to the scalar product 

(j,g) = f j(ZI,Z2)g(Zlh)dp(ZI)dp(Z2)' (2.1) 

where dp(z) is the Gaussian measure 

dp(z) = (e- lzI2/1T) d 2z, d 2z=dxdy, z=x+iy. 
(2.2) 

The scalar product satisfies 
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(Z; f,g) = (J,~ g), i = 1,2. 
az; 

(2.3) 

A complete orthonormal set in B( C 2 ) is given by the powers 

Un,n, (ZI,Z2) 

= (z~'z~')/(nl!n2!)1I2, n l ,n2 = 0,1,2,.... (2.4) 

We now introduce the principal vectors ez,z" which are 
bounded linear functionals in B( C 2) satisfying 

f(ZI,Z2) = (ez,z,'/). (2.5) 

The explicit form of the principal vector is given by 

e (f;- f;-) = eZ's, + z's, 
Z,Z2 ~ 1'=-2 , 

so that Eq. (2.5) readsas 

f(ZI,z2) = f ~,~, +z'~'f(SI,S2)df.t(SI)df.t(S2)' (2.6) 

The principal vectors will playa crucial role in our analysis. 
The group SL(2,C) consists of the complex unimodular 

matrices 

g = (: !), det g = ad - be = 1. (2.7) 

The group possesses six generatorsJ;,F; (i = 1,2,3), where 
J; are the generators of space rotation and F; those of pure 
Lorentz transformation. The Lie algebra of SL(2,C) is de
fined by the commutation relations 

[J;.Jj] =iEijkJk' [J;,Fj] =iEijkFk' 

[F;,Fj] = - iEijkJk' (2.8) 

and has two Casimir operators, both of second degree, in the 
generators 

CI = J2 - F2, C2 = JoF. (2.9) 

In a VIR ofSL(2,C) the six generators would be repre
sented by Hermitian operators and C I , C 2 would be repre
sented by real numbers. The values of C I and C 2 can be 
written as 

(2.10) 

The VIR's can be classified into two families. 
(i) For the family of the principal series D (j",a), jo is an 

integer or half-integer and u is pure imaginary: 

u = ip, - 00 <p < 00. 

(ii) For the family of the supplementary series D (O,a), 

jo = 0 and u is a real number lying in the interval 0 < u < 1. 
To construct a unitary representation of the group in 

B( C 2) we introduce the Dirac-Biedenharn-van Dam
Mukunda solution of the commutation relations. 14 

. (a a) -~ ZI
aZ2 

-ZZaZ
I 

' 

(2.11 ) 

Equation (2.3) ensures that the operators (2.11 ) are Hermi
tian under the scalar product (2.1). 

Explicit calculation with the generators (2.11) yields 

(2.12) 

this is possible if 

which corresponds to a representation of the principal series 
D (112,0) or if 

jo = 0, u=~, 

which corresponds to a VIR belonging to the supplementary 
series D (0,112). Therefore, the representation generated by 
the above operators is the direct sum 

D = D (112,0) fBD (0,112). 

A finite element of the group is obtained by exponentiat
ing the operators (2.11). For this we introduce the canonical 
factorization 15 

g= U'EU, (2.13 ) 

where u' is the full SV(2) matrix 

U'=( a~ (J' )=( e;(t/>'+IJI')/2cos«()'/2) 
- {J' a' - e - ;(t/>' - 1JI')/2 sin«() '/2) 

e;(t/>'-IJI')12 sin«()'/2) ) 

e - ;(t/>' + 1JI')/2 cos ( () '/2) . 
(2.14 ) 

Here U is the truncated SV (2) matrix 

= ( cos ( () 12 ) e;t/>/2 

- sin ( () 12 ) e't/>/2 

and E is the boost 

sine ()./2)e - ;8/2) 
cos (lU2 ) e - ,</>12 
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(2.15) 

E= (
e- TI2 0 ) 

o eT/2 ' 
(2.16) 

The SL(2,C) matrix (2.7) can be related to the elements of 
U, E, and u' by 

a = e- Tl2a 'a - eT12{J 'P, b = e- Tl2a '{J + eTI2{J'a, 
e = - e - T12p' a - eT12a'p, d = - e - T12P'{J + eT12a'a. 

(2.17) 
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In what follows we shall need the inverse relation, namely, 
we have to express the elements of u, E, and u' in terms of a, b, 
c, d, and their complex conjugates. 

To calculate the elements of the truncated SU(2) ma
trix u in terms of a, b, c, d, etc. we introduce the positive 
Hermitian matrix 

ab+cd) (A B) 
Ib 12 + Id 12 = \.B D ' 

(2.18 ) 

where 

A = lal 2 + leI 2;;;'1, B = ab + cd, D = Ib 12 + Id 12;;;.1. 
(2.19) 

The decomposition (2.13) yields 

G = UtEu'tu'EU = ut~u. (2.20) 

(2.21 ) 

Therefore, the truncated SU (2) matrix u diagonalizes the 
Hermitian matrix G and the eigenvectors of G constitute the 
columns of ut. The eigenvectors of G satisfying 

Gs=As, 

where S is the column vector 

can be easily obtained. The eigenvalues are given by 

AI =e- T =u/2- (ulI4-1)1I2..;;1, 

..1.2 = eT = u/2 + (ul14 - 1) 112;;;'1, 

where 

(2.22) 

(2.23) 

(2.24a) 

(2.24b) 

The eigenvector corresponding to A = A I is given by 

) (2.25) 
BIIB I 

and that corresponding to A = A 2 is given by 

_ A A -112 (A _..1.1)112 ) 
1/-( 2- I) (D-A

I
)1I2 BIIBI . (2.26) 

From (2.25) and (2.26) we easily obtain (after a trivial ad
justment of phase) the truncated SU(2) matrix 

u = (..1.2 - AI) - 112 

(
[(D-AI)BIIB 1]112 

X [(A-A I)BIIBI]I12 

We therefore obtain 

- [(A - AI)B liB I] 1/2) 
[(D-A I)BIIBI]1I2 . 

(2.27) 

(2.28) 
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where A, B, D, A I, and ..1.2 are given by Eqs. (2.19) and 
(2.24). 

To determine the elements of u' we analogously intro
duce 

(A' B') 
G' =ggt = \.B' D' , (2.29) 

where 

A'= lal 2+ IbI2;;;'1, B'=a c+bd, D'= lel2+ Id12;;;.1. 

(2.30) 

If we now introduce the "reduced" SU(2) matrix ur , 

(
e''II'/2 

u' = u 
r 0 

where 

(2.31) 

~r) , 
a r 

(2.32a) 

a r = ei</>'/2 cos(O'/2), Pr = ei</>'/2 sin(O'/2), (2.32b) 

we obtain 

(2.33 ) 

Thus the reduced SU(2) matrix diagonalizes the positive 
Hermitian matrix G' = ggt and the eigenvectors of G' will 
therefore constitute the columns of u r' Proceeding in the 
same way as before we obtain 

a- I p_ I 
[ 

(D' - A )B' ] 112 [ (A ' - A )B' ] 112 
r - (..1.2 -AI)IB'I ' r - (..1.2 -AI)IB'I . 

(2.34) 

The remaining parameter \{I' can now be calculated from 
Eq. (2.17). However, we shall not give the explicit form of 
exp(i\{l'/2) in terms of a, b, c, d because only a r, Pr will 
enter explicitly into the calculation. 

A finite element of the group according to the canonical 
decomposition (2.13) is given by 

Tg = Tu' TeTulJ (2.35) 

where 

Tu' = eWJ.'ei8 'J.'e''II'J.·" 

Te = eirF
" Tu = ei8J.'ei#.,. 

(2.36) 

The action of Tu on an arbitrary element fez I ,z2 ) is simple: 

T ..f(ZI,z2) =f(az l - PZ2,/3Z1 + az2). 

To determine the action of the Lorentz boost Te we express 
the generator F 3 in a different form by introducing 

Z = (ZI + z2)lji, z' = (ZI - z2)lji; (2.37a) 

thus 

1 ( ,2 a2 a2 
) 

F3 = "4 z2 - Z + az2 - az,2 . (2.37b) 

We now proceed to obtain a Baker-Campbell-Hausdorff 
formula for exponential operators of the form 

(2.38) 

by using a theorem due to Wilcox. 8 

Let P and Q be any two operators satisfying the commu
tation relation 
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[P,Q] = cI, (2.39) 

where e is a complex number. Thus P and Q may be the 
annihilation and creation operators, momentum and coordi
nate operators, etc. Then using the Wilcox theorem one can 
show 11 

e aP ' +f3Q' = J - 112e BQ'e(lIc)ln(cG+ I)QP~P', 

where 

a - IA = {3 - 1{3 = (AJ) - 1 sinh A, 

(2.40) 

G = e - • (J -. - 1), J = cosh A, A = ( - 4a{3) '12. 
(2.41) 

Thus 

(2.42) 

To determine the action of the operator (2.42) on 
/(az. - {3Z2,{3Z, + az2) we use the fundamental property of 
the principal vector as given by Eq. (2.6): 

/(az. - {3Z2,{3Z. + az2) 

= f exp [(az. -lJzz)~. + ({3z. + azz)~z] 

X/(s.,Sz)df-l(s. )df-l(Sz)' (2.43) 

Expressing the rhs ofEq. (2.43) in terms of the variables z, z' 
as defined by Eq. (2.37) we have 

T.J = f e'U + z'y(s.,Sz)df-l(s, )df-l(sz), (2.44a) 

where 

Ag (Z.,z2;S.,S2) 

U = (1/v'2)[(a~. +{3~z) + (a~z -{3~.»), 

v= (1/v'2[(a~, +{3~2) - (a~z -{3~.»). 
(2.44b) 

We first operate Eqs. (2.44) with the second-order operator 
appearing on the extreme right ofEq. (2.42). Thus 

exp [ (i/2) tanh (1'/2) (:; - !~z)] T.J 

= f exp [ ( ~ ) tanh ( ; ) (u2 
- vZ) + zu + z' v ] 

X/(s.,Sz)df-l(s. )df-l(Sz)' (2.45) 

Applying the remaining factors in (2.42) successively and 
writing the resulting expression in terms of the original vari
ables z. , Z2 we have 

TET.J = (sechG))f K(z.,zz;s.,sz) 

X/(s.,sz)df-l(s. )df-l(sz), 

where 

K(Z.,Z2;S.,SZ)= eXP(isech (1'/2)[ z.zz sinh (;) 

(2.46a) 

+ sinh(T/2)(a~z -{3~.)(cit. + M2) 

- iz. (cit. + Mz) - iz2(a~2 - {3~.) D· 
(2.46b) 

Finally, applying the operator Tu'; setting 

ug (Z"Z2) = [Tg/] (Z"Z2); (2.47) 

and expressing the parameters in terms of a, b, e, d, we obtain 

Ug (Z"Z2) = fAg (Z"Z2;S.,S2)/(S"S2)df-l(s. )df-l(S2)' 

(2.48) 

where 

= 2( lal2 + Ib 12 + lel2 + Id 12 + 2) - 112 exp(i[ (de + bd)~ - (ae + bd)~ + (lel 2 + Id 12 - lal 2 - Ib 12)z.Z2 

+ (ab + ed)~i - (ab + cd)~~ + (Ib 12 + Id 12 - lal2 - leI2)~'~2 - 2iz.{(d + a)~, + (b - C)~2} 

- 2iz2{(d + a)~2 - (b - e)~J)/( lal2 + Ib IZ + lel 2 + Id 12 + 2». (2.49) 

The formula for the inversion of the transform follows at 
once from 

/(S.,S2) = [Tg _ t ug) (S.,S2)· 
Since 

g_.=(d -b) 
-e a 

and 

Ag- t (S.,S2;Z.,Z2) = Ag (Z.,z2;S.,S2), 

the inversion formula is given by 
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(2.50) 

(2.51) 

(2.52) 

I 

/(S.,S2) = f Ag (Z"Z2;S.,S2) Ug (z.,z2)df-l(z. )df-l(Z2)' 

(2.53 ) 

Equations (2.48) and (2.53) constitute an integral trans
form pair for each allowed value of the group parameters a, 
b,e,d. 

For the SU( 1,1) subgroup, namely, for a = a, d = a, 
b = {3, e = {3 we obtain the two-dimensional version of the 
SU(1,1) transform considered in Ref. II. A simple special 
caseforSL(2,C) not contained in SU( 1,1) is obtained by the 
choice 
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-21) 
1 ' 

which yields the following transform pair: 

U(ZI,Z2) = f K(zl,z2;sl,s2)/(sl,s2) 

Xdp,(sl )dp,(S2)' 

/(51,52) = f K(ZI,Z2;SI,S2)U(ZI,Z2) 

Xdp,(zl )dp,(Z2)' 

where 

= (lI.J2)exp(H (ZI + Z2 - itl - it2)2 

+ 2( 1 + i) (tlt2 - ZIZ2 + ZItI + Z42) n. 

(2.54) 

(2.55) 

(2.56 ) 

The Plancherel formula for the transform pair is ob
tained from the unitarity of the representation 

(/1j;) = (T,J"I,TgJ;) = (U lg ,U2g ), (2.57) 

which yields 

f II (SI,S2)J;(SI,S2)dp,(SI )dp,(S2) 

= f UIg (ZI,Z2)U2g (ZI,Z2)dp,(ZI)dp,(Z2)' (2.58 ) 
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The superconformal algebras of meromorphic vector fields with multipoles and the relevant 
Abelian differential of the third kind on a super Riemann sphere were constructed. The algebra 
includes two Ramond sectors as subalgebras. 

I. INTRODUCTION 

The Virasoro algebra and super Virasoro algebra play 
very important roles in the string theory, conformal field 
theory, the superstring theory, the superconformal field the
ory, and other physical theories with conformal or supercon
formal symmetry. 1-5 It is well known that the Virasoro alge
bra is isomorphic to the central extension algebra of the 
algebra of meromorphic vector fields with two poles on the 
sphereS 2

• 

In recent papers,6-\0 the algebras of merom orphic vec
tor fields with multipoles on Riemann surfaces have been 
constructed and the central extension version of the algebra 
has been investigated for the Riemann sphere S 2. In this pa
per, we will concentrate upon the corresponding super ver
sion of the algebra of the meromorphic vector field with mul
tipoles on the Riemann sphere. First, we will construct the 
superconformal algebra of meromorphic vector fields with 
multi poles on a super Riemann sphere. Second, we will con
struct an Abelian differential of the third kind and use it to 
introduce the concept of Euclidean time and to give a picture 
of the interaction of superstrings. 

II. THEORY 

According to the point of view of Giddings and Nel
son, II the super Riemann surface is a complex supermani
fold with a superconformal structure. The class of supercon
formal structure is the class of supercomplex in which the 
transition functions are analytic and satisfy the following 
condition: 

D9aZP = OpD9/JP' 

where 

(1) 

We choose N different points P j (i = 1,2, ... ,N) with local co
ordinate Wj (Pj ) = 0, OJ (Pj ) = 0 on a super Riemann 
sphere. Here, 

(2) 

It is clear that these gluing conditions satisfy ( 1 ) . 
By use of A = - 1 and A = -! differentials with con

dition (2), we can introduce a basis H~ and 
G ~ U = 1,2, ... ,N - 1) of superfields with multipoles on a 
super Riemann sphere, which, in neighborhoods of the 
points P j , will have the following form: 

here Z I = 0, neZ; (3) 

H j 1-n a 1 (1 ) - no a =W· --+- -n w· .-
n , aW

j 
2 " aO

j 

= (z - z· )I-n ~ + ~(1 - n)(z _ z.) - no~ 
, az 2 'ao' 

heren>2 U=2,3, ... ,N-l); (4) 

G~ = w:-n(~_ Ol ~) aOI aWl 

= (Z-ZI)I-n(:O -0 !), hereneZ; (5) 

G j =w!-n(~-o.~) 
r , aO

j 
'aW

j 

= (z - Zj ) I - n(~ _ O~) , 
ao az 

here n>2 U = 2,3, ... ,N - 1). (6) 

With respect to the basis H ~, G~, we can get the follow
ing algebra relations: 
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[H~,H~] = (n-m)H~+m' (7) 
n+1 

[H~,H~] = L (2n - a)X%m (a)H~ 
a=2 

m+1 

- L (2m - a) X~n (a)H~, i#j, 
a=2 

{G~,G!}= -2H~+s_I' 
r+ I 

{G~,G{}= L (-2)Yj!.(a)H~_1 
a=2 

s+ I 

(8) 

(9) 

+ L (-2)Y~r(a)HLI' i#j, (10) 
a=2 

(11) 

[ . . n~I(3 1 ).. . 
H~,G~] = £.. -n+--a X~s (a)G~ 

a=2 2 2 

Sfl (2.s+~-~) 
a=2 2 2 2 

XXj~s(a)G~, i#j, (12) 

where i,j = 1,2, ... ,N - 1, 

( 
I-m ) (z. _ z.)a- m- n, 

n+l-a I J 
whenn;;;.2, 

X%m (a) = 
( 

I-m ) (I-152 _ a ,o) (Zj _Zj)a-m-n, 
a-m-n 

when i= 1 and n<l, (13) 

(I-152 - a ,o) C~ ~~J (Zj _Zj)a-r-s, 

Yj!.(a) = 
when r;;;.2, 

( I-S)( )a-r-s 
a-m-n 

Zj -Zj , 

when i = 1 and r<1. (14) 

( 
I-m ) 

n+l-a 

{

(I-m)( -m)( -m-1)···(I-m-n+a) 

= (n + I-a)! ' 

0, when n + 1 - a < 0 or n + 1 - a> 1 - m > 0 . 

In Ref. 4, a (P /2,O)-type holomorphic superdifferential 
is defined as 

d(}P (J(z,O) + dO p
-

I 1]De(J(z,O); 1] = (dz + 0 dO). 
(15) 

From that we define an Abelian differential of the third 
kind only with three poles, for simplicity, on a super Rie
mann sphere as 

2041 

w = [(z - 2)/z(z - 1) ]dz + az /(z)O dz + /(z)dO. 
(16) 
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Using the Abelian differential and following the case of 
two poles, we will now introduce the concept of Euclidean 
time on a super Riemann sphere and give it a simple explana
tion. Choose an arbitrary point Po different from Pj 

(i = 1,2, ... ,N), and define a function 

rep) = Re ( w. (17) 
Jpu 

Obviously, the function is univalent. If a superfield de
fined on a super Riemann surface is also written as <p(t,O,u), 
here r = t + 0, and satisfies the canonical equation: 

aj<p(t,o,u) = [H,cp(t,O,u)], 
(18) 

ae<p(t,o,u) = [Q,<p(t,O,u)]. 

where H is a Hamiltonian and Q is a supersymmetry charge. 
Then the level curves of the function 

r(p),C.,. (pes 2 ,rep) = r}, describe the position and inter
acting picture of a superstring at the time t. When t..... - 00, 

C.,. will become a small circle around z = 0, and when t ..... 00, 

C.,. will become two small circles around z = 1, 00, respec
tively. So with evolution of the time from - 00 to + 00, the 
superstring enters at z = 0 for t ..... - 00 and can split in two 
at some time and somewhere, then exits at z = 1, 00 for 
t ..... + 00. 

The result obtained above is only one kind of super case, 
Ramond sector. For the Neven-Schwartz (NS) sector of 
multi poles, a similar result will be obtained if such a way to 
expand the polynomial of the NS sector can be found. 
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A general relativistic time-relaxation model is introduced and compared with the relativistic 
Boltzmann equation. It is proved that the model has the same features (formal properties of 
linear operator, positive transport coefficients, etc.) of the Boltzmann equation. It is also 
shown that the phase speed of infinitesimal disturbances, propagating in a gas described by our 
model, is less than the speed of light. 

I. INTRODUCTION 

The study of relativistic kinetic theory has recently re
ceived a new impetus, partly on account of developments in 
plasma physics. One of the major shortcomings in dealing 
with the relativistic Boltzmann equation is the complicated 
structure of the collision integral. I Therefore, alternative 
simpler expressions have been proposed for the collision 
term, just as in the classical case, by Made,2 Anderson and 
Witting,3 Cercignani,4 Cercignani and Majorana.5

•
6 

The model proposed by Made is 

(1) 

where I (x, p) is the distribution function, which is a func
tion of the space-time coordinates xa and the energy-mo
mentum vector pa. Here 1'0 is the collision time depending 
only on space-time cordinates, m is the rest mass of a parti
cle, and F a local Jiittner function. 

In the classical limit Eq. (1) corresponds to the nonrela
tivistic Bhatnager-Gross-Krook (BGK) model;7 however, 
as pointed out by Anderson and Witting,3 in the extreme 
relativistic limit, the results for transport coefficients with 
the Made formulation2 differ functionally from the results 
one calculates with the relativistic Grad moment method. In 
a previous paper with Cercignani5 we gave an analysis for the 
propagation of infinitesimal disturbances using the Made 
model. Our results do not exhibit any unphysical features, 
but lead to the unpleasant circumstance that no true discrete 
spectrum for the wave propagation exists even in the limit of 
very small frequencies, when one would expect to find the 
analogous behavior of sound, shear, and heat waves de
scribed by relativistic continuum theories. However, an 
asymptotic analysis has been used to show that such a dis
crete spectrum exists in an asymptotic sense and is in agree
ment with physical expectations. The resulting asymptotic 
expansion agrees with the results obtained by De Groot et 
al. 1 by a direct formal expansion of the solution of the linear
ized Boltzmann equation. 

Anderson and Wittin~ proposed the following model: 

pa al = _ uapa (/-F), 
axa 

1'1 
(2) 

where ua is the dimensionless (with respect to the light ve
locity c) hydrodynamic four-velocity and 1'1 is a parameter 
depending only on x = (xa ). Anderson and Witting calcu-

lated explicitly the transport coefficients according to Eq. 
(2) and showed that the results agree with the values ob
tained using the relativistic Grad moment method. In Ref. 6 
the propagation of the infinitesimal waves according to the 
linearized form of Eq. (2) is studied. The dispersion relation 
has plausible solutions describing thermal, sound, and shear 
waves for frequencies not exceeding certain critical values of 
the order of the collision frequency. This is in agreement 
with the results obtained in the classical case.8

•
9 The analyti

cal continuation of the dispersion relation beyond the criti
cal values leads to a continuation of the curves giving the 
phase speed and attenuation rates as functions of the fre
quency. However, the phase speed exceeds the speed oflight 
for very high frequencies. This indicates that the analytically 
continued solutions do not share the property of the true 
solutions of the Boltzmann equation, as proved by Cercig
nani. tO 

In this paper we study a general kinetic model which 
includes the previous models. We analyze in detail the lin
earized equation and show that it satisfies the same formal 
properties of the Boltzmann equation. l

•
tO In particular, it is 

proved that the transport coefficients are positive and the 
phase speed of infinitesimal disturbances is less than the 
speed of light. 

II. BASIC FEATURES OF THE RELATIVISTIC 
BOLTZMANN EQUATION 

Our attention will be confined throughout to a simple 
gas, i.e., a system of material particles all having the same 
proper mass m and four-momentum p = (pa), with papa 
= - m 22. We neglect quantum effects and regard binary 

collisions as the only interactions. 
Since we employ the metric gxfJ = diag ( - 1,1,1, 1 ), a 

future pointing timelike vector va is characterized by vava 
< 0 and VO > O. In our notation Greek indices run from 0-3. 

The evolution of the gas can be described by the relativ
istic Boltzmann equation 

pa :; = ~ f (f' I~ -.If.) W(p,P. [P',p~ ) (t).{t)'{t)~, 
(3) 

where (t) = dpl dp2 dp3/pO is the volume element; the transi
tion rate W has the form 

W(p,p.lp',p~) = US$-4)(p + P. - p' - p~), (4) 

with s = 2 m 2c2 
- 2P:p a; and u is the differential cross sec-
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tion depending on s and the scattering angle. 
To derive the linearized form of the relativistic Boltz

mann equation, one assumes that 

/ = <I>(x,p)(l + c,6(x,p», 

where 

(5) 

<I> = [1I(21rli)3]exp{[,u(x) + cpaua (x) ]/kB T(x)}, 
(6) 

is a local equilibrium function and c,6 is a perturbation func
tion. Usually one identifies the five parameters,u, Ua , and T 
with the Gibbs function per particle, the dimensionless hy
drodynamic four-velocity, and the temperature of the gas, 
respectively. In other words, one imposes the conditions of 
fit 

(7) 

according to the Eckart definition of dynamical quantities. 
Of course, one can choose the Landau-Lifshitz description 
by changing conditions (7). 

The first-order perturbation function c,6 has to be deter
mined from the integral equation 

pa ~[<I>(1 + c,6)] 
axa 

= ~ f <I><I>.(c,6'+c,6~ -c,6-c,6.)WltJ.ltJ'ltJ~. (8) 

In a hydrodynamical context one derives thermodyna
mical equations multiplying the transport equation (8) by 
various combinations of the powers of pa; then one integrates 
over momentum space. Therefore, if gis a generic function of 
pa only, we have 

~ fpa<l>(1 + c,6 )gltJ axa 

= ~ f <I><I>.(c,6'+c,6~ -c,6-c,6.)WgltJltJ.ltJ'ltJ~ (9) 

= - n20'(T) [c,6,g] , (10) 

where n = n (xa
) is the particle density, 0'( T) is a character

istic cross section depending on the absolute temperature T, 
and [,] indicates' the bilinear symmetric functional defined 
by Eqs. (9) and (10). 

We recall two important properties of the bracket [, ] : 
(i) if g is a linear function of pa, then [c,6,g] = 0 V c,6; 
(ii) [g,g];>O Vg. 
Properties (i) and (ii) are used to obtain the transport 

coefficients of the Eckart equations. Indeed, one defines the 
volume viscosity ~, the heat conductivity A, and the shear 
viscosity 71 as 

~ = [kB T IcO'(T) ]{[5 - 3r)zG - 3r]2/A 22}, (11) 

A= [3ckB/O'(T)]{[rl(r-1)j2IBII}, (12) 

71= lO[kBTlcO'(T)] (rG 2/C oo), (13) 

where r is the ratio of the heat capacities per particle, 

G = G(z) = K 3 (z)IK2(z) 

is the Synge function, II z = m21kB T, and K" (z) is the nth 
modified Bessel function of the second kind. Furthermore, 
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A 22 = [r,r], 

B II = hap [1'1T",r-rrB], 

COO = [(1T"-rrB),(1Ta1TI3)]' 

with 

1T" = cpal(kB T), r = -1T"ua, 

h ap = uaul3 + g<lP, 

(14) 

(15) 

(16) 

(17) 

(18) 

where the angular brackets denote the symmetric, purely 
spatial, trace-free part of the enclosed tensor, i.e., 

(A a13 ) =!h!hHA..t,t +A~ -~h..t,thPUApu). 

We recall that the transport coefficients are positive because 
the functional [. ] is positive semidefinite. 

III. RELATIVISTIC TIME-RELAXATION MODELS 

The BGK model replaces the collision operator of the 
Boltzmann equation with an operator which has a linear 
appearance. This latter operator is proportional to the differ
ence between the distribution function and a local equilibri
um function. The coefficient of proportionality is called the 
collision frequency. If v denotes the collision frequency, we 
note that 

v = V/nO'( T)kB T 

is a dimensionless scalar quantity. It is reasonable to assume 
that v depends only on the thermodynamic variables n, T, 
ua , and the momentum vector pa. Now, since v is a scalar 
dimensionless function, it can depend only on the dimen
sionless scalar variables rand z. Therefore, the transport 
equation is written as 

a/ n pa _ = _ O'(T)kB Tv(r,z)(F - f). 
axa c 

(19) 

Two different choices of v reproduce the models pro
posed by Marle2 and Anderson and Witting. 3 

The function Fis a local Jiittner function which contains 
five unknown functions. These parameters are determined 
by requiring that the conservation of energy-momentum and 
particle-number flux are given by Eq. (19). We therefore 
have the following five conditions: 

f v(F - /)gk ltJ = 0, (gk) = (1,pa). (20) 

The set of equation (19) and (20) gives the relativistic ver
sion of the BGK model. 

A linear model can be derived by assuming that/is given 
by Eq. (5). The corresponding linear transport equation is 
written as 

a n 
pa_ [<1>(1 +c,6)] =-O'(T)kBTv<I>(a+b,.'Tt"-c,6), 
a~ c 

(21) 

where the five parameters a and b,. (which derive from the 
five parameters of F) must satisfy the linear equations 

f v(r,z)<I>(a+b,.'Tt"-c,6)gk ltJ, (gk) = (I,pa). 

(22) 
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To solve Eqs. (22) with respect to a and hp.' it is useful 
to define 

J(t/I) = 2~ f v(1',z)exp( - 1')t/lm. (23) 
417'm K 2 (z) 

We note that the functional J has the same dimension of 
t/I and t/I>O implies J( t/I) >0. 

Let 

A =J(1), B=J(1'), C=J(r), 

and, taking into account that 

(n/c)q( T)kB Tv( l' ,z)ct> 

= [n2q( T)/41T'm2dlK2(z) ]v( 1',z)exp( - 1'), 

Eqs. (22) become 

Aa + Bhp.uP. = J(,p), 

Baua + [CuauP.+!(C-rA)haP.]hp. =J(~,p). 

(24) 

(25) 

Explicit expressions for a and h a are obtained by multiplying 
properly the second equation in (25) by Ua and h ~; one 
finds 

a= [1I(AC-B 2)][CJ(,p) -BJ(,p1')], (26) 

h fJ = [1I(AC-B 2)][BJ(,p) -AJ(,p1')]ufJ 

+ [3/(C-rA)]h~J(,p~), (27) 

where, as proved in the Appendix, A C - B 2 and C - r A are 
positive functions. By inserting Eqs. (26) and (27) into Eq. 
(21), we obtain the following equation for,p: 

pa ~[ct>(1 +,p)] 
axa 

n (1 = - q(T)kBTv<t> 2 [(C -1'B)J(,p) 
c AC-B 

+ (A1' - B)J(,p1')] + 3 r hAP. rI' J(,p~) - ,p). 
C- A 

(28) 

Denoting by .!f (,p) the rhs of Eq. (28), the linearized 
model assumes the form 

pa ~[ct>(1 + ,p)] = .!f (,p), axa 

f ct>,ppam = 0, f ct>,p(paua )2m = O. 

(29) 

We remark that Eqs. (29) are not completely linear because 
the parameters T and ua appear inside the function ct>. Since, 
also, .!f depends on n, T, and ua, we write, when necessary, 
.!f = .!f(,p;n,T,ua). 

Analogous to the Boltzmann equation, one can write 
moment equations, multiplying the transport equation (21) 
by a polynomial function. We now have 

= : q( T)kB T f v<t>( a + hp. ~ -,p )gm 

= n2q( T) [aJ(g) + hp.J( ~g) - J(,pg)], 

which, introducing the functional 

L(,p,g) = J(,pg) - aJ(g) - hp.J( ~g) 
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(30) 

and related with .!f ( ,p) by 

f .!f (,p )gm = - n2q( T)L(,p,g) 

assumes the form 

(31) 

Equation (31) coincides with Eq. (to), replacing L(,p,g) 
with [,p,g]. 

Inserting Eqs. (26) and (27) into Eq. (30), we obtain 

L(,p,g) = J(,pg) + [lI(AC - B 2) ][BJ(,p1')J(g) 

+BJ(,p)J(g1') - CJ(,p)J(g) -AJ(,p1')J(g1')] 

- [3/(C-rA)]hafJJ(~,p)J(~g). (32) 

Using expression (32) one can easy verify that the following 
properties hold: 

(i) L is a bilinear symmetric functional; 
(ii) if,p is a linear function of pa, then L(,p,g) is zero 

identically for every g. 
We note that the function g is an argument of the linear 

operators [see Eqs. (31) and (32) ] and then, without loss of 
generality, we can assume that g is a scalar function. Defin
ing 

A(g) = L(g,g) 

= J(t) + [lI(AC - B 2) ][2BJ(g1')J(g) - CJ2(g) 

-AJ2(g1')] - [3/(C-rA)]hafJJ(~g)J(~g) 
(33) 

we can prove the following theorem. 
Theorem 1: We find that A(g) >0 and A(g) = 0 if and 

only if g is a linear function of pa. 
Proof: Let us consider a linear function of pa, depending 

on g, defined by 

S(g) = [1I(AC-B 2)]{CJ(g) -BJ(g1') 

+ [AJ(g1') - BJ(g) ]1'} 

+ [3/(C - rA) ]hafJ~J(~g) (34) 

and gs = g - S(g). It is easy to verify that 

J(gs) = 0, J(gs~) = 0 (35) 

for every g. Since by the previous properties (i) and (ii), 

A(g) = L(g,g) = L [gs + S(g),gs + S(g)] 

= L(gs,gs) = A(gs), 

it follows, using Eqs. (33) and (35), that 

A(g) = A(gs) = J(ri) >0. (36) 

Thus the first part of Theorem 1 is proved. Now, to complete 
the proof, it remains to be shown that A (g) = 0 if and only if 
g is a linear function of pa. 

If A(g) = 0 Eq. (36) implies J(ri) = O. Since ri>O 
and J is defined by Eq. (23), then gs = 0 and hence (by 
definition of gs) g = S(g), i.e., g is a linear function of pa. 
Conversely, if g is linear, it is easy to verify that S(g) = g; 
hencegs =OandA(g) =0. • 

Another important property of the function A is estab
lished by the following theorem. 
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Theorem 2: We find that A(g) is a convex function. 
Proof: We have to prove that 

A[Ag+ (1-A)h]<;;AA(g) + (1-A)A(h), 

Vg,h;VAE[O,I]. 

To this aim it is enough to show the identity 

A[Ag+ (1-A)h] -AA(g) - (1-A)A(h) 

= - A(1 -A)A(g - h) 

because A (g - h) is non-negative. Taking into account the 
bilinear and symmetric properties of L, one obtains 

A[Ag+ (1-A)h] -AA(g) - (1-A)A(h) 

= A 2L(g,g) + U(1 - A)L(g,h) 

+ (1 - A)2L(g,g) - AL(g,g) - (1 - A)L(h,h) 

= - A (1 - A)[ L (g,g) - 2L (g,h) + L (h,h) ] 

= -A(1-A)L(g-h,g-h) 

= -A(1-A)A(g-h). • 

Thus we have shown that the linear operator L() has 
the same formal properties of L ] and hence that the trans
port coefficients derived by the relaxation transport equa
tion are positive. Of course, the relaxation transport coeffi
cients can differ from those obtained from the Boltzmann 
equation; however, one can choose properly the collision fre
quency v to fit them as best as possible. 

By straightforward calculation using L (,) instead of 
L ], one finds 

A 22 = E + [1!(AC - B2)] (2BCD - AD2 _ C 3 ), 

(37) 

BII =E-:i2C- [1!(C-:i2A)](D-:i2B)2, 

COO = ~(E - 2:i2C + z4A), 

where 

D=J(r), E=J(r4
). 

(38) 

(39) 

(40) 

We report explicit results for two special cases of v. 
(i) v = Vo (constant with respect to pa): 

A = (1!z)vo( G - 4/z), B = Yo' C = vo(zG - 1), 

D=voZ(z+3G), E=voZ[2z+ (:i2+ 15)G]. 

(ii) v = vir (VI constant with respect to pal: 

A = VI' B = vl(zG - 1), C= vlz(z+ 3G), 

D = vlz[2z + (:i2 + 15)G], E = v lz(:i2 + 15)(6G + z), 

where G = G(z) is the Synge function. 

IV. PROPAGATION OF INFINITESIMAL DISTURBANCES 

We study the evolution of an infinitesimal disturbance, 
traveling in a medium otherwise in equilibrium, according to 
the relaxation model. 

Denoting by p'o, To, and ug the space-time independent 
parameters of the distribution function cpeq, which describes 
the equilibrium state to be disturbed, we let 

p,(x) =P,o+l)p,(x), (41) 

T(x) = To + l)T(x), 

ua(x) = ug + l)ua(x). 

(42) 

(43) 

Expanding the local eqUilibrium function Cp, we obtain 

cp = cpeq[ 1 + X (xa,pa)] + nonlinear terms, (44) 

where 

X= (1!kB To) [l)p,(x) - (1!To)(P,o + cPaug) 

xl)T(x) + cPa l)ua(x)]. (45) 

Since 

CP(1 + t/» = cPeq (1 + t/> + X) + nonlinear terms, 

cpt/> = cpeqt/> + nonlinear terms, 

defining 

h=t/>+X 

we have 

(46) 

Y(f/J;n,T,ua) = Y(f/J;no,To,ug) + nonlinear terms = Y(h - x;no,To,ug) + nonlinear terms 

= Y(h;no,To,ug) - Y(x;no,To,ug) + nonlinear terms = Y(h;no,To,ug) + nonlinear terms. 

The above equation follows from the fact that 
Y (x;no, To,ug) = 0 because X is a linear function of pa. 

As a consequence of the previous relations, Eqs. (29) 
become 

pa ah = _1_ Y(h;no,To,ug), 
axa cpeq 

f CPeq(h - X)pa£i) = 0, f CPeq(h - X)(Pa ug)2£i) = O. 

(47) 

The set of the six above equations contains the six unknowns 
h, l)p,(x), 8T(x), and l)ug. However, the first equation in 
(47) contains only the variable h and then can be solved 
independently. 
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Let 

Yo(h) = (lICPeq)Y(h;no,To,ug). (48) 

Denoting by 

(g,h) = f ghCPeq£i) (49) 

the scalar product in the Hilbert space H = y2 (CPeq £i) if h 
is real and belongs to H, we have 

(Yo(h),h) = - n2u(nL(h,h) = - n2u(nA(h) <;;0. 
(50) 

We look for solutions of Eq. (47) I ofthe kind 

h =p(pa) exp(ikpxP), (51) 
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where!cP is the wave vector. Since we consider forced waves 
in an unbound medium, we take the real (positive) frequen
cy as given and the complex wave vector as unknown. 

Inserting Eq. (51) into Eq. (47), we obtain 

ikapah=ifo(h). (52) 

Assuming, without loss of generality, k ° = m ( > 0), k i 

= (k 1,0,0), k 1= m(a + ib), Eq. (52) becomes 

(53) 

Then 

- im(pop,p) +im(a + ib)(plp,p) = (if o(p),p)<O. 

Since (if ° (p ) ,p) is real, we obtain 

(pOp,p) _ a(plp,p) = 0, (54) 

- b(plp,p) <0. (55) 

Therefore, the phase speed Vph is 

vph =c/lal =c[l(plp,p)I/(pop,p)] <c 

because IPII < Ipol almost everywhere. This result shows that 
disturbances propagate with a velocity less than the light 
speed as one aspect in the relativistic context. Inequality 
(55) means that waves damp when propagating. The same 
result was obtained by Cercignani 10 using the Boltzmann 
equation. 

The case when h does not belong to H can be analyzed in 
exactly the same way as in Ref. 10. 

Explicit results of wave propagation were obtained by 
Cercignani and Majorana5

•
6 using the MarIe and Anderson 

and Witting models. It was shown in particular that the 
phase speed is less then c when the frequency m does not 
exceed a critical frequency me (depending on the model and 
To). When m > me' the original dispersion relation does not 
admit solutions, but, considering the analytically continued 
equation, one can again obtain solutions, which are in some 
way a continuation of the true roots. The continued solu
tions are meaningless when m is greater than a frequency 
mf > me because the phase speed reaches the light velocity. 
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The present results state that the relaxation model intro
duced here is consistent with the relativistic framework, at 
least for a wave propagation with not too high a frequency. If 
m > me one cannot look for solutions of the type given by Eq. 
(51), but could consider a boundary value problem associat
ed with Eq. (47). 
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APPENDIX: THE POSITIVITY OF AC-IP AND C-ZZA 

WeprovethatAC - B 2> o and C>rA. In fact, if A. isa 
real number, we have 

AA. 2 + 2BA. + C =A. 2J(1) + UJ(1') +J(r) 

=J(A. 2+U1'+r) =J[(A. +1')2]>0 

and hence AC - B 2 is positive. 
The second inequality follows from 

C-rA =J(r-r) 

= (clkB n2J [(paua )2 - m22] >0. 
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A third-order expansion for the effective thermal conductivity tensor K* of anisotropic 
polycrystalline cell materials is derived. The coefficients of the expansion are given in terms of 
the average polarizability tensor, a nondimensional quantity determined from the grain shape 
and crystallographic orientation distributions independent of other details of the 
microgeometry such as two (or more) particle correlation functions. Explicit numerical results 
for a wide variety of microgeometries made of ellipsoidal cells are obtained. This calculation 
uses a new method that exploits the symmetry properties of the effective conductivity tensor of 
a cell material as a function of the single-crystal conductivities. 

I. INTRODUCTION 

Single-phase polycrystals are assemblages of homoge
neous grains or crystallites with arbitrary shapes, packed 
together so as to fill all space. The three principal thermal 
conductivities are the same in all grains, while the crystallo
graphic orientations may vary randomly from one grain to 
another. A wide variety of crystalline solids, including most 
metals, are commonly found in polycrystalline form. Ac
cording to Fourier's law of heat conduction, the temperature 
T(x) and heat flux density q(x) satisfy 

q(x) = - K(x)·VT(x) (1) 

and 

V·q(x) = 0, (2) 

where K(x) is the local thermal conductivity tensor. We can 
write this tensor in the form 

K(x) = LXi(x)tRjKoRj> (3) 
j 

where Xj (x) = 1 if x is in grain; and Xj (x) = 0 otherwise; 

K(O) = diag(kl,k2,k3 ), (4) 

where kj> 1 <j<.3 are the principal conductivities of the crys
talline phase and tRjK(OlRj is the conductivity in grain ;, 
; = 1,2,3, ... , where R j are suitable rotations. In (2), it is im
plicity understood that the normal component of q(x) is 
continuous across grain boundaries. We assume for simpli
city that the medium occupies all space and that K(x) is 
ergodic. Solutions of ( 1) and (2) can then be decomposed 
into the average and fluctuating components 

VT(x) = (VT) + (Vn'(x), 

q(x) = (q) + q'(x). (5) 

The effective conductivity tensor K* is defined by the rela
tion 

(q) = - K*·(VT) (6) 

as (VT) varies over all three-vectors. Physcially, K* repre
sents the conductivity of an equivalent homogeneous materi
al and can be determined experimentally by direct or indirect 
measurements on samples which are large compared to the 

aj Present address: School of Mathematics, University of Minnesota. Min
neapolis, MN 55455. 

typical grain size. 1 

The theoretical determination of K* is made difficult by 
the complex character of Eqs. (1) and (2) for realistic mi
crogeometries. Also, for real materials, only limited infor
mation is available on the microgeometry, usually through 
measurements of correlation functions or the grain shape 
distribution. Considerable work has been done to estimate 
K* starting with Voigt,2 Reuss,3 and Wiener,4 who derived 
upper and lower bounds on the effective conductivity k * of 
isotropic aggregates: 

kR =3/( lIkl + lIk2 + lIk3)<.k *<.kv 

=~(kl + k2 + k3)· 

Recently, this interval was narrowed to 

ks<.k*<.kv, 

where ks is the positive root of 

k~ + (k l + k2 + k3)k~ - 4klk2k3 = 0 

(7) 

(8) 

(9) 

and the new interval was shown to be, in a sense, optimal.5 

However, the size of the interval (8) is too wide to reasona
bly determine k * even for moderately anisotropic crystals. 
More efficient estimates on the effective conductivity that 
incorporate additional statistical information were derived 
in 1969 and 1970 by Molyneux,6.7 who obtained a perturba
tion expansion for k * valid to third order in l)k j = k j - 1, 
1 <.;<.3, and related bounds. This expansion incorporates the 
two- and three-point correlation functions of the material. 
The statistical information needed as input in such expres
sions must then be determined experimentally, e.g., by image 
processing techniques.8

,9 

We will focus here on a statistical model introduced by 
Miller,lo for which there exist estimates on k * which are 
significantly narrower than the ks - kv bounds and yet 
more explicit than the Molyneux bounds. These esti
mates require as input the particle shape distribution and 
crystallographic orientation distribution within grains. Spe
cifically, we will assume that (i) the crystallographic orien
tations of different grains are statistically independent and 
(ii) the crystallographic orientation within each grain is dis
tributed randomly in such a way that for any rotation R, the 
six conductivities 

( 10) 

obtained by permutation of the indices i,j, k, arise with equal 
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probability. Assumption (ii) is satisfied, for instance, if the 
crystallographic orientation is uniformly distributed (and 
then all orientations are equally likely). Such assumptions 
determine the correlation functions to some extent, but not 
completely. For instance, the correlation length is of the or
der of one particle diameter. For isotropic aggregates ofthis 
type, Rashin and Shtrikman11 and Walpolel2 showed that 

k*=kv-~ ± (k;-kv )2+ 0 (ok)2 (11) 
9 ;=1 

and 

4ki + Sk1k2 + Sk1k3 + 7k2k3 
kl--~------------------

16ki + Sk1k2 + Sk1k3 + k2k3 

k 
4k~ + Sk3k2 + Sk1k3 + 7klk2 

,k*, 
3 16k ~ + Sk3k2 + Sk3k l + klk2 

if kl ,k2,k3' 

(12) 

Subsequently, Willemse and Caspers l3 calculated the 
corresponding third-order expansion for k * by assuming 
uniformly distributed crystallographic orientations. This ex
pansion depends on a single parameter related to the particle 
shape distribution. 

In this paper, we introduce a new approach for estimat
ing the effective conductivity which fully exploits the sym
metry properties implied by the statistical assumptions (i) 
and (ii). Our main result is a third-order Taylor expansion 
of the anisotropic tensor K*(k l,k2,k3) in ok;. The coeffi
cients of the expansion depend on the average po/arizabi/ity 
tensor of the aggregate, a quantity determined only from the 
grain shape and crystallographic orientation distributions 
and independent from other details of the microgeometry. 
We recover the results of Rashin and Shtrikman,l1 Wal
pole, 12 and Willemse and Caspers \3 as a special case when K* 
is isotropic (see Appendix B). 

II. THE MAIN RESULT: RELATION BETWEEN 
CONDUCTIVITY AND AVERAGE POLARIZABILITY 

Consider the Taylor series expansion of 
K* = K*(k l,k2,k3) near k; = 1: 

+ ~ ;Jtl Bk~~kj K*(1,I,I)(ok;)(okj ) 

(13) 

1 ~ B3 K*(III)(ok) 
+6.~ Bk·Bk.Bk " ; 

IJ= I I J I 

x (okj )(ok1 ) + .... 
From first principles, 

K*(Ak l ,Ak2,Ak3) = AK*(kl,k2,k3)· 

Also, we have 

K*(kl ,k2,k3) = K*(kjOkpk1 ), i-::/=j-::/=/ 
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(14) 

(1S) 

since our statistical ll&sumptions ensure that k 1, k2, k3 are 
interchangeable. Differentiating K* at k j = 1 and using (14) 
and (1S), we obtain the relations 

and 

~ K*(1,I,I) = ~ I, l,i,3, 
Bkj 3 

(16) 

B22 K*(1,I,I) = B22 K*(1,I,l) = ~ K*(1,I,l) 
Bkl Bk2 Bki 

=A, (17) 

B 2 K* (1 1 1) = - ~ ~ K* (1 1 1) . ~ . 
BkBk. " 2Bk2 ", 'rj, 

I J I 

(1S) 

B23 K*(1,I,l) = B
3

3 
K*(1,I,I) = ~ K*(1,I,l) 

Bkl Bk2 Bk~ 

=B, (19) 

~3 K*(1,I,l) = _ ~~ K*(1,I,l) 
Bk; Bkj 2 Bk~ 

1 B2 
---K*(111) i~J' 

2 Bki ", r:, 

(20) 

B3 K*(1,I,l) = ~ K*(1,I,I) 
Bkl Bk2 Bk3 Bk ~ 

+~~ K*(III). 
2 Bki ' , 

(2l) 

Equation (20) was obtained by differentiating the relation 
K*(k l ,k1,1) = k I K*(1,I,k I-I) and using (19), while Eq. 
(21 ) was obtained using the identity 
K*(kl ,k2,k3) = k3K*(kl/k3,k2/k3,l) together with (19) 
and (20). Thus we see that the third-order Taylor expansion 
( 13) depends only on the two tensors of micro geometric 
parameters A and B. For later use in comparison with other 
work, we observe that this expansion can be rewritten in the 
form 

+(~A+~B).± (~_1)3] 
4 4 1= I kv 

(22) 

with kv = !(kl + k2 + k3). To further determine the ten
sors A and B, we introduce the averge polarizability tensor. 
Consider first a configuration consisting of a single grain G 
with the conductivity KG = 'AK(OlR embedded in an isotrop
ic medium with unit conductivity. Given an arbitrary three
vector e, denote by T~(x) the temperature field which 
solves the corresponding field equations and such that 
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limlxl_oo VT~(x) = e. The single-grain polarizability tensor 
.Y G is defined by the relation 

The average polarizability tensor of the polycrystal is de
fined by 

.Y = (.Y G)' (24) 

where the average is taken over the grain shape and crystal
lographic orientation distributions. Physcially, .Y repre
sents the first-order correction to the value of the effective 
conductivity of an isotropic medium of unit conductivity 
containing an embedded dilute array of grains randomly 
sampled from the polycrystal (see Fig. 1). This tensor can be 
explicitly computed for several microgeometries (see Sec. 
III). 

The identities relating A, B, and the average polariza
tion tensor .Y for general grain shapes and orientations are 

(25) 

and 

(aJ 

0 D 
0 

0 
• c::;:::::; 

--=--j 

(b) 

FIG. 1. (a) A schematic view of the single-grain configuration and the cor
responding field lines of VT'j. The conductivity is equal to KG inside the 
grain and Ioutside. (b) The average polarizability .? = (.? G) satisfies 
K:tr = 1 + /.!L' + o(j). where K:'" is the effective conductivity of a configura
tion consisting of a dilute array of randomly selected grains occupying a 
volume fraction/and surrounded by a medium with the conductivity K = I. 
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2 a3 2 a3 

B = --3 'y(1,I,1) - - .Y(1 11) 
9 ak I 3 ak i ak2 ' , 

4 a3 

+ 9 ak
l 
ak

2 
ak

3 
.Y (1, 1,1) (26) 

2 a2 2 a2 

-"3 akt .Y(1,I,1) +"3 ak
l 
ak

2 
.Y(1,I,I). 

Formulas (25) and (26) constitute the main new result of 
this paper: They are derived in Secs. IV-VI. 

We point out that there exists a general linear relation
ship between the coefficients of the classical perturbation 
expansion in the conductivity contrast of a cell material and 
the expansion in powers of the volume fraction for the con
ductivity of a uniform reference medium containing a dilute 
dispersion of randomly selected cells from the composite. 
Such a relation was first systematically derived in Bruno's 
thesis,14 although some special cases of it already appeared 
in the work of Miller lO and Elsayed. 15 The present results 
consist of an application of this general principle to single
phase polycrystals. It was shown that the computation of 
fourth-order and higher-order expansions requires the input 
of quantities related to the second- (and higher) order cor
rections to the conductivity of a uniform medium containing 
a dilute array of cells. 14.15 Such corrections necessarily in
volve input of quantities related to interactions of two or 
more particles. 

III. AGGREGATES OF ELLIPSOIDAL GRAINS 

According to a classical result in potential theory going 
back to Maxwell, 16 the field VT~(x) is uniform within the 
grain G if G is an ellipsoid. This allows us to obtain an explic
it formula for .Y G' Thus for aggregates consisting of ellip
soidal grains-not necessarily with the same shapes or orien
tations-the average polarizability .Y = (.Y G) can be 
determined explicitly. 

Fixing a Cartesian reference frame, e(l), e(2), e(3), the 
shape and position of a single ellipsoidal grain is determined 
by three unit vectors n(l), n(2), n(3) in the directions of its se
miaxes and by the corresponding depolarization factors Li' 
1,;,3, which satisfy O,Li, 1, ~iLi = 1. If the position of 
the vector n(i) is specified by 

(27) 

where 0 is a rotation matrix, and the conductivity within the 
grain is KG = tRK(O)R, it can be shown that 

.Y G = 6KG (/ + tOlO 6KG) -I, (28) 

where 

(29) 

and 

(30) 

Thus denoting by dp, (l,O,R) the joint grain shape-crystal
lographic distribution orientation, we have, from (24) and 
(28), 
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!/ = f 'R oK(O)R(1 + tOlO'R oK(O)R) -I d,u(l,O,R). 

(31) 

Computing the second and third partial derivatives of 
!/ atki = 1 and substituting their expressions into (25) and 
(26), we obtain an explicit third-order expansion for aggre
gates of ellipsoidal grains satisfying assumptions (i) and 
(ii). This calculation is straightforward, although rather 
lengthy (see Appendix C). When the orientation distribu
tion within each grain is uniformly distributed, the corre
sponding expressions for A and Bare 

A= _2-ftOlOd,u _2-1 
45 15 

(32) 

and 

B =~f tOl20d,u --2-ftr l2d,u 
315 105 

+ _2_ ftOlO d,u - ~ I. 
315 21 

(33) 

For instance, if the grains are oriented uniformly in all direc
tions, 

A = - (4/27)1 (34) 

and 

(35) 

where (L i + L ~ + L ~) denotes averaging over all grain 
shapes. For spherical grains, we obtain, with 
LI = L2 = L3 = j, 

Bs=MI. (36) 

In the limiting cases of randomly oriented lamellar particles 
(L, = 1, L2 = L3 = 0) and needle-like particles 
(L, = L2 =~, L3 = 0) we obtain, respectively, 

(37) 

IV. AN ASSOCIATED N-PHASE POL YCRYSTAL 

To incorporate into the calculation the statistical inde
pendence of the crystallographic orientations of different 
cells, we introduce a mathematical artifice. Let N be a large 
positive integer. We assign randomly an integer between 1 
and N to each grain. In this way, we obtain N statistically 
equivalent sets of grains, each one formed by those cells with 
the same assigned number. Next, we replace the single-crys
tal conductivity matrix KO by 

(38) 

in all grains of the set with the assigned number j, 1 <J<N, 
where (xpYj,Zj) are N triples of positive numbers. The local 
conductivity tensor of this N-phase polycrystal is 

N [ 1 KN(x) = L L Xi(x)tRiK(j)R i . 
j=' i 

grain i has assigned number j 

(39) 

Let 

(40) 

denote the corresponding effective conductivity, viewed as a 
function of the 3Nvariables (XoYi,Zi), i<N. Clearly, by con
struction, 

(41) 

for all i=l=j. Moreover, by assumption (ii) on the crystallographic orientation distributions, 

(42) 

The effective conductivity of the original single-phase polycrystal satisfies 

We shall assume first, for simplicity, that there are finitely 
many grains per unit volume. This assumption is removed in 
Appendix A. Under this condition, each of the N phases is 
dilute. 10 Hence 

(44) 

Equation (44) together with (43), provide a useful math-
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(43) 

ematical relation between the average polarizability and the 
conductivity of the polycrystal, which we exploit in the next 
sections. 

V. EXPRESSION FOR A IN TERMS OF a2.,? 

We set 

J2 
~I =-K~[(I,I,I), ... ,(I,I,I)], 

Jxi 
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and 

J2 
$2 = -- K~[ (1,1,1), ... ,( 1,1,1)]' 

Jx)Jy) 

Differentiating (43) twice at k j = 1, we obtain 

(46) 

(47) 

Three independent linear relations between $), $2' $3 
and the second derivatives of.Y are obtained by differentiat
ing the equations 

K~ [(z,I,1 ),( 1,1,1 ), ... ,( 1,1,1)] 

= 1 + (lIN).Y(z,I,I) +o(1IN), (49) 

K~ [(z,z,z),( 1,1,1), ... , (1,1,1)] 

= 1 + (lIN).Y(z,z,z) +o(1/N), (50) 

and 

KM (z,z,z), ... ,(z,z,z)] = z. (51) 

We obtain, respectively, 

1 J2 (1) $)=--.Y(1,I,1)+0 -, 
N Jk~ N 

3$) + 6$2 = - - .Y(1,I,1) 3 [ a2 

N ak~ 

+2 ..z. (1,1,1) +0 -, (52) a 2 - (,p ] ( 1) . 
ak)ak2 N 

and 

which yield 

1 a2 
( 1 ) $) =-- .Y(1,I,I) +0 - , 

Naq N 

(53) 

$3 = - - .Y(1,I,1) . 1 [ a2 

3N(N - 1) ak~ 

1 a3 
( 1 ) 11) =---'y(1,1,1) +0 -, 

N ak~ N 

Substitution of expressions (53) into (48) and passage to the 
limit as N - 00 gives the desired formula (25) for A. 

VI. EXPRESSION FOR B IN TERMS OF a2 .y AND a3'y 

Set 

and 

J3 
11) = - K~ [(1,1,1), ... ,(1,1,1)], 

ax~ 

a3 

112 = K~[(1,I,1), ... ,(1,I,I)], 
Jxi ay) 

a3 

113 = K~[(1,I,1), ... ,(1,I,1)], 
ax) ay) az) 

a3 

114 = K~[ (1,1,1), ... ,(1,1,1)], 
Jxi JX2 

a3 

115 = K~ [(1,1,1), ... , (1, 1, 1)], 
ax) Jy) aX2 

(54) 

An expression for B is obtained by differentiating Eq. (43) 
three times: 

a3 

B = -- K*(1,I,1) = N11) + 3N(N - 1)114 
ak~ 

+ N(N - l)(N - 2)116' (55) 

Again, we derive a system of linear equations to determine 
the unknown tensors 11),. .. ,116' For this purpose we will use, 
in addition to (49 )-( 51), 

K~[z,z,I), (1,1,1), ... ,(1,1,1)] 

= 1 + (1/N).Y(z,z,l) + o(1/N), (56) 

K~[ (z,z,z),( 1,1,1), ... ,( 1,1,1)] 

_ • [ (I 1 1) (1 1 1)] 
- ZKN (1,1,1), -;'-;'-; , ... , -;'-;'-; , (57) 

and 

K~[ (z,l,I), ... ,(z,l,l)] 

(58) 

Equation (56) is a low volume-fraction expansion, while 
(57) and (58) reflect the homogeneity of K~. Differentiat
ing (49), (56), (50), (51), (57), and (58), respectively, we 
obtain, after some algebraic manipulations, 

(59) 

211) + 6112 = - 2 -- 'y(1,I,1) + 6 'y(1,I,1) + 0 - , 1 [ a
3 

a3 

] ( 1) 
N ak~ aq ak2 N 

(60) 
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(61) 

3N"I1 + 18N"I2 + 6N"I3 + 27N(N - 1 )"14 + 54N(N - 1 )"15 + 27N(N - 1) (N - 2)"16 = 0, 

3N'lJl + 18N"I2 + 6N"I3 + 27(N - 1)(N - 2)"14 + 54(N - 1)(N - 2)"15 

(62) 

+ 27(N - I)(N - 2)(N - 3)"16 + 9(N - l)SI + 18(N - I)S2 + 27(N - I)(N - 2)S3 = 0, (63) 

and 

3N"I1 + 6N"I2 + 15N(N - 1 )"14 + 12N(N - 1 )"15 + 9N(N - 1) (N - 2)"16 

+ 6Ns1 + 6NS2 + 12N(N -1)S3 = O. (64) 

Equations (59)-(61) can be solved in terms of a3Yas 

"II = ~ a
3

3 Y(1,I,I) + o(~), 
N ak l N 

1 a3 
( 1 ) ""2= N 2 ak Y(1,l,1) +0 N ' 

". ak l 2 

(65) 

_~ a
3 

Y(III) o(~) 
"13 - N ak

1 
ak

2 
ak

3 
,,+ N' 

Equations (62 )-( 64) can be cast in the form 

"14 + 2"15 + (N - 2)"16 

and 

5"14 + 4"15 + 3(N - 2)"16 

= - [lI(N -1)]("11 + 2"12) - [2I(N -1)] 

X [SI + S2 + 2(N - 1)S3]' (68) 

where the last equation in (52) was used to simplify the rhs 
of (67). Upon solving (66)-(68) in "14' "Is, "'6 and using 

= - [lI9(N - 1)]("11 + 6"12 + 2"13)' (66) (65), we obtain 

I 

N(N - 1)"14 

2 a2 2 a2 

= ---Y(lll) +- Y(111) 
9 ak 2 ' , 9 ak ak ' , 

1 1 2 

1 a3 2 a3 

---Y(111) -- Y(111) +0(1) 
3 ak 3 ' , 3 ak i ak

2 
' , , 

and 

N(N -1)(N - 2)"'6 

2 a3 4 a3 

=--Y(1,I,l) +- Y(1,l,l) 
9 ak ~ 3 ak i ak2 

+.! a
3 

Y(1,l,l) +0(1). 
9 ak1 ak2 ak3 

(71 ) 
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(69) 

(70) 

The expression for 8 in terms of a 2 Y and a 3 Y is obtained 
by substituting (65), (69), and (71) into formula (55) and 
taking the limit as N -+ 00 • 
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APPENDIX A: REMOVAL OF THE ASSUMPTION OF 
FINITELY MANY GRAINS PER UNIT VOLUME 

For an arbitrary grain G of finite volume, we set 

T~(x) =eox+ T'(x), (AI) 

so that 

'eo.!/ G'e = I r 'VT'(x)-£5KGoe + 'eo8KGoe. 
Vol(G) JG 

(A2) 

The function T'(x) satisfies 

(A3) 

where X G is the characteristic function of G and 
K(x) = KGXG(x) + 1(1- XG(x». Multiplying both sides 
of Eq. (A3) by T' (x) and integrating, we obtain 

fa 'VT' (x)o8KGoe dx = - f 'VT' (x)oK(x)oVT' (x)dx. 

(A4) 

By the Cauchy-Schwartz inequality applied to (A4), 

(f 
IVT'(x>j2 dX) 112 , V~l(G)1/218KGoel. (A5) 

mm(kl,l) 

Hence, 'eo.!/ Goe can be estimated as follows: 

Iteo.!/ Goel, I (fIVT'(X) I 2dX) 112 
Vol(G) 

oVol(G) 1/218KGei + 'e-8KGoe (A6) 

, I 18KGel2 + 'eo8KG
oe. 

min(kl,l) 

Equation (A6) implies that for 18ki l <!, any entry of the 
tensor .!/ G satisfies 

1'!/~(kl,k2,k3)1,l!4 min[kl,l] + !,1, Iq,q,3. 
(A7) 

Thus the po!arizability tensor of a grain of conductivities k;o 
I,i,3 with 18k; I <! is uniformly bounded, independent of 
the shape of the grain. Since .!/ G is an analytic function of k l, 
k2, k3 [because T' satisfies the elliptic equation (A3)], simi
lar uniform shape-independent bounds hold for all the de
rivatives of .!/ G at k; = 1. 

Using this fact, we now remove the assumption that the 
polycrystal have finitely many grains per unit volume. Given 
an arbitrary grain configuration, we can construct a modi
fied polycrystal by removing all grains of maximum diame
ter ,E (where Eis a small number) and replacing the result
ing free space by new grains, so that the new aggregate has 
finitely many grains per unit volume. Note that the volume 
fraction of material in the original configuration, which has 
been removed and subsequently filled with new grains, tends 
to zero as E ..... O. Denote by .!/ and l1' the average polariza
bility tensors corresponding to the original and modified 
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configurations, respectively. The tensors .!/, l1', and their 
derivatives are averages of the corresponding single-grain 
quantities, .!/ G' and their derivatives over the grain shape 
and crystallographic orientation distributions. We conclude 
from the above analysis that 

maxIlD~.!/(l,l,l) - D~l1'(l,I,l)1I 
lal.;;3 

,CI X (volume removed), (A8) 

where CI is a numerical constant. 
On the other hand, the conductivity tensor 

K*(k l,k2,k3) is known to be analytic in k l, k2, k3 at ki = 1. 
Also, denoting the conductivity of the modified configura
tion by R*, it is known that 

(A9) 

where C2 and v are positive constants which depend on 
maXi k; and mini k;.17 From this estimate and the analytic
ity of K* and R*, we conclude that 

maxIlD~K*(l,I,I) - D~R*(l,I,l)1I 
lal.;;3 

,C3 X (volume removed) V, (AlO) 

where C3 is a numerical constant. Since the modified config
uration has only finitely many grains per unit volume,· the 
basic identies (25) and (26) relating a 2R* and a 3R* to the 
derivatives of l1' are now valid. To extend such identities to 
the conductivity and polarizability of the original configura
tion, we use the estimates (AS) and (AlO). Accordingly, 

IA _2:...[~ .!/(l,I,I) - a
2 

.!/(l,I,I)] I 
3 aki akl ak2 

,IA - AI + 2:...1~ .!/(l,l,l) - ~ l1'(l,I,l) I 
3 aki aq 

2:...1 a
2 

.!/(11 1) _ a
2 

l1'(111) 1 + 3 akl ak
2 

' , akl ak
2 

' , 

4C ,C3 (volume removed) v + __ I (volume removed). 
3 

(All) 

Letting E tend to zero, the volume removed tends to zero 
and we recover identity (25) for an arbitrary configuration. 
The approximation argument for B is entirely similar. 

APPENDIX B: CALCULATION OF TRACE A AND 
APPLICATION TO ISOTROPIC POLYCRYSTALS 

The partial derivatives of the single-grain polarizability 
.!/ G (k l,k2,k3) of an arbitrary bounded grain G can be com
puted formally by differentiating both sides of (A2). This 
involves the differentiation of the function T'(x) in the pa
rameters k; at ki = 1, 1 ,i,3. In this appendix we show how 
such a calculation leads to the fact that tr A is independent of 
the grain shape and orientation distributions. We set 

Tj(x) =..i...1 T'(x) 
akj k=(I,l,\) 

(B1 ) 
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and note that differentiating Eq. (A3) once at k j = 1, this 
function satisfies 

(B2) 

where 0 is a unit vector in the direction of the principal con
ductivity k j • On the other hand, differentiating (A2) twice 
at k j = 1, one obtains 

a2 _ 

te 0 .5t' (1 1 1) 0 e 
ak.ak. ' , 

I J 

= 1 r ('VTj (x)onj)('nj • e) 
Vol(G) JG 
+ 1 r ('V1j(x)onj)(ll;" e). (B3) 

Vol(G) JG 

We deduce from (B2) that formally, 

VTj(x) = r rex - y)ooj('ojOe)XG(y)dy, (B4) 
JR' 

where 

a2 1 1 (3X j Xj ) 

r pq (x) = axp aXq 41Tlxl = 41Tlx1 3 ~ - 8ij 

is the kemel of the integral operator (a 2/axp axq
) ( -11) -I. 

The Fourier transform ofr(x) is 

r (£") = r r (x)eixS dx = _ SpSq . 
pq ~ JR' pq Is 12 

From (B4), we conclude that the Fourier transform of 
VTj(x) is 

Substituting expression (B5) into (B3) and using the Plan
cherel identity, we obtain 

a2 

teo .5t' G (1,1, 1)oe 
akj akj 

= _ 2 i (tn;"e) (tnjOe) (to;"$) (tnjOs) 

Vol(G) R' IsI2 

XlxG(s)1 2ds. (B6) 

The trace ofa 2/akj akj .5t' G(1,l,l) is computed by varying 
e over an orthonormal basis in (B6) and summing. Accord
ingly, 

tr a
2 

.5t' G(1,l,l) = 0, if i#j 
akj akj 

and 

a2 

tr--.5t' G(1,I,I) 
ak; 

2 i ('n j ·s)2,.... 2 
= - 3 Vol (G) R' IsI2 IXG(s)1 ds· (B7) 

Since the three principal conductivities kl, k2, k3 are inter
changeable, 
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where the brackets indicate averaging over the orientation 
distribution of the conductivity in grain G. Hence, the aver
age polarizability tensor .5t' satisfies 

a
2 

( 2 i"'" ) tr-
2 

.5t'(1,1,1) = - IXG(sWds 
ak j 3 Vol(G) R' 

= _ (~ 1 'VOI(G») 
3 Vol(G) 

2 
3 . 

From the basic formula for (25) (for A) we conclude that 

trA = -~. 

Substituting this result in the Taylor expansion (22) [for 
K*(kl,k2,k3)], we obtain 

+ o(8k;). 

In particular, we recover (11) for isotropic configurations. 
A similar calculation, which we omit, yields an expression 
for the trace of B in terms of multiple integrals depending on 
the average grain shape, which allows us to recover the third
order expansion for isotropic polycrystals of Willemse and 
Caspers. 13 

APPENDIX C: CALCULATIONS FOR AGGREGATES OF 
ELLIPSOIDAL GRAINS 

We present an outline of the calculation of the tensors of 
the microgeometric parameters A and B for anisotropic ag
gregates of ellipsoids. It is convenient to consider first a sin
gle ellipsoid G with the depolarization factors L I' L 2, L3 and 
the uniaxial or isotropic conductivity tensor KG' We shall 
consider three different cases: (i) kl = Z, k2 = k3 = 1; (ii) 
kl = k2 = Z, k3 = 1; and (iii) kl = k2 = k3 = z. 

Case (i); kl = 2, k2 = k3 = 1. 
Denoting by 0 a unit vector in the axial (z) direction, we 

have 

KG =1+ (z-l)oeo, (Cl) 

where (oeo)jj = njnj' We expand the corresponding sin
gle-grain polarizability .5t' G given by (28) in powers of 
(z - 1) to obtain 

d2 ( 3 ) ---:::2.5t'G(z,I,I)lz=1 = -2 .2: Ljn; o®o 
d~ .=1 

(C2) 

and 

(C3) 

where nj are the coordinates ofo in a frame of principal axes 
ofG. The second and third derivatives of the average polariz
ability .5t' of an array of ellipsoidal grains with semiaxes 
parallel to those of G are obtained from (C2) and (C3) by 
averaging over the distributions of 0 and L 1, L 2, L 3. From 
(C 1) the distribution of n should be invariant under the re
flections n-+ ( - n). In particular, odd moments of no 
1 <i< 3 vanish. We find that in the above reference frame, 

M. Avellaneda and O. Bruno 2054 



                                                                                                                                    

(C4) 

and 

c=:; ~~(z,l,l)lz=1 =6{Ctl L;n~rn~), (C5) 

while the off-diagonal entriesa 2 ~pq, a 3 ~pqwithpi=qare 
equal to zero. 

Case (iij: kl = k2 = z, k3 = 1. 
The conductivity within the grain is 

KG = 1 + (z-l)(l-n®n), (C6) 

where n is a unit vector in the axial direction. Substituting 
(C6) into (28) (with 0 = I) and expanding in powers of 
(z - 1), weobtainformulasfora 2j ~ G anda 3 j ~ G, which, 
as in case (i), can be averaged over the distributions of nand 
L. In this way, we obtain the following formulas for the sec
ond and third derivatives of the average polarizability of an 
array of ellipsoids with parallel principal axes: 

(C7) 

and 

d=~ ~PP(z,z,I)lz= 1 = 6{(.± L;n;)n;) 
d~ 1=1 

Case (iii): kl = k2 = k3 = z. 
In this case KG = zl and using (28) and averaging, we 

obtain immediately 

:; ~PP(z,z,z) Iz= 1 = - 2(Lp) (C9) 

and 

d 3 

e= d~ ~PP(z,z,z) Iz= 1 = 6(L ~). (ClO) 

We use formulas (C4) through (ClO) to compute the 
partial derivatives of ~(kl,k2,k3) at k; = 1. Accordingly, 

and 

2055 

~~PP(l,l,l) =a, 
aki 

a2 

~PP(l,1,1)=~(b-2a), 
ak1 ak2 2 

~ ~PP(l,l,l) = c, 
aki 

~3 ~PP(l,l,l) = ~(d - 2c), 
ak 1 ak2 6 
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a3 1 
----~PP(l,1,1)=-(e+3c-3d). (Cll) 
ak1 ak2 ak3 6 
We substitute expressions (C 11) into the basic formulas 

(25) and (26) to obtain 

APP= ~ a - ! b = - 2{(+L;n;)n~) + ~(Lp) 
(C12) 

-4{(± L;n~)LpN~) +.i.(L~) -l:.-(Lp). 
/= 1 9 9 

(C13) 

Formulas (CI2) and (C13) give the values ofthe eigenval
ues of the average polarizability of an array of ellipsoids with 
parallel principal axes. The expressions for A and B for gen
eral configurations of ellipsoids can be obtained by replacing 
in (C12) and (C13) the tensor l by tOlO and averaging 
over the orientation field O. We restrict our attention to the 
case of uniformly distributed crystallographic orientations 
within each grain, which corresponds to n being uniformly 
distributed on the unit sphere in three-space. The relevant 
moments of the vector n are 

(n;) = !, (n:) = !, (n~) = ~ 

for 1,i,3, 

(n;nJ) = is, 
for ii=j, and 

(n~nJ) = ~ 

(C14) 

(C15) 

(nin~nD=rlB. (C16) 

Substituting these values into (CI2) and (C13), we obtain 

APP= -~(Lp) -fs (CI7) 

BPP=/fs(L;) -~(Li +L~ +L;) 

(CI8) 

and Apq = 8PQ = 0 for p=/=q. Replacing l by tOlO and aver
aging over the grain orientation distribution yields expres
sions (32) and (33). 
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